-
1
-
-
0034687694
-
Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
-
Tanner K.G., et al. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:14178-14182.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 14178-14182
-
-
Tanner, K.G.1
-
2
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S., et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
-
3
-
-
77953631698
-
+: an old metabolite controlling new metabolic signaling pathways
-
+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 2010, 31:194-223.
-
(2010)
Endocr. Rev.
, vol.31
, pp. 194-223
-
-
Houtkooper, R.H.1
-
4
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers J.T., et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005, 434:113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
5
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen D., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008, 22:1753-1757.
-
(2008)
Genes Dev.
, vol.22
, pp. 1753-1757
-
-
Chen, D.1
-
6
-
-
77952288176
-
+-dependent protein deacetylase, via activation of PPARalpha in mice
-
+-dependent protein deacetylase, via activation of PPARalpha in mice. Mol. Cell. Biochem. 2010, 339:285-292.
-
(2010)
Mol. Cell. Biochem.
, vol.339
, pp. 285-292
-
-
Hayashida, S.1
-
7
-
-
0024604870
-
Estimation of the mitochondrial redox state in human skeletal muscle during exercise
-
Graham T.E., Saltin B. Estimation of the mitochondrial redox state in human skeletal muscle during exercise. J. Appl. Physiol. 1989, 66:561-566.
-
(1989)
J. Appl. Physiol.
, vol.66
, pp. 561-566
-
-
Graham, T.E.1
Saltin, B.2
-
8
-
-
73449125908
-
Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse
-
Chabi B., et al. Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse. J. Appl. Physiol. 2009, 107:1730-1735.
-
(2009)
J. Appl. Physiol.
, vol.107
, pp. 1730-1735
-
-
Chabi, B.1
-
9
-
-
67349276169
-
+ metabolism and SIRT1 activity
-
+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
-
10
-
-
77249156847
-
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
Canto C., et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010, 11:213-219.
-
(2010)
Cell Metab.
, vol.11
, pp. 213-219
-
-
Canto, C.1
-
11
-
-
80053920774
-
+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
-
+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14:528-536.
-
(2011)
Cell Metab.
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
-
12
-
-
79955433960
-
Metabolomic analysis of livers and serum from high-fat diet induced obese mice
-
Kim H.J., et al. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 2011, 10:722-731.
-
(2011)
J. Proteome Res.
, vol.10
, pp. 722-731
-
-
Kim, H.J.1
-
13
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
Kendrick A.A., et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J. 2011, 433:505-514.
-
(2011)
Biochem. J.
, vol.433
, pp. 505-514
-
-
Kendrick, A.A.1
-
14
-
-
79954576666
-
Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene
-
Tao R., et al. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J. Biol. Chem. 2011, 286:14681-14690.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 14681-14690
-
-
Tao, R.1
-
15
-
-
33845921542
-
+ metabolism in health and disease
-
+ metabolism in health and disease. Trends Biochem. Sci. 2007, 32:12-19.
-
(2007)
Trends Biochem. Sci.
, vol.32
, pp. 12-19
-
-
Belenky, P.1
-
16
-
-
77952549055
-
A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis
-
Imai S. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacol. Res. 2010, 62:42-47.
-
(2010)
Pharmacol. Res.
, vol.62
, pp. 42-47
-
-
Imai, S.1
-
17
-
-
84862758175
-
New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
-
Gibson B.A., Kraus W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 2012, 13:411-424.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 411-424
-
-
Gibson, B.A.1
Kraus, W.L.2
-
18
-
-
21644459951
-
Structure and function of poly(ADP-ribose) polymerase-1: role in oxidative stress-related pathologies
-
Virag L. Structure and function of poly(ADP-ribose) polymerase-1: role in oxidative stress-related pathologies. Curr. Vasc. Pharmacol. 2005, 3:209-214.
-
(2005)
Curr. Vasc. Pharmacol.
, vol.3
, pp. 209-214
-
-
Virag, L.1
-
19
-
-
79953752384
-
PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
-
Bai P., et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011, 13:461-468.
-
(2011)
Cell Metab.
, vol.13
, pp. 461-468
-
-
Bai, P.1
-
20
-
-
62149151357
-
CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions
-
Chini E.N. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr. Pharm. Design 2009, 15:57-63.
-
(2009)
Curr. Pharm. Design
, vol.15
, pp. 57-63
-
-
Chini, E.N.1
-
21
-
-
58149202185
-
Phosphorylation regulates SIRT1 function
-
Sasaki T., et al. Phosphorylation regulates SIRT1 function. PLoS ONE 2008, 3:e4020.
-
(2008)
PLoS ONE
, vol.3
-
-
Sasaki, T.1
-
22
-
-
77949539030
-
JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
-
Nasrin N., et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS ONE 2009, 4:e8414.
-
(2009)
PLoS ONE
, vol.4
-
-
Nasrin, N.1
-
23
-
-
84855860714
-
MIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart
-
Vinciguerra M., et al. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 2012, 11:139-149.
-
(2012)
Aging Cell
, vol.11
, pp. 139-149
-
-
Vinciguerra, M.1
-
24
-
-
77951225449
-
DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1
-
Guo X., et al. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J. Biol. Chem. 2010, 285:13223-13232.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 13223-13232
-
-
Guo, X.1
-
25
-
-
84866116711
-
+-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status
-
+-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status. Sci. Rep. 2012, 2:640.
-
(2012)
Sci. Rep.
, vol.2
, pp. 640
-
-
Guo, X.1
-
26
-
-
84857852626
-
Inhibition of casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFalpha)-induced apoptosis through SIRT1 inhibition
-
Dixit D., et al. Inhibition of casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFalpha)-induced apoptosis through SIRT1 inhibition. Cell Death Dis. 2012, 3:e271.
-
(2012)
Cell Death Dis.
, vol.3
-
-
Dixit, D.1
-
27
-
-
69949138641
-
CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage
-
Kang H., et al. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS ONE 2009, 4:e6611.
-
(2009)
PLoS ONE
, vol.4
-
-
Kang, H.1
-
28
-
-
62049084424
-
Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2
-
Zschoernig B., Mahlknecht U. Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochem. Biophys. Res. Commun. 2009, 381:372-377.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.381
, pp. 372-377
-
-
Zschoernig, B.1
Mahlknecht, U.2
-
29
-
-
79952124926
-
Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1)
-
Liu X., et al. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc. Natl. Acad. Sci. U.S.A. 2011, 108:1925-1930.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 1925-1930
-
-
Liu, X.1
-
31
-
-
35748962613
-
SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
-
Yang Y., et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat. Cell Biol. 2007, 9:1253-1262.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1253-1262
-
-
Yang, Y.1
-
32
-
-
78149284226
-
GAPDH mediates nitrosylation of nuclear proteins
-
Kornberg M.D., et al. GAPDH mediates nitrosylation of nuclear proteins. Nat. Cell Biol. 2010, 12:1094-1100.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1094-1100
-
-
Kornberg, M.D.1
-
33
-
-
84870689957
-
Emerging role of protein-protein transnitrosylation in cell signaling pathways
-
Nakamura T., Lipton S.A. Emerging role of protein-protein transnitrosylation in cell signaling pathways. Antioxid. Redox Signal. 2012, 18:239-249.
-
(2012)
Antioxid. Redox Signal.
, vol.18
, pp. 239-249
-
-
Nakamura, T.1
Lipton, S.A.2
-
34
-
-
35349011726
-
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
-
Kim E.J., et al. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell 2007, 28:277-290.
-
(2007)
Mol. Cell
, vol.28
, pp. 277-290
-
-
Kim, E.J.1
-
35
-
-
38749088678
-
DBC1 is a negative regulator of SIRT1
-
Kim J.E., et al. DBC1 is a negative regulator of SIRT1. Nature 2008, 451:583-586.
-
(2008)
Nature
, vol.451
, pp. 583-586
-
-
Kim, J.E.1
-
36
-
-
82455219091
-
Peptide switch is essential for Sirt1 deacetylase activity
-
Kang H., et al. Peptide switch is essential for Sirt1 deacetylase activity. Mol. Cell 2011, 44:203-213.
-
(2011)
Mol. Cell
, vol.44
, pp. 203-213
-
-
Kang, H.1
-
37
-
-
84859871053
-
Regulation of SIRT1 activity by genotoxic stress
-
Yuan J., et al. Regulation of SIRT1 activity by genotoxic stress. Genes Dev. 2012, 26:791-796.
-
(2012)
Genes Dev.
, vol.26
, pp. 791-796
-
-
Yuan, J.1
-
38
-
-
76649085804
-
Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice
-
Escande C., et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J. Clin. Invest. 2010, 120:545-558.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 545-558
-
-
Escande, C.1
-
39
-
-
20144372893
-
SIRT1 regulates HIV transcription via Tat deacetylation
-
Pagans S., et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 2005, 3:e41.
-
(2005)
PLoS Biol.
, vol.3
-
-
Pagans, S.1
-
40
-
-
40149093701
-
Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation
-
Kwon H.S., et al. Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell Host Microbe 2008, 3:158-167.
-
(2008)
Cell Host Microbe
, vol.3
, pp. 158-167
-
-
Kwon, H.S.1
-
43
-
-
78649482634
-
SIRT1: recent lessons from mouse models
-
Herranz D., Serrano M. SIRT1: recent lessons from mouse models. Nat. Rev. Cancer 2010, 10:819-823.
-
(2010)
Nat. Rev. Cancer
, vol.10
, pp. 819-823
-
-
Herranz, D.1
Serrano, M.2
-
44
-
-
79959343572
-
The controversial links among calorie restriction, SIRT1, and resveratrol
-
Hu Y., et al. The controversial links among calorie restriction, SIRT1, and resveratrol. Free Radic. Biol. Med. 2011, 51:250-256.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 250-256
-
-
Hu, Y.1
-
45
-
-
77749317552
-
GSK/Sirtris compounds dogged by assay artifacts
-
Schmidt C. GSK/Sirtris compounds dogged by assay artifacts. Nat. Biotechnol. 2010, 28:185-186.
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 185-186
-
-
Schmidt, C.1
-
46
-
-
84857831235
-
Recent advances in the study on resveratrol
-
Nakata R., et al. Recent advances in the study on resveratrol. Biol. Pharm. Bull. 2012, 35:273-279.
-
(2012)
Biol. Pharm. Bull.
, vol.35
, pp. 273-279
-
-
Nakata, R.1
-
47
-
-
0035914304
-
Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
-
Grozinger C.M., et al. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 2001, 276:38837-38843.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 38837-38843
-
-
Grozinger, C.M.1
-
48
-
-
77950835404
-
SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2
-
Peck B., et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol. Cancer Ther. 2010, 9:844-855.
-
(2010)
Mol. Cancer Ther.
, vol.9
, pp. 844-855
-
-
Peck, B.1
-
49
-
-
28144438533
-
Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors
-
Mai A., et al. Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J. Med. Chem. 2005, 48:7789-7795.
-
(2005)
J. Med. Chem.
, vol.48
, pp. 7789-7795
-
-
Mai, A.1
-
50
-
-
0035910031
-
Identification of a small molecule inhibitor of Sir2p
-
Bedalov A., et al. Identification of a small molecule inhibitor of Sir2p. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:15113-15118.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 15113-15118
-
-
Bedalov, A.1
-
51
-
-
0346101749
-
+-dependent deacetylases using phenotypic screens in yeast
-
+-dependent deacetylases using phenotypic screens in yeast. J. Biol. Chem. 2003, 278:52773-52782.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 52773-52782
-
-
Hirao, M.1
-
52
-
-
2342614837
-
Inhibitors of Sir2: evaluation of splitomicin analogues
-
Posakony J., et al. Inhibitors of Sir2: evaluation of splitomicin analogues. J. Med. Chem. 2004, 47:2635-2644.
-
(2004)
J. Med. Chem.
, vol.47
, pp. 2635-2644
-
-
Posakony, J.1
-
53
-
-
79958246421
-
+-dependent histone deacetylases (sirtuins)
-
+-dependent histone deacetylases (sirtuins). Bioorg. Med. Chem. 2011, 19:3669-3677.
-
(2011)
Bioorg. Med. Chem.
, vol.19
, pp. 3669-3677
-
-
Freitag, M.1
-
54
-
-
42949114938
-
Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator
-
Lain S., et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008, 13:454-463.
-
(2008)
Cancer Cell
, vol.13
, pp. 454-463
-
-
Lain, S.1
-
55
-
-
35548936745
-
+-dependent histone deacetylases (sirtuins)
-
+-dependent histone deacetylases (sirtuins). ChemMedChem 2007, 2:1419-1431.
-
(2007)
ChemMedChem
, vol.2
, pp. 1419-1431
-
-
Trapp, J.1
-
56
-
-
0019327297
-
Physiology aspects of pyridine nucleotide regulation in mammals
-
Bernofsky C. Physiology aspects of pyridine nucleotide regulation in mammals. Mol. Cell. Biochem. 1980, 33:135-143.
-
(1980)
Mol. Cell. Biochem.
, vol.33
, pp. 135-143
-
-
Bernofsky, C.1
-
57
-
-
28844436909
-
Simultaneous determination of myristyl nicotinate, nicotinic acid, and nicotinamide in rabbit plasma by liquid chromatography-tandem mass spectrometry using methyl ethyl ketone as a deproteinization solvent
-
Catz P., et al. Simultaneous determination of myristyl nicotinate, nicotinic acid, and nicotinamide in rabbit plasma by liquid chromatography-tandem mass spectrometry using methyl ethyl ketone as a deproteinization solvent. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2005, 829:123-135.
-
(2005)
J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci.
, vol.829
, pp. 123-135
-
-
Catz, P.1
-
58
-
-
0029099175
-
Evaluating the role of niacin in human carcinogenesis
-
Jacobson E.L., et al. Evaluating the role of niacin in human carcinogenesis. Biochimie 1995, 77:394-398.
-
(1995)
Biochimie
, vol.77
, pp. 394-398
-
-
Jacobson, E.L.1
-
59
-
-
80053564714
-
CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
-
Noriega L.G., et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011, 12:1069-1076.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1069-1076
-
-
Noriega, L.G.1
-
60
-
-
22844435096
-
Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting
-
Heilbronn L.K., et al. Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes. Res. 2005, 13:574-581.
-
(2005)
Obes. Res.
, vol.13
, pp. 574-581
-
-
Heilbronn, L.K.1
-
61
-
-
84855994224
-
A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction
-
Fusco S., et al. A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:621-626.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 621-626
-
-
Fusco, S.1
-
62
-
-
10844236451
-
Nutrient availability regulates SIRT1 through a forkhead-dependent pathway
-
Nemoto S., et al. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004, 306:2105-2108.
-
(2004)
Science
, vol.306
, pp. 2105-2108
-
-
Nemoto, S.1
-
63
-
-
79953152333
-
FoxO1 mediates an autofeedback loop regulating SIRT1 expression
-
Xiong S., et al. FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J. Biol. Chem. 2011, 286:5289-5299.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 5289-5299
-
-
Xiong, S.1
-
64
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
Brunet A., et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004, 303:2011-2015.
-
(2004)
Science
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
-
65
-
-
1342264308
-
Mammalian SIRT1 represses forkhead transcription factors
-
Motta M.C., et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004, 116:551-563.
-
(2004)
Cell
, vol.116
, pp. 551-563
-
-
Motta, M.C.1
-
66
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A., et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009, 9:327-338.
-
(2009)
Cell Metab.
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
-
67
-
-
77953633702
-
PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1
-
Okazaki M., et al. PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1. Endocr. J. 2010, 57:403-413.
-
(2010)
Endocr. J.
, vol.57
, pp. 403-413
-
-
Okazaki, M.1
-
68
-
-
78649852533
-
SIRT1 is regulated by a PPAR{gamma}-SIRT1 negative feedback loop associated with senescence
-
Han L., et al. SIRT1 is regulated by a PPAR{gamma}-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res. 2010, 38:7458-7471.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 7458-7471
-
-
Han, L.1
-
69
-
-
27544434763
-
Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
-
Chen W.Y., et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005, 123:437-448.
-
(2005)
Cell
, vol.123
, pp. 437-448
-
-
Chen, W.Y.1
-
70
-
-
33846505019
-
Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex
-
Zhang Q., et al. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:829-833.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 829-833
-
-
Zhang, Q.1
-
71
-
-
84860439957
-
Molecular dissection of the interaction between HIC1 and SIRT1
-
Dehennaut V., et al. Molecular dissection of the interaction between HIC1 and SIRT1. Biochem. Biophys. Res. Commun. 2012, 421:384-388.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.421
, pp. 384-388
-
-
Dehennaut, V.1
-
72
-
-
33847035824
-
Phosphorylation of HuR by Chk2 regulates SIRT1 expression
-
Abdelmohsen K., et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol. Cell 2007, 25:543-557.
-
(2007)
Mol. Cell
, vol.25
, pp. 543-557
-
-
Abdelmohsen, K.1
-
73
-
-
84866314843
-
MicroRNA regulation of SIRT1
-
Yamakuchi M. MicroRNA regulation of SIRT1. Front. Physiol. 2012, 3:68.
-
(2012)
Front. Physiol.
, vol.3
, pp. 68
-
-
Yamakuchi, M.1
-
74
-
-
62449117918
-
MiR-34, SIRT1 and p53: the feedback loop
-
Yamakuchi M., Lowenstein C.J. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 2009, 8:712-715.
-
(2009)
Cell Cycle
, vol.8
, pp. 712-715
-
-
Yamakuchi, M.1
Lowenstein, C.J.2
-
75
-
-
77955417245
-
MicroRNA-34a regulation of endothelial senescence
-
Ito T., et al. MicroRNA-34a regulation of endothelial senescence. Biochem. Biophys. Res. Commun. 2010, 398:735-740.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.398
, pp. 735-740
-
-
Ito, T.1
-
76
-
-
77953457652
-
MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1
-
Zhao T., et al. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am. J. Physiol. Endocrinol. Metab. 2010, 299:E110-E116.
-
(2010)
Am. J. Physiol. Endocrinol. Metab.
, vol.299
-
-
Zhao, T.1
-
77
-
-
77951210885
-
A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition
-
Lee J., et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 2010, 285:12604-12611.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 12604-12611
-
-
Lee, J.1
-
78
-
-
80052908737
-
MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1
-
Zhu H., et al. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc. Res. 2011, 92:75-84.
-
(2011)
Cardiovasc. Res.
, vol.92
, pp. 75-84
-
-
Zhu, H.1
-
79
-
-
65249185780
-
Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes
-
Rane S., et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res. 2009, 104:879-886.
-
(2009)
Circ. Res.
, vol.104
, pp. 879-886
-
-
Rane, S.1
-
80
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan K.A., et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005, 2:105-117.
-
(2005)
Cell Metab.
, vol.2
, pp. 105-117
-
-
Moynihan, K.A.1
-
81
-
-
79952846843
-
Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets
-
Ramachandran D., et al. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets. FEBS J. 2011, 278:1167-1174.
-
(2011)
FEBS J.
, vol.278
, pp. 1167-1174
-
-
Ramachandran, D.1
-
82
-
-
70350436694
-
MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1
-
Strum J.C., et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol. Endocrinol. 2009, 23:1876-1884.
-
(2009)
Mol. Endocrinol.
, vol.23
, pp. 1876-1884
-
-
Strum, J.C.1
-
83
-
-
79959355078
-
Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity
-
Gao Z., et al. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J. Biol. Chem. 2011, 286:22227-22234.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 22227-22234
-
-
Gao, Z.1
|