메뉴 건너뛰기




Volumn 38, Issue 3, 2013, Pages 160-167

The ways and means that fine tune Sirt1 activity

Author keywords

Aging; Energy metabolism; Metabolic sensor; Nutrients; Sirt1

Indexed keywords

CYCLIC AMP DEPENDENT PROTEIN KINASE; CYCLIC AMP RECEPTOR; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; HISTONE LYSINE METHYLTRANSFERASE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; NICOTINAMIDE PHOSPHORIBOSYLTRANSFERASE; SIRTUIN 1; SIRTUIN 2; TRANSCRIPTION FACTOR FKHR; TRANSCRIPTION FACTOR FKHRL1;

EID: 84874228973     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2012.12.004     Document Type: Review
Times cited : (133)

References (83)
  • 1
    • 0034687694 scopus 로고    scopus 로고
    • Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
    • Tanner K.G., et al. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:14178-14182.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 14178-14182
    • Tanner, K.G.1
  • 2
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S., et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1
  • 3
    • 77953631698 scopus 로고    scopus 로고
    • +: an old metabolite controlling new metabolic signaling pathways
    • +: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 2010, 31:194-223.
    • (2010) Endocr. Rev. , vol.31 , pp. 194-223
    • Houtkooper, R.H.1
  • 4
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers J.T., et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005, 434:113-118.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 5
    • 46249100836 scopus 로고    scopus 로고
    • Tissue-specific regulation of SIRT1 by calorie restriction
    • Chen D., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008, 22:1753-1757.
    • (2008) Genes Dev. , vol.22 , pp. 1753-1757
    • Chen, D.1
  • 6
    • 77952288176 scopus 로고    scopus 로고
    • +-dependent protein deacetylase, via activation of PPARalpha in mice
    • +-dependent protein deacetylase, via activation of PPARalpha in mice. Mol. Cell. Biochem. 2010, 339:285-292.
    • (2010) Mol. Cell. Biochem. , vol.339 , pp. 285-292
    • Hayashida, S.1
  • 7
    • 0024604870 scopus 로고
    • Estimation of the mitochondrial redox state in human skeletal muscle during exercise
    • Graham T.E., Saltin B. Estimation of the mitochondrial redox state in human skeletal muscle during exercise. J. Appl. Physiol. 1989, 66:561-566.
    • (1989) J. Appl. Physiol. , vol.66 , pp. 561-566
    • Graham, T.E.1    Saltin, B.2
  • 8
    • 73449125908 scopus 로고    scopus 로고
    • Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse
    • Chabi B., et al. Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse. J. Appl. Physiol. 2009, 107:1730-1735.
    • (2009) J. Appl. Physiol. , vol.107 , pp. 1730-1735
    • Chabi, B.1
  • 9
    • 67349276169 scopus 로고    scopus 로고
    • + metabolism and SIRT1 activity
    • + metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1
  • 10
    • 77249156847 scopus 로고    scopus 로고
    • Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
    • Canto C., et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010, 11:213-219.
    • (2010) Cell Metab. , vol.11 , pp. 213-219
    • Canto, C.1
  • 11
    • 80053920774 scopus 로고    scopus 로고
    • + intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
    • + intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14:528-536.
    • (2011) Cell Metab. , vol.14 , pp. 528-536
    • Yoshino, J.1
  • 12
    • 79955433960 scopus 로고    scopus 로고
    • Metabolomic analysis of livers and serum from high-fat diet induced obese mice
    • Kim H.J., et al. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 2011, 10:722-731.
    • (2011) J. Proteome Res. , vol.10 , pp. 722-731
    • Kim, H.J.1
  • 13
    • 78751513117 scopus 로고    scopus 로고
    • Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
    • Kendrick A.A., et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J. 2011, 433:505-514.
    • (2011) Biochem. J. , vol.433 , pp. 505-514
    • Kendrick, A.A.1
  • 14
    • 79954576666 scopus 로고    scopus 로고
    • Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene
    • Tao R., et al. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J. Biol. Chem. 2011, 286:14681-14690.
    • (2011) J. Biol. Chem. , vol.286 , pp. 14681-14690
    • Tao, R.1
  • 15
    • 33845921542 scopus 로고    scopus 로고
    • + metabolism in health and disease
    • + metabolism in health and disease. Trends Biochem. Sci. 2007, 32:12-19.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 12-19
    • Belenky, P.1
  • 16
    • 77952549055 scopus 로고    scopus 로고
    • A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis
    • Imai S. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacol. Res. 2010, 62:42-47.
    • (2010) Pharmacol. Res. , vol.62 , pp. 42-47
    • Imai, S.1
  • 17
    • 84862758175 scopus 로고    scopus 로고
    • New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
    • Gibson B.A., Kraus W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 2012, 13:411-424.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 411-424
    • Gibson, B.A.1    Kraus, W.L.2
  • 18
    • 21644459951 scopus 로고    scopus 로고
    • Structure and function of poly(ADP-ribose) polymerase-1: role in oxidative stress-related pathologies
    • Virag L. Structure and function of poly(ADP-ribose) polymerase-1: role in oxidative stress-related pathologies. Curr. Vasc. Pharmacol. 2005, 3:209-214.
    • (2005) Curr. Vasc. Pharmacol. , vol.3 , pp. 209-214
    • Virag, L.1
  • 19
    • 79953752384 scopus 로고    scopus 로고
    • PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
    • Bai P., et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011, 13:461-468.
    • (2011) Cell Metab. , vol.13 , pp. 461-468
    • Bai, P.1
  • 20
    • 62149151357 scopus 로고    scopus 로고
    • CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions
    • Chini E.N. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr. Pharm. Design 2009, 15:57-63.
    • (2009) Curr. Pharm. Design , vol.15 , pp. 57-63
    • Chini, E.N.1
  • 21
    • 58149202185 scopus 로고    scopus 로고
    • Phosphorylation regulates SIRT1 function
    • Sasaki T., et al. Phosphorylation regulates SIRT1 function. PLoS ONE 2008, 3:e4020.
    • (2008) PLoS ONE , vol.3
    • Sasaki, T.1
  • 22
    • 77949539030 scopus 로고    scopus 로고
    • JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
    • Nasrin N., et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS ONE 2009, 4:e8414.
    • (2009) PLoS ONE , vol.4
    • Nasrin, N.1
  • 23
    • 84855860714 scopus 로고    scopus 로고
    • MIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart
    • Vinciguerra M., et al. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 2012, 11:139-149.
    • (2012) Aging Cell , vol.11 , pp. 139-149
    • Vinciguerra, M.1
  • 24
    • 77951225449 scopus 로고    scopus 로고
    • DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1
    • Guo X., et al. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J. Biol. Chem. 2010, 285:13223-13232.
    • (2010) J. Biol. Chem. , vol.285 , pp. 13223-13232
    • Guo, X.1
  • 25
    • 84866116711 scopus 로고    scopus 로고
    • +-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status
    • +-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status. Sci. Rep. 2012, 2:640.
    • (2012) Sci. Rep. , vol.2 , pp. 640
    • Guo, X.1
  • 26
    • 84857852626 scopus 로고    scopus 로고
    • Inhibition of casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFalpha)-induced apoptosis through SIRT1 inhibition
    • Dixit D., et al. Inhibition of casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFalpha)-induced apoptosis through SIRT1 inhibition. Cell Death Dis. 2012, 3:e271.
    • (2012) Cell Death Dis. , vol.3
    • Dixit, D.1
  • 27
    • 69949138641 scopus 로고    scopus 로고
    • CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage
    • Kang H., et al. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS ONE 2009, 4:e6611.
    • (2009) PLoS ONE , vol.4
    • Kang, H.1
  • 28
    • 62049084424 scopus 로고    scopus 로고
    • Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2
    • Zschoernig B., Mahlknecht U. Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochem. Biophys. Res. Commun. 2009, 381:372-377.
    • (2009) Biochem. Biophys. Res. Commun. , vol.381 , pp. 372-377
    • Zschoernig, B.1    Mahlknecht, U.2
  • 29
    • 79952124926 scopus 로고    scopus 로고
    • Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1)
    • Liu X., et al. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc. Natl. Acad. Sci. U.S.A. 2011, 108:1925-1930.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 1925-1930
    • Liu, X.1
  • 31
    • 35748962613 scopus 로고    scopus 로고
    • SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
    • Yang Y., et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat. Cell Biol. 2007, 9:1253-1262.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1253-1262
    • Yang, Y.1
  • 32
    • 78149284226 scopus 로고    scopus 로고
    • GAPDH mediates nitrosylation of nuclear proteins
    • Kornberg M.D., et al. GAPDH mediates nitrosylation of nuclear proteins. Nat. Cell Biol. 2010, 12:1094-1100.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1094-1100
    • Kornberg, M.D.1
  • 33
    • 84870689957 scopus 로고    scopus 로고
    • Emerging role of protein-protein transnitrosylation in cell signaling pathways
    • Nakamura T., Lipton S.A. Emerging role of protein-protein transnitrosylation in cell signaling pathways. Antioxid. Redox Signal. 2012, 18:239-249.
    • (2012) Antioxid. Redox Signal. , vol.18 , pp. 239-249
    • Nakamura, T.1    Lipton, S.A.2
  • 34
    • 35349011726 scopus 로고    scopus 로고
    • Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
    • Kim E.J., et al. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell 2007, 28:277-290.
    • (2007) Mol. Cell , vol.28 , pp. 277-290
    • Kim, E.J.1
  • 35
    • 38749088678 scopus 로고    scopus 로고
    • DBC1 is a negative regulator of SIRT1
    • Kim J.E., et al. DBC1 is a negative regulator of SIRT1. Nature 2008, 451:583-586.
    • (2008) Nature , vol.451 , pp. 583-586
    • Kim, J.E.1
  • 36
    • 82455219091 scopus 로고    scopus 로고
    • Peptide switch is essential for Sirt1 deacetylase activity
    • Kang H., et al. Peptide switch is essential for Sirt1 deacetylase activity. Mol. Cell 2011, 44:203-213.
    • (2011) Mol. Cell , vol.44 , pp. 203-213
    • Kang, H.1
  • 37
    • 84859871053 scopus 로고    scopus 로고
    • Regulation of SIRT1 activity by genotoxic stress
    • Yuan J., et al. Regulation of SIRT1 activity by genotoxic stress. Genes Dev. 2012, 26:791-796.
    • (2012) Genes Dev. , vol.26 , pp. 791-796
    • Yuan, J.1
  • 38
    • 76649085804 scopus 로고    scopus 로고
    • Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice
    • Escande C., et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J. Clin. Invest. 2010, 120:545-558.
    • (2010) J. Clin. Invest. , vol.120 , pp. 545-558
    • Escande, C.1
  • 39
    • 20144372893 scopus 로고    scopus 로고
    • SIRT1 regulates HIV transcription via Tat deacetylation
    • Pagans S., et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 2005, 3:e41.
    • (2005) PLoS Biol. , vol.3
    • Pagans, S.1
  • 40
    • 40149093701 scopus 로고    scopus 로고
    • Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation
    • Kwon H.S., et al. Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell Host Microbe 2008, 3:158-167.
    • (2008) Cell Host Microbe , vol.3 , pp. 158-167
    • Kwon, H.S.1
  • 43
    • 78649482634 scopus 로고    scopus 로고
    • SIRT1: recent lessons from mouse models
    • Herranz D., Serrano M. SIRT1: recent lessons from mouse models. Nat. Rev. Cancer 2010, 10:819-823.
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 819-823
    • Herranz, D.1    Serrano, M.2
  • 44
    • 79959343572 scopus 로고    scopus 로고
    • The controversial links among calorie restriction, SIRT1, and resveratrol
    • Hu Y., et al. The controversial links among calorie restriction, SIRT1, and resveratrol. Free Radic. Biol. Med. 2011, 51:250-256.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 250-256
    • Hu, Y.1
  • 45
    • 77749317552 scopus 로고    scopus 로고
    • GSK/Sirtris compounds dogged by assay artifacts
    • Schmidt C. GSK/Sirtris compounds dogged by assay artifacts. Nat. Biotechnol. 2010, 28:185-186.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 185-186
    • Schmidt, C.1
  • 46
    • 84857831235 scopus 로고    scopus 로고
    • Recent advances in the study on resveratrol
    • Nakata R., et al. Recent advances in the study on resveratrol. Biol. Pharm. Bull. 2012, 35:273-279.
    • (2012) Biol. Pharm. Bull. , vol.35 , pp. 273-279
    • Nakata, R.1
  • 47
    • 0035914304 scopus 로고    scopus 로고
    • Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
    • Grozinger C.M., et al. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 2001, 276:38837-38843.
    • (2001) J. Biol. Chem. , vol.276 , pp. 38837-38843
    • Grozinger, C.M.1
  • 48
    • 77950835404 scopus 로고    scopus 로고
    • SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2
    • Peck B., et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol. Cancer Ther. 2010, 9:844-855.
    • (2010) Mol. Cancer Ther. , vol.9 , pp. 844-855
    • Peck, B.1
  • 49
    • 28144438533 scopus 로고    scopus 로고
    • Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors
    • Mai A., et al. Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J. Med. Chem. 2005, 48:7789-7795.
    • (2005) J. Med. Chem. , vol.48 , pp. 7789-7795
    • Mai, A.1
  • 50
    • 0035910031 scopus 로고    scopus 로고
    • Identification of a small molecule inhibitor of Sir2p
    • Bedalov A., et al. Identification of a small molecule inhibitor of Sir2p. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:15113-15118.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 15113-15118
    • Bedalov, A.1
  • 51
    • 0346101749 scopus 로고    scopus 로고
    • +-dependent deacetylases using phenotypic screens in yeast
    • +-dependent deacetylases using phenotypic screens in yeast. J. Biol. Chem. 2003, 278:52773-52782.
    • (2003) J. Biol. Chem. , vol.278 , pp. 52773-52782
    • Hirao, M.1
  • 52
    • 2342614837 scopus 로고    scopus 로고
    • Inhibitors of Sir2: evaluation of splitomicin analogues
    • Posakony J., et al. Inhibitors of Sir2: evaluation of splitomicin analogues. J. Med. Chem. 2004, 47:2635-2644.
    • (2004) J. Med. Chem. , vol.47 , pp. 2635-2644
    • Posakony, J.1
  • 53
    • 79958246421 scopus 로고    scopus 로고
    • +-dependent histone deacetylases (sirtuins)
    • +-dependent histone deacetylases (sirtuins). Bioorg. Med. Chem. 2011, 19:3669-3677.
    • (2011) Bioorg. Med. Chem. , vol.19 , pp. 3669-3677
    • Freitag, M.1
  • 54
    • 42949114938 scopus 로고    scopus 로고
    • Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator
    • Lain S., et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008, 13:454-463.
    • (2008) Cancer Cell , vol.13 , pp. 454-463
    • Lain, S.1
  • 55
    • 35548936745 scopus 로고    scopus 로고
    • +-dependent histone deacetylases (sirtuins)
    • +-dependent histone deacetylases (sirtuins). ChemMedChem 2007, 2:1419-1431.
    • (2007) ChemMedChem , vol.2 , pp. 1419-1431
    • Trapp, J.1
  • 56
    • 0019327297 scopus 로고
    • Physiology aspects of pyridine nucleotide regulation in mammals
    • Bernofsky C. Physiology aspects of pyridine nucleotide regulation in mammals. Mol. Cell. Biochem. 1980, 33:135-143.
    • (1980) Mol. Cell. Biochem. , vol.33 , pp. 135-143
    • Bernofsky, C.1
  • 57
    • 28844436909 scopus 로고    scopus 로고
    • Simultaneous determination of myristyl nicotinate, nicotinic acid, and nicotinamide in rabbit plasma by liquid chromatography-tandem mass spectrometry using methyl ethyl ketone as a deproteinization solvent
    • Catz P., et al. Simultaneous determination of myristyl nicotinate, nicotinic acid, and nicotinamide in rabbit plasma by liquid chromatography-tandem mass spectrometry using methyl ethyl ketone as a deproteinization solvent. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2005, 829:123-135.
    • (2005) J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. , vol.829 , pp. 123-135
    • Catz, P.1
  • 58
    • 0029099175 scopus 로고
    • Evaluating the role of niacin in human carcinogenesis
    • Jacobson E.L., et al. Evaluating the role of niacin in human carcinogenesis. Biochimie 1995, 77:394-398.
    • (1995) Biochimie , vol.77 , pp. 394-398
    • Jacobson, E.L.1
  • 59
    • 80053564714 scopus 로고    scopus 로고
    • CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
    • Noriega L.G., et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011, 12:1069-1076.
    • (2011) EMBO Rep. , vol.12 , pp. 1069-1076
    • Noriega, L.G.1
  • 60
    • 22844435096 scopus 로고    scopus 로고
    • Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting
    • Heilbronn L.K., et al. Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes. Res. 2005, 13:574-581.
    • (2005) Obes. Res. , vol.13 , pp. 574-581
    • Heilbronn, L.K.1
  • 61
    • 84855994224 scopus 로고    scopus 로고
    • A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction
    • Fusco S., et al. A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:621-626.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 621-626
    • Fusco, S.1
  • 62
    • 10844236451 scopus 로고    scopus 로고
    • Nutrient availability regulates SIRT1 through a forkhead-dependent pathway
    • Nemoto S., et al. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004, 306:2105-2108.
    • (2004) Science , vol.306 , pp. 2105-2108
    • Nemoto, S.1
  • 63
    • 79953152333 scopus 로고    scopus 로고
    • FoxO1 mediates an autofeedback loop regulating SIRT1 expression
    • Xiong S., et al. FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J. Biol. Chem. 2011, 286:5289-5299.
    • (2011) J. Biol. Chem. , vol.286 , pp. 5289-5299
    • Xiong, S.1
  • 64
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet A., et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004, 303:2011-2015.
    • (2004) Science , vol.303 , pp. 2011-2015
    • Brunet, A.1
  • 65
    • 1342264308 scopus 로고    scopus 로고
    • Mammalian SIRT1 represses forkhead transcription factors
    • Motta M.C., et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004, 116:551-563.
    • (2004) Cell , vol.116 , pp. 551-563
    • Motta, M.C.1
  • 66
    • 63449112017 scopus 로고    scopus 로고
    • Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
    • Purushotham A., et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009, 9:327-338.
    • (2009) Cell Metab. , vol.9 , pp. 327-338
    • Purushotham, A.1
  • 67
    • 77953633702 scopus 로고    scopus 로고
    • PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1
    • Okazaki M., et al. PPARbeta/delta regulates the human SIRT1 gene transcription via Sp1. Endocr. J. 2010, 57:403-413.
    • (2010) Endocr. J. , vol.57 , pp. 403-413
    • Okazaki, M.1
  • 68
    • 78649852533 scopus 로고    scopus 로고
    • SIRT1 is regulated by a PPAR{gamma}-SIRT1 negative feedback loop associated with senescence
    • Han L., et al. SIRT1 is regulated by a PPAR{gamma}-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res. 2010, 38:7458-7471.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 7458-7471
    • Han, L.1
  • 69
    • 27544434763 scopus 로고    scopus 로고
    • Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
    • Chen W.Y., et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005, 123:437-448.
    • (2005) Cell , vol.123 , pp. 437-448
    • Chen, W.Y.1
  • 70
    • 33846505019 scopus 로고    scopus 로고
    • Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex
    • Zhang Q., et al. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:829-833.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 829-833
    • Zhang, Q.1
  • 71
    • 84860439957 scopus 로고    scopus 로고
    • Molecular dissection of the interaction between HIC1 and SIRT1
    • Dehennaut V., et al. Molecular dissection of the interaction between HIC1 and SIRT1. Biochem. Biophys. Res. Commun. 2012, 421:384-388.
    • (2012) Biochem. Biophys. Res. Commun. , vol.421 , pp. 384-388
    • Dehennaut, V.1
  • 72
    • 33847035824 scopus 로고    scopus 로고
    • Phosphorylation of HuR by Chk2 regulates SIRT1 expression
    • Abdelmohsen K., et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol. Cell 2007, 25:543-557.
    • (2007) Mol. Cell , vol.25 , pp. 543-557
    • Abdelmohsen, K.1
  • 73
    • 84866314843 scopus 로고    scopus 로고
    • MicroRNA regulation of SIRT1
    • Yamakuchi M. MicroRNA regulation of SIRT1. Front. Physiol. 2012, 3:68.
    • (2012) Front. Physiol. , vol.3 , pp. 68
    • Yamakuchi, M.1
  • 74
    • 62449117918 scopus 로고    scopus 로고
    • MiR-34, SIRT1 and p53: the feedback loop
    • Yamakuchi M., Lowenstein C.J. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 2009, 8:712-715.
    • (2009) Cell Cycle , vol.8 , pp. 712-715
    • Yamakuchi, M.1    Lowenstein, C.J.2
  • 75
    • 77955417245 scopus 로고    scopus 로고
    • MicroRNA-34a regulation of endothelial senescence
    • Ito T., et al. MicroRNA-34a regulation of endothelial senescence. Biochem. Biophys. Res. Commun. 2010, 398:735-740.
    • (2010) Biochem. Biophys. Res. Commun. , vol.398 , pp. 735-740
    • Ito, T.1
  • 76
    • 77953457652 scopus 로고    scopus 로고
    • MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1
    • Zhao T., et al. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am. J. Physiol. Endocrinol. Metab. 2010, 299:E110-E116.
    • (2010) Am. J. Physiol. Endocrinol. Metab. , vol.299
    • Zhao, T.1
  • 77
    • 77951210885 scopus 로고    scopus 로고
    • A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition
    • Lee J., et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 2010, 285:12604-12611.
    • (2010) J. Biol. Chem. , vol.285 , pp. 12604-12611
    • Lee, J.1
  • 78
    • 80052908737 scopus 로고    scopus 로고
    • MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1
    • Zhu H., et al. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc. Res. 2011, 92:75-84.
    • (2011) Cardiovasc. Res. , vol.92 , pp. 75-84
    • Zhu, H.1
  • 79
    • 65249185780 scopus 로고    scopus 로고
    • Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes
    • Rane S., et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res. 2009, 104:879-886.
    • (2009) Circ. Res. , vol.104 , pp. 879-886
    • Rane, S.1
  • 80
    • 25144454432 scopus 로고    scopus 로고
    • Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
    • Moynihan K.A., et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005, 2:105-117.
    • (2005) Cell Metab. , vol.2 , pp. 105-117
    • Moynihan, K.A.1
  • 81
    • 79952846843 scopus 로고    scopus 로고
    • Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets
    • Ramachandran D., et al. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets. FEBS J. 2011, 278:1167-1174.
    • (2011) FEBS J. , vol.278 , pp. 1167-1174
    • Ramachandran, D.1
  • 82
    • 70350436694 scopus 로고    scopus 로고
    • MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1
    • Strum J.C., et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol. Endocrinol. 2009, 23:1876-1884.
    • (2009) Mol. Endocrinol. , vol.23 , pp. 1876-1884
    • Strum, J.C.1
  • 83
    • 79959355078 scopus 로고    scopus 로고
    • Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity
    • Gao Z., et al. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J. Biol. Chem. 2011, 286:22227-22234.
    • (2011) J. Biol. Chem. , vol.286 , pp. 22227-22234
    • Gao, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.