메뉴 건너뛰기




Volumn , Issue , 2010, Pages 80-89

A tutorial on stochastic approximation algorithms for training restricted Boltzmann machines and deep belief nets

Author keywords

[No Author keywords available]

Indexed keywords

BELIEF NETWORKS; CONTRASTIVE DIVERGENCE; DATA SETS; FINE TUNING; OPTIMAL PARAMETER; OPTIMAL RESULTS; PARAMETER CHANGES; RESTRICTED BOLTZMANN MACHINE; STOCHASTIC APPROXIMATION ALGORITHMS; STOCHASTIC APPROXIMATIONS; STOCHASTIC MAXIMUM LIKELIHOOD ALGORITHMS;

EID: 77952681438     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ITA.2010.5454138     Document Type: Conference Paper
Times cited : (60)

References (44)
  • 1
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 7
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L. Wiskott and T. Sejnowski, "Slow feature analysis: Unsupervised learning of invariances," Neural Computation, vol. 14, no. 4, pp. 715-770, 2002.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.2
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 11
    • 0000355193 scopus 로고
    • Parametric inference for imperfectly observed Gibbsian fields
    • L. Younes, "Parametric inference for imperfectly observed Gibbsian fields," Probability Theory and Related Fields, vol. 82, no. 4, pp. 625-645, 1989.
    • (1989) Probability Theory and Related Fields , vol.82 , Issue.4 , pp. 625-645
    • Younes, L.1
  • 12
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • T. Tieleman, "Training restricted Boltzmann machines using approximations to the likelihood gradient," in International conference on Machine Learning, 2008, pp. 1064-1071.
    • International Conference on Machine Learning, 2008 , pp. 1064-1071
    • Tieleman, T.1
  • 14
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Computation, vol. 14, p. 2002, 2002.
    • (2002) Neural Computation , vol.14 , pp. 2002
    • Hinton, G.E.1
  • 19
    • 0043224019 scopus 로고
    • A Newton-Raphson version of the multivariate Robbins-Monro procedure
    • D. Ruppert, "A Newton-Raphson version of the multivariate Robbins-Monro procedure," Ann. Statist., vol. 13, no. 1, pp. 236-245, 1985.
    • (1985) Ann. Statist. , vol.13 , Issue.1 , pp. 236-245
    • Ruppert, D.1
  • 20
    • 0032260190 scopus 로고    scopus 로고
    • Adaptive stochastic approximation by the simultaneous perturbation method
    • J. Spall, "Adaptive stochastic approximation by the simultaneous perturbation method," IEEE Conference on Decision and Control, pp. 3872-3879, 1998.
    • (1998) IEEE Conference on Decision and Control , pp. 3872-3879
    • Spall, J.1
  • 21
    • 0000828406 scopus 로고
    • A new method of stochastic approximation type
    • B. T. Polyak, "A new method of stochastic approximation type," Avtomat. i Telemekh., no. 7, pp. 98-107, 1990.
    • (1990) Avtomat. I Telemekh. , Issue.7 , pp. 98-107
    • Polyak, B.T.1
  • 23
    • 0019608150 scopus 로고
    • Averaging methods for the asymptotic analysis of learning and adaptive systems, with small adjustment rate
    • H. J. Kushner and H. Huang, "Averaging methods for the asymptotic analysis of learning and adaptive systems, with small adjustment rate," SIAM J. Control Optim., vol. 19, no. 5, pp. 635-650, 1981.
    • (1981) SIAM J. Control Optim. , vol.19 , Issue.5 , pp. 635-650
    • Kushner, H.J.1    Huang, H.2
  • 24
    • 0002824293 scopus 로고
    • Asymptotic properties of stochastic approximations with constant coefficients
    • -, "Asymptotic properties of stochastic approximations with constant coefficients," SIAM J. Control Optim., vol. 19, no. 1, pp. 87-105, 1981.
    • (1981) SIAM J. Control Optim. , vol.19 , Issue.1 , pp. 87-105
  • 28
    • 0346881152 scopus 로고    scopus 로고
    • Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method
    • A. Bhaya and E. Kaszkurewicz, "Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method," Neural Networks, vol. 17, no. 1, pp. 65-71, 2004.
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 65-71
    • Bhaya, A.1    Kaszkurewicz, E.2
  • 29
  • 31
    • 79959651429 scopus 로고    scopus 로고
    • Herding Dynamic Weights for Partially Observed Random Field Models
    • M. Welling, "Herding Dynamic Weights for Partially Observed Random Field Models," in UAI, 2009.
    • (2009) UAI
    • Welling, M.1
  • 33
    • 0030242092 scopus 로고    scopus 로고
    • General results on the convergence of stochastic algorithms
    • B. Delyon, "General results on the convergence of stochastic algorithms," IEEE Transactions on Automatic Control, vol. 41, no. 9, pp. 1245-1255, 1996.
    • (1996) IEEE Transactions on Automatic Control , vol.41 , Issue.9 , pp. 1245-1255
    • Delyon, B.1
  • 34
    • 57849088168 scopus 로고    scopus 로고
    • A tutorial on adaptive MCMC
    • C. Andrieu and J. Thoms, "A tutorial on adaptive MCMC," Statistics and Computing, vol. 18, no. 4, pp. 343-373, 2008.
    • (2008) Statistics and Computing , vol.18 , Issue.4 , pp. 343-373
    • Andrieu, C.1    Thoms, J.2
  • 37
  • 42
    • 85162008868 scopus 로고    scopus 로고
    • Learning horizontal connections in a sparse coding model of natural images
    • P. Garrigues and B. Olshausen, "Learning horizontal connections in a sparse coding model of natural images," Advances in Neural Information Processing Systems, vol. 20, pp. 505-512, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 505-512
    • Garrigues, P.1    Olshausen, B.2
  • 44
    • 73249147663 scopus 로고    scopus 로고
    • The difficulty of training deep architectures and the effect of unsupervised pre-training
    • D. Erhan, P. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, "The difficulty of training deep architectures and the effect of unsupervised pre-training," AISTATS, 2009.
    • (2009) AISTATS
    • Erhan, D.1    Manzagol, P.2    Bengio, Y.3    Bengio, S.4    Vincent, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.