메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Sparse feature learning for deep belief networks

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; ECONOMIC AND SOCIAL EFFECTS;

EID: 85161966246     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (370)

References (20)
  • 1
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • G.E. Hinton and R. R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 3
    • 85112276587 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • MIT Press
    • M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS 2006. MIT Press, 2006.
    • (2006) NIPS 2006
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 4
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towars ai
    • D. DeCoste L. Bottou, O. Chapelle and J. Weston, editors. MIT Press
    • Y. Bengio and Y. LeCun. Scaling learning algorithms towars ai. In D. DeCoste L. Bottou, O. Chapelle and J. Weston, editors, Large-Scale Kernel Machines. MIT Press, 2007.
    • (2007) Large-Scale Kernel Machines
    • Bengio, Y.1    Lecun, Y.2
  • 6
    • 56449113213 scopus 로고    scopus 로고
    • A theoretical analysis of robust coding over noisy overcomplete channels
    • MIT Press
    • E. Doi, D. C. Balcan, and M. S. Lewicki. A theoretical analysis of robust coding over noisy overcomplete channels. In NIPS. MIT Press, 2006.
    • (2006) NIPS
    • Doi, E.1    Balcan, D.C.2    Lewicki, M.S.3
  • 8
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • DOI 10.1016/S0042-6989(97)00169-7, PII S0042698997001697
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Research, 37:3311-3325, 1997. (Pubitemid 27493805)
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 9
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 10
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G.E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 11
    • 0037452922 scopus 로고    scopus 로고
    • The cost of cortical computation
    • DOI 10.1016/S0960-9822(03)00135-0
    • P. Lennie. The cost of cortical computation. Current biology, 13:493-497, 2003. (Pubitemid 36345724)
    • (2003) Current Biology , vol.13 , Issue.6 , pp. 493-497
    • Lennie, P.1
  • 13
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length, and helmholtz free energy
    • G.E. Hinton and R.S. Zemel. Autoencoders, minimum description length, and helmholtz free energy. In NIPS, 1994.
    • (1994) NIPS
    • Hinton, G.E.1    Zemel, R.S.2
  • 14
    • 0030737323 scopus 로고    scopus 로고
    • Modeling the manifolds of images of handwritten digits
    • PII S1045922797002373
    • G.E. Hinton, P. Dayan, and M. Revow. Modeling the manifolds of images of handwritten digits. IEEE Transactions on Neural Networks, 8:65-74, 1997. (Pubitemid 127767781)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 65-74
    • Hinton, G.E.1    Dayan, P.2    Revow, M.3
  • 15
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • M.S. Lewicki and T.J. Sejnowski. Learning overcomplete representations. Neural Computation, 12:337-365, 2000.
    • (2000) Neural Computation , vol.12 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 17
    • 85156243451 scopus 로고    scopus 로고
    • Learning sparse multiscale image representations
    • MIT Press
    • P. Sallee and B.A. Olshausen. Learning sparse multiscale image representations. In NIPS. MIT Press, 2002.
    • (2002) NIPS
    • Sallee, P.1    Olshausen, B.A.2
  • 18
    • 85162048181 scopus 로고    scopus 로고
    • http://yann.lecun.com/exdb/mnist/.
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • G.E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 20
    • 85162008713 scopus 로고    scopus 로고
    • http://www.cs.berkeley.edu/projects/vision/grouping/segbench/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.