메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 627-662

Parameter screening and optimisation for ILP using designed experiments

Author keywords

Experimental design; Inductive Logic Programming; Parameter screening and optimisation

Indexed keywords

COMPUTATIONAL OVERHEADS; CONSTRUCTING MODELS; CONTROLLED EXPERIMENTATION; DEFAULT VALUES; DESIGNED EXPERIMENTS; EXPERIMENTAL DESIGN; EXPLORATORY ANALYSIS; FRACTIONAL FACTORIAL DESIGNS; ILP MODELS; IMPROVING SYSTEMS; INDUCTIVE LOGIC; INPUT PARAMETER; OPTIMAL VALUES; OPTIMISATIONS; PARAMETER SCREENING; PARAMETER SELECTION; REGRESSION MODEL; RESPONSE SURFACE; RESPONSE SURFACE METHOD; SENSITIVE PARAMETER; SPECIFIC VALUES; STEEPEST ASCENT; STEPWISE REGRESSION;

EID: 79952760123     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (17)

References (35)
  • 1
    • 0000973407 scopus 로고
    • Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP
    • J. Ashby and R. W. Tennant. Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U. S. NTP. Mutation Research, 257:229-306, 1991. (Pubitemid 121007619)
    • (1991) Mutation Research - Reviews in Mutation Research , vol.257 , Issue.3 , pp. 229-306
    • Ashby, J.1    Tennant, R.W.2
  • 2
    • 77955488513 scopus 로고    scopus 로고
    • Automatic tuning of optimization software parameters
    • University of Pittsburgh, Dept. of Industrial Engineering
    • M. Baz, B. Hunsaker, J. P. Brooks, and A. Gosavi. Automatic tuning of optimization software parameters. Technical Report 2007-7, University of Pittsburgh, Dept. of Industrial Engineering, 2007.
    • (2007) Technical Report 2007-7
    • Baz, M.1    Hunsaker, B.2    Brooks, J.P.3    Gosavi, A.4
  • 3
    • 0034241361 scopus 로고    scopus 로고
    • Gradient based optimisation of hyperparameters
    • Y. Bengio. Gradient based optimisation of hyperparameters. Neural Computation, 12(8):1889-1900, 2000.
    • (2000) Neural. Computation , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 4
    • 84925604888 scopus 로고    scopus 로고
    • No unbiased estimator of the variance of k-fold cross-validation
    • Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k-fold cross-validation. Journal of Machine Learning Research, 5:1089-1105, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1089-1105
    • Bengio, Y.1    Grandvalet, Y.2
  • 6
    • 0029407394 scopus 로고
    • Applications of inductive logic programming
    • I. Bratko and S. H. Muggleton. Applications of inductive logic programming. Communications of the ACM, 38(11):65-70, 1995.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 65-70
    • Bratko, I.1    Muggleton, S.H.2
  • 9
    • 0026087709 scopus 로고
    • Structureactivity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity
    • A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Schusterman, and C. Hansch. Structureactivity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry, 34(2):786-797, 1991.
    • (1991) Journal of Medicinal Chemistry , vol.34 , Issue.2 , pp. 786-797
    • Debnath, A.K.1    Lopez De Compadre, R.L.2    Debnath, G.3    Schusterman, A.J.4    Hansch, C.5
  • 10
    • 0342671724 scopus 로고
    • Interactive concept-learning and constructive induction by analogy
    • L. DeRaedt and M. Bruynooghe. Interactive concept-learning and constructive induction by analogy. Machine Learning, 8(2):107-150, 1992.
    • (1992) Machine Learning , vol.8 , Issue.2 , pp. 107-150
    • DeRaedt, L.1    Bruynooghe, M.2
  • 11
    • 22944482268 scopus 로고    scopus 로고
    • Relational data mining applications: An overview
    • S. Dzeroski and N. Lavrac, editors, Springer, Berlin
    • S. Dzeroski. Relational data mining applications: An overview. In S. Dzeroski and N. Lavrac, editors, Relational Data Mining, pages 339-360. Springer, Berlin, 2001.
    • (2001) Relational Data Mining , pp. 339-360
    • Dzeroski, S.1
  • 12
    • 34249770616 scopus 로고
    • Optimization via simulation
    • M. C. Fu. Optimization via simulation. Annals of Operations Research, 53:199-248, 1994.
    • (1994) Annals of Operations Research , vol.53 , pp. 199-248
    • Fu, M.C.1
  • 17
    • 78650715148 scopus 로고    scopus 로고
    • On the quest for optimal rule learning heuristics
    • March, ISSN 0885-6125
    • Frederik Janssen and Johannes Fürnkranz. On the quest for optimal rule learning heuristics. Mach. Learn., 78:343-379, March 2010. ISSN 0885-6125.
    • (2010) Mach. Learn. , vol.78 , pp. 343-379
    • Janssen, F.1    Fürnkranz, J.2
  • 18
    • 84864039082 scopus 로고    scopus 로고
    • An efficient method for gradient-based adaptation of hyperparameters in svm models
    • S. S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient method for gradient-based adaptation of hyperparameters in svm models. In NIPS, pages 673-680, 2006.
    • (2006) NIPS , pp. 673-680
    • Keerthi, S.S.1    Sindhwani, V.2    Chapelle, O.3
  • 19
    • 0029824974 scopus 로고    scopus 로고
    • Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming
    • R. D. King and A. Srinivasan. Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming. Environmental Health Perspectives, 104(5):1031-1040, 1996. (Pubitemid 26402347)
    • (1996) Environmental Health Perspectives , vol.104 , Issue.SUPPL. 5 , pp. 1031-1040
    • King, R.D.1    Srinivasan, A.2
  • 20
    • 0030044168 scopus 로고    scopus 로고
    • Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming
    • DOI 10.1073/pnas.93.1.438
    • R. D. King, S. H. Muggleton, A. Srinivasan, and M. J. E. Sternberg. Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc. of the National Academy of Sciences, 93:438-442, 1996. (Pubitemid 26038172)
    • (1996) Proceedings of the National Academy of Sciences of the United States of America , vol.93 , Issue.1 , pp. 438-442
    • King, R.D.1    Muggleton, S.H.2    Srinivasan, A.3    Sternberg, M.J.E.4
  • 21
    • 33747419508 scopus 로고
    • Automatic parameter selection by minimizing estimated error
    • A. Prieditis and S. Russell, editors, San Francisco, CA, Morgan Kaufmann
    • R. Kohavi and G. H. John. Automatic parameter selection by minimizing estimated error. In A. Prieditis and S. Russell, editors, Proceedings of the Twelfth International Conference on Machine Learning, pages 204-212, San Francisco, CA, 1995. Morgan Kaufmann.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 204-212
    • Kohavi, R.1    John, G.H.2
  • 24
    • 77951503082 scopus 로고
    • Inverse Entailment and Progol
    • S. Muggleton. Inverse Entailment and Progol. New Gen. Comput., 13:245-286, 1995.
    • (1995) New Gen. Comput. , vol.13 , pp. 245-286
    • Muggleton, S.1
  • 25
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19, 20:629-679, 1994.
    • (1994) Journal of Logic Programming , vol.19 , Issue.20 , pp. 629-679
    • Muggleton, S.1    De Raedt, L.2
  • 28
    • 0001723504 scopus 로고
    • Optimization of simulation via quasi-newton methods
    • M. H. Safizadeh and R. Signorile. Optimization of simulation via quasi-newton methods. ORSA Journal on Computing, 6(4):388-408, 1994.
    • (1994) ORSA Journal on Computing , vol.6 , Issue.4 , pp. 388-408
    • Safizadeh, M.H.1    Signorile, R.2
  • 30
    • 2542454374 scopus 로고    scopus 로고
    • URL
    • A. Srinivasan. The aleph manual. 1999. URL http://www.comlab.ox.ac.uk/ oucl/research/areas/machlearn/Aleph/.
    • (1999) The Aleph Manual
    • Srinivasan, A.1
  • 31
    • 77955028175 scopus 로고    scopus 로고
    • Four suggestions and a rule concerning the application of ilp
    • Nada Lavrac and Saso Dzeroski, editors, Springer-Verlag, Berlin, URL
    • A. Srinivasan. Four suggestions and a rule concerning the application of ilp. In Nada Lavrac and Saso Dzeroski, editors, Relational Data Mining, pages 365-374. Springer-Verlag, Berlin, 2001a. URL ftp://ftp.comlab.ox.ac.uk/pub/ Packages/ILP/Papers/AS/ilpkdd.ps.gz.
    • (2001) Relational Data Mining , pp. 365-374
    • Srinivasan, A.1
  • 32
    • 0035451469 scopus 로고    scopus 로고
    • Extracting context-sensitive models in inductive logic programming
    • DOI 10.1023/A:1010980106294, Inductive Logic Programming
    • A. Srinivasan. Extracting context-sensitive models in inductive logic programming. Machine Learning, 44:301-324, 2001b. URL ftp://ftp.comlab.ox.ac.uk/ pub/Packages/ILP/Papers/AS/relev. ps.gz. (Pubitemid 32761114)
    • (2001) Machine Learning , vol.44 , Issue.3 , pp. 301-324
    • Srinivasan, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.