-
1
-
-
84902177414
-
Reducing communication for distributed learning in neural networks
-
Springer
-
Auer, P., Burgsteiner, H., & Maass, W. (2002). Reducing communication for distributed learning in neural networks. ICANN'2002 (pp. 123-128). Springer.
-
(2002)
ICANN'2002
, pp. 123-128
-
-
Auer, P.1
Burgsteiner, H.2
Maass, W.3
-
3
-
-
4544287663
-
A gentle hessian for efficient gradient descent
-
Collobert, R., & Bengio, S. (2004a). A gentle hessian for efficient gradient descent. IEEE International Conference on Acoustic, Speech, and Signal Processing, ICASSP.
-
(2004)
IEEE International Conference on Acoustic, Speech, and Signal Processing, ICASSP
-
-
Collobert, R.1
Bengio, S.2
-
8
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
9
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
B. Schölkopf, C. Burges and A. Smola (Eds.). The MIT Press
-
Joachims, T. (1999). Making large-scale support vector machine learning practical. In B. Schölkopf, C. Burges and A. Smola (Eds.), Advances in Kernel Methods. The MIT Press.
-
(1999)
Advances in Kernel Methods
-
-
Joachims, T.1
-
12
-
-
0001857994
-
Efficient backprop
-
G. Orr and K.-R. Müller (Eds.). Springer
-
LeCun, Y., Bottou, L., Orr, G., & Müller, K.-R. (1998). Efficient backprop. In G. Orr and K.-R. Müller (Eds.), Neural networks: Tricks of the trade, 9-50. Springer.
-
(1998)
Neural Networks: Tricks of the Trade
, pp. 9-50
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.3
Müller, K.-R.4
-
15
-
-
0003794792
-
-
(Technical Report CMU-CS-86-126). Department of Computer Science, Carnegie-Mellon University
-
Plaut, D., Nowlan, S., & Hinton, G. E. (1986). Experiments on learning by back-propagation (Technical Report CMU-CS-86-126). Department of Computer Science, Carnegie-Mellon University.
-
(1986)
Experiments on Learning by Back-propagation
-
-
Plaut, D.1
Nowlan, S.2
Hinton, G.E.3
-
17
-
-
84898962683
-
Margin maximizing loss functions
-
S. Thrun, L. Saul and B. Schölkopf (Eds.). Cambridge, MA: MIT Press
-
Rosset, S., Zhu, J., & Hastie, T. (2004). Margin maximizing loss functions. In S. Thrun, L. Saul and B. Schölkopf (Eds.), Advances in neural information processing systems 16. Cambridge, MA: MIT Press.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
Rosset, S.1
Zhu, J.2
Hastie, T.3
-
18
-
-
0000646059
-
Learning internal representations by back-propagating errors
-
D. Rumelhart and J. McClelland (Eds.). MIT Press
-
Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by back-propagating errors. In D. Rumelhart and J. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1, 318-362. MIT Press.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.1
Hinton, G.2
Williams, R.3
|