메뉴 건너뛰기




Volumn 9, Issue 5, 1998, Pages 768-786

A general framework for adaptive processing of data structures

Author keywords

Graphical models; Graphs; Learning data structures; Problem solving; Recurrent neural networks; Recursive neural networks; Sequences; Syntactic pattern recognition

Indexed keywords

ADAPTIVE SYSTEMS; DATA PROCESSING; GRAPH THEORY; LEARNING SYSTEMS; MATHEMATICAL MODELS; NEURAL NETWORKS; PATTERN RECOGNITION; RECURSIVE FUNCTIONS;

EID: 0032165969     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.712151     Document Type: Article
Times cited : (422)

References (60)
  • 1
    • 0029521061 scopus 로고
    • Recurrent neural networks and prior knowledge for sequence processing: A constrained nondeterministic approach
    • P. Frasconi, M. Gori, and G. Soda, "Recurrent neural networks and prior knowledge for sequence processing: A constrained nondeterministic approach," Knowledge-Based Syst., vol. 8, no. 6, pp. 313-332, 1995.
    • (1995) Knowledge-Based Syst. , vol.8 , Issue.6 , pp. 313-332
    • Frasconi, P.1    Gori, M.2    Soda, G.3
  • 2
    • 0017291489 scopus 로고
    • A software complexity measure
    • T. J. M. Cabe, "A software complexity measure," IEEE Trans. Software Eng., vol. 2, pp. 308-320, 1976.
    • (1976) IEEE Trans. Software Eng. , vol.2 , pp. 308-320
    • Cabe, T.J.M.1
  • 3
    • 84976754020 scopus 로고
    • Design and analysis of hierarchical software metrics
    • R. Prather, "Design and analysis of hierarchical software metrics," ACM Computing Surveys, vol. 27, no. 4, pp. 497-518, 1995.
    • (1995) ACM Computing Surveys , vol.27 , Issue.4 , pp. 497-518
    • Prather, R.1
  • 10
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Mar.
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Networks, vol. 5, pp. 157-166, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 11
    • 0025519204 scopus 로고
    • Mapping part-whole hierarchies into connectionist networks
    • G. E. Hinton, "Mapping part-whole hierarchies into connectionist networks," Artificial Intell., vol. 46, pp. 47-75, 1990.
    • (1990) Artificial Intell. , vol.46 , pp. 47-75
    • Hinton, G.E.1
  • 12
    • 0025519291 scopus 로고
    • Recursive distributed representations
    • J. B. Pollack, "Recursive distributed representations," Artificial Intell., vol. 46, no. 1-2, pp. 77-106, 1990.
    • (1990) Artificial Intell. , vol.46 , Issue.1-2 , pp. 77-106
    • Pollack, J.B.1
  • 13
    • 0029310084 scopus 로고
    • Holographic reduced representations
    • May
    • T. A. Plate, "Holographic reduced representations," IEEE Trans. Neural Networks, vol. 6, pp. 623-641, May 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 623-641
    • Plate, T.A.1
  • 14
    • 84947517907 scopus 로고
    • Labeling RAAM
    • A. Sperduti, "Labeling RAAM," Connection Sci., vol. 6, no. 4, pp. 429-459, 1994.
    • (1994) Connection Sci. , vol.6 , Issue.4 , pp. 429-459
    • Sperduti, A.1
  • 15
    • 33747688763 scopus 로고
    • Encoding labeled graphs by labeling RAAM
    • J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann
    • _, "Encoding labeled graphs by labeling RAAM," in Advances in Neural Information Processing Systems, J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, vol. 6, pp. 1125-1132, 1994.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 1125-1132
  • 16
    • 0029408601 scopus 로고
    • Stability properties of labeling recursive autoassociative memory
    • Nov.
    • _, "Stability properties of labeling recursive autoassociative memory," IEEE Trans. Neural Networks, vol. 6, pp. 1452-1460, Nov. 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 1452-1460
  • 17
    • 0029749571 scopus 로고    scopus 로고
    • A memory model based on lraam for associative access of structures
    • A. Sperduti and A. Starita, "A memory model based on lraam for associative access of structures," in IEEE Int. Conf. Neural Networks, 1996, pp. 543-548.
    • (1996) IEEE Int. Conf. Neural Networks , pp. 543-548
    • Sperduti, A.1    Starita, A.2
  • 18
    • 33747747391 scopus 로고
    • Encoding syntactical trees with labeling recursive autoassociative memory
    • Amsterdam, The Netherlands
    • V. Cadoret, "Encoding syntactical trees with labeling recursive autoassociative memory," in Proc. ECAI, Amsterdam, The Netherlands, 1994, pp. 555-559.
    • (1994) Proc. ECAI , pp. 555-559
    • Cadoret, V.1
  • 19
    • 0031145983 scopus 로고    scopus 로고
    • Supervised neural networks for the classification of structures
    • A. Sperduti and A. Starita, "Supervised neural networks for the classification of structures," IEEE Trans. Neural Networks, vol. 8, 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8
    • Sperduti, A.1    Starita, A.2
  • 20
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • Feb.
    • T. J. Sejnowski and C. R. Rosenberg, "Parallel networks that learn to pronounce English text," J. Complex Syst., vol. 1, pp. 145-168, Feb. 1987.
    • (1987) J. Complex Syst. , vol.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, C.R.2
  • 21
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, "Finding structure in time," Cognitive Sci., vol. 14, pp. 179-211, 1990.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 22
    • 84953506049 scopus 로고
    • Extraction, insertion, and refinement of symbolic rules in dynamically driven recurrent neural networks
    • C. L. Giles and C. W. Omlin, "Extraction, insertion, and refinement of symbolic rules in dynamically driven recurrent neural networks," Connection Sci., vol. 5, no. 3, pp. 307-337, 1993.
    • (1993) Connection Sci. , vol.5 , Issue.3 , pp. 307-337
    • Giles, C.L.1    Omlin, C.W.2
  • 23
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," Proc. IEEE, vol. 77, no. 2, pp. 257-286, 1989.
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 24
    • 0030242097 scopus 로고    scopus 로고
    • Input-output HMM's for sequence processing
    • Sept.
    • Y. Bengio and P. Frasconi, "Input-output HMM's for sequence processing," IEEE Trans. Neural Networks, vol. 7, pp. 1231-1249, Sept. 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 1231-1249
    • Bengio, Y.1    Frasconi, P.2
  • 25
    • 0026895542 scopus 로고
    • The gamma model - A new neural-net model for temporal processing
    • B. de Vries and J. C. Principe, "The gamma model - A new neural-net model for temporal processing," Neural Networks, vol. 5, pp. 565-576, 1992.
    • (1992) Neural Networks , vol.5 , pp. 565-576
    • De Vries, B.1    Principe, J.C.2
  • 26
    • 85153962684 scopus 로고
    • A comparison of discrete-time operator models and for nonlinear system identification
    • G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press
    • A. D. Back and A. C. Tsoi, "A comparison of discrete-time operator models and for nonlinear system identification," in Advances in Neural Information Processing Systems, G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press, vol. 7, 1995, pp. 883-890.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 883-890
    • Back, A.D.1    Tsoi, A.C.2
  • 29
    • 0002384858 scopus 로고
    • Asymmetric parallel Boltzmann machines are belief networks
    • R. M. Neal, "Asymmetric parallel Boltzmann machines are belief networks," Neural Comput., vol. 4, no. 6, pp. 832-834, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.6 , pp. 832-834
    • Neal, R.M.1
  • 31
    • 0012829803 scopus 로고    scopus 로고
    • Graphical Models
    • Oxford, U.K.: Clarendon
    • S. Lauritzen, Graphical Models, no. 17 in Statistical Science Series. Oxford, U.K.: Clarendon, 1996.
    • (1996) Statistical Science Series , Issue.17
    • Lauritzen, S.1
  • 32
    • 0000735610 scopus 로고
    • Operations for learning with graphical models
    • W. L. Buntine, "Operations for learning with graphical models," J. Artificial Intell. Res., vol. 2, pp. 159-225, 1994.
    • (1994) J. Artificial Intell. Res. , vol.2 , pp. 159-225
    • Buntine, W.L.1
  • 33
    • 0003979694 scopus 로고
    • Learning the initial state of a second-order recurrent neural network during regular-language inference
    • M. L. Forcada and R. C. Carrasco, "Learning the initial state of a second-order recurrent neural network during regular-language inference," Neural Comput., vol. 7, no. 5, pp. 923-930, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.5 , pp. 923-930
    • Forcada, M.L.1    Carrasco, R.C.2
  • 34
    • 0002529479 scopus 로고
    • Tree automata: An informal survey
    • A. Aho, Ed. Englewood Cliffs, NJ: Prentice-Hall
    • J. Thacher, "Tree automata: An informal survey," in Currents in the Theory of Computing, A. Aho, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1973, pp. 143-172.
    • (1973) Currents in the Theory of Computing , pp. 143-172
    • Thacher, J.1
  • 35
    • 0001698979 scopus 로고
    • Bayesian updating in recursive graphical models by local computations
    • F. V. Jensen, S. L. Lauritzen, and K. G. Olosen, "Bayesian updating in recursive graphical models by local computations," Comput. Statist. Quarterly, vol. 4, pp. 269-282, 1990.
    • (1990) Comput. Statist. Quarterly , vol.4 , pp. 269-282
    • Jensen, F.V.1    Lauritzen, S.L.2    Olosen, K.G.3
  • 38
    • 0002532056 scopus 로고
    • The estimation of stochastic context-free grammars using the inside-outside algorithm
    • K. Lari and S. J. Young, "The estimation of stochastic context-free grammars using the inside-outside algorithm," Comput. Speech and Language, vol. 4, no. 1, pp. 35-56, 1990.
    • (1990) Comput. Speech and Language , vol.4 , Issue.1 , pp. 35-56
    • Lari, K.1    Young, S.J.2
  • 39
    • 0030125824 scopus 로고    scopus 로고
    • Representation of finite-state automata in recurrent radial basis function networks
    • P. Frasconi, M. Gori, M. Maggini, and G. Soda, "Representation of finite-state automata in recurrent radial basis function networks," Machine Learning, vol. 23, pp. 5-32, 1996.
    • (1996) Machine Learning , vol.23 , pp. 5-32
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 40
    • 0023513717 scopus 로고
    • Learning, invariance, and generalization in high-order neural networks
    • C. Giles and T. Maxwell, "Learning, invariance, and generalization in high-order neural networks," Appl. Opt., vol. 26, no. 23, p. 4972, 1987.
    • (1987) Appl. Opt. , vol.26 , Issue.23 , pp. 4972
    • Giles, C.1    Maxwell, T.2
  • 41
    • 0001257629 scopus 로고
    • Experimental comparison of the effect of order in recurrent neural networks
    • Applications of Neural Networks to Pattern Recognition, I. Guyon, Ed.
    • C. B. Miller and C. L. Giles, "Experimental comparison of the effect of order in recurrent neural networks," Int. J. Pattern Recognition Artificial Intell., (Special issue on Applications of Neural Networks to Pattern Recognition), I. Guyon, Ed., 1993.
    • (1993) Int. J. Pattern Recognition Artificial Intell. , Issue.SPEC. ISSUE
    • Miller, C.B.1    Giles, C.L.2
  • 43
    • 0000805679 scopus 로고
    • The molecular connectivity chi indexes and kappa shape indexes in structure-property modeling
    • K. B. Lipkowitz and D. B. Boyd, Eds. New York: VCH
    • L. H. Hall and L. B. Kier, "The molecular connectivity chi indexes and kappa shape indexes in structure-property modeling," in Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds. New York: VCH, 1991, pp. 367-422.
    • (1991) Reviews in Computational Chemistry , pp. 367-422
    • Hall, L.H.1    Kier, L.B.2
  • 45
  • 46
    • 33747686836 scopus 로고
    • Using backpropagation for guiding the search of a theorem prover
    • C. B. Suttner and W. Ertel, "Using backpropagation for guiding the search of a theorem prover," Int. J. Neural Network Res. Applicat., vol. 2, no. 1, pp. 3-16, 1991.
    • (1991) Int. J. Neural Network Res. Applicat. , vol.2 , Issue.1 , pp. 3-16
    • Suttner, C.B.1    Ertel, W.2
  • 47
    • 0029727454 scopus 로고    scopus 로고
    • Learning task-dependent distributed structure-representations by backpropagation through structure
    • C. Goller and A. Küchler, "Learning task-dependent distributed structure-representations by backpropagation through structure," in IEEE Int. Conf. Neural Networks, 1996, pp. 347-352.
    • (1996) IEEE Int. Conf. Neural Networks , pp. 347-352
    • Goller, C.1    Küchler, A.2
  • 49
    • 84958531921 scopus 로고    scopus 로고
    • Extended cascade-correlation for syntactic and structural pattern recognition
    • Advances in Structural and Syntactical Pattern Recognition, P. Perner, P. Wang, and A. Rosenfeld, Eds., Berlin, Germany: Springer-Verlag
    • A. Sperduti, D. Majidi, and A. Starita, "Extended cascade-correlation for syntactic and structural pattern recognition," in Advances in Structural and Syntactical Pattern Recognition, P. Perner, P. Wang, and A. Rosenfeld, Eds., vol. 1121 of Lecture notes in Computer Science. Berlin, Germany: Springer-Verlag, 1996, pp. 90-99.
    • (1996) Lecture Notes in Computer Science , vol.1121 , pp. 90-99
    • Sperduti, A.1    Majidi, D.2    Starita, A.3
  • 50
    • 0001086881 scopus 로고
    • The recurrent cascade-correlation architecture
    • R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman, "The recurrent cascade-correlation architecture," in Advances in Neural Information Processing Systems, R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, vol. 3, 1991, pp. 190-196.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 190-196
    • Fahlman, S.E.1
  • 51
    • 0020815483 scopus 로고
    • A survey of inductive inference: Theory and methods
    • Sept.
    • D. Angluin and C. H. Smith, "A survey of inductive inference: Theory and methods," ACM Comput. Survey, vol. 15, pp. 237-269, Sept. 1983.
    • (1983) ACM Comput. Survey , vol.15 , pp. 237-269
    • Angluin, D.1    Smith, C.H.2
  • 52
    • 0030286473 scopus 로고    scopus 로고
    • Constructing deterministic finite-state automata in recurrent neural networks
    • C. Omlin and C. L. Giles, "Constructing deterministic finite-state automata in recurrent neural networks," J. ACM, vol. 43, no. 6, pp. 937-972, 1996.
    • (1996) J. ACM , vol.43 , Issue.6 , pp. 937-972
    • Omlin, C.1    Giles, C.L.2
  • 53
    • 0029255891 scopus 로고
    • On the computational power of neural nets
    • H. T. Siegelmann and E. D. Sontag, "On the computational power of neural nets," J. Comput. Syst. Sci., vol. 50, no. 1, pp. 132-150, 1995.
    • (1995) J. Comput. Syst. Sci. , vol.50 , Issue.1 , pp. 132-150
    • Siegelmann, H.T.1    Sontag, E.D.2
  • 54
    • 0001187706 scopus 로고
    • Complexity of automaton identification from given data
    • E. M. Gold, "Complexity of automaton identification from given data," Inform. Contr., vol. 37, pp. 302-320, 1978.
    • (1978) Inform. Contr. , vol.37 , pp. 302-320
    • Gold, E.M.1
  • 56
    • 0031128328 scopus 로고    scopus 로고
    • On the computational power of recurrent neural networks for structures
    • to appear
    • A. Sperduti, "On the computational power of recurrent neural networks for structures," Neural Networks, to appear, 1997.
    • (1997) Neural Networks
    • Sperduti, A.1
  • 57
    • 0001327717 scopus 로고
    • Learning and extracting finite state automata with second-order recurrent neural networks
    • C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee, "Learning and extracting finite state automata with second-order recurrent neural networks," Neural Comput., vol. 4, no. 3, pp. 393-405, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 393-405
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Chen, H.H.4    Sun, G.Z.5    Lee, Y.C.6
  • 58
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • G. G. Towell and J. W. Shavlik, "Extracting refined rules from knowledge-based neural networks," Machine Learning, vol. 13, pp. 71-101, 1993.
    • (1993) Machine Learning , vol.13 , pp. 71-101
    • Towell, G.G.1    Shavlik, J.W.2
  • 59
    • 84892153351 scopus 로고    scopus 로고
    • Beyond mealy machines: Learning translators with recurrent neural
    • San Diego, CA
    • R. Neco and M. L. Forcada, "Beyond mealy machines: learning translators with recurrent neural," in Proc. WCNN'96 (World Congr. Neural Networks), San Diego, CA, pp. 408-411.
    • Proc. WCNN'96 (World Congr. Neural Networks) , pp. 408-411
    • Neco, R.1    Forcada, M.L.2
  • 60
    • 33747727928 scopus 로고    scopus 로고
    • Recurrent neural networks for missing or asynchronous data
    • M. Mozer, D. Touretzky, and M. Perrone, Eds., Cambridge, MA: MIT Press
    • Y. Bengio and F. Gingras, "Recurrent neural networks for missing or asynchronous data," in Advances in Neural Information Processing Systems, M. Mozer, D. Touretzky, and M. Perrone, Eds., vol. 8. Cambridge, MA: MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8
    • Bengio, Y.1    Gingras, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.