-
1
-
-
0026629273
-
Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates
-
Izban M.G., Luse D.S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 1992, 267:13647-13655.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 13647-13655
-
-
Izban, M.G.1
Luse, D.S.2
-
2
-
-
0025877255
-
Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing
-
Izban M.G., Luse D.S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 1991, 5:683-696.
-
(1991)
Genes Dev.
, vol.5
, pp. 683-696
-
-
Izban, M.G.1
Luse, D.S.2
-
4
-
-
78651504121
-
Evolution of multisubunit RNA polymerases in the three domains of life
-
Werner F., Grohmann D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 2011, 9:85-98.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 85-98
-
-
Werner, F.1
Grohmann, D.2
-
5
-
-
0022132080
-
Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases
-
Allison L.A., Moyle M., Shales M., Ingles C.J. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 1985, 42:599-610.
-
(1985)
Cell
, vol.42
, pp. 599-610
-
-
Allison, L.A.1
Moyle, M.2
Shales, M.3
Ingles, C.J.4
-
6
-
-
0035074008
-
Transcription elongation complex: structure and function
-
Korzheva N., Mustaev A. Transcription elongation complex: structure and function. Curr. Opin. Microbiol. 2001, 4:119-125.
-
(2001)
Curr. Opin. Microbiol.
, vol.4
, pp. 119-125
-
-
Korzheva, N.1
Mustaev, A.2
-
7
-
-
34447499995
-
Structural basis for transcription elongation by bacterial RNA polymerase
-
Vassylyev D.G., Vassylyeva M.N., Perederina A., Tahirov T.H., Artsimovitch I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 2007, 448:157-162.
-
(2007)
Nature
, vol.448
, pp. 157-162
-
-
Vassylyev, D.G.1
Vassylyeva, M.N.2
Perederina, A.3
Tahirov, T.H.4
Artsimovitch, I.5
-
8
-
-
0037352585
-
The genetic core of the universal ancestor
-
Harris J.K., Kelley S.T., Spiegelman G.B., Pace N.R. The genetic core of the universal ancestor. Genome Res. 2003, 13:407-412.
-
(2003)
Genome Res.
, vol.13
, pp. 407-412
-
-
Harris, J.K.1
Kelley, S.T.2
Spiegelman, G.B.3
Pace, N.R.4
-
9
-
-
0021152709
-
Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae
-
Winston F., Chaleff D.T., Valent B., Fink G.R. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 1984, 107:179-197.
-
(1984)
Genetics
, vol.107
, pp. 179-197
-
-
Winston, F.1
Chaleff, D.T.2
Valent, B.3
Fink, G.R.4
-
10
-
-
0027523232
-
Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae
-
Malone E.A., Fassler J.S., Winston F. Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae. Mol. Gen. Genet. 1993, 237:449-459.
-
(1993)
Mol. Gen. Genet.
, vol.237
, pp. 449-459
-
-
Malone, E.A.1
Fassler, J.S.2
Winston, F.3
-
11
-
-
0026208983
-
SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat
-
Swanson M.S., Malone E.A., Winston F. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 1991, 11:4286.
-
(1991)
Mol. Cell. Biol.
, vol.11
, pp. 4286
-
-
Swanson, M.S.1
Malone, E.A.2
Winston, F.3
-
12
-
-
0026775612
-
SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae
-
Swanson M.S., Winston F. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 1992, 132:325-336.
-
(1992)
Genetics
, vol.132
, pp. 325-336
-
-
Swanson, M.S.1
Winston, F.2
-
13
-
-
0032004953
-
Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae
-
Hartzog G.A., Wada T., Handa H., Winston F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 1998, 12:357-369.
-
(1998)
Genes Dev.
, vol.12
, pp. 357-369
-
-
Hartzog, G.A.1
Wada, T.2
Handa, H.3
Winston, F.4
-
14
-
-
0037073048
-
Promoting elongation with transcript cleavage stimulatory factors
-
Fish R.N., Kane C.M. Promoting elongation with transcript cleavage stimulatory factors. Biochim. Biophys. Acta 2002, 1577:287-307.
-
(2002)
Biochim. Biophys. Acta
, vol.1577
, pp. 287-307
-
-
Fish, R.N.1
Kane, C.M.2
-
15
-
-
0026633013
-
6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae
-
Exinger F., Lacroute F. 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr. Genet. 1992, 22:9-11.
-
(1992)
Curr. Genet.
, vol.22
, pp. 9-11
-
-
Exinger, F.1
Lacroute, F.2
-
16
-
-
15244358670
-
Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo
-
Mason P.B., Struhl K. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol. Cell 2005, 17:831-840.
-
(2005)
Mol. Cell
, vol.17
, pp. 831-840
-
-
Mason, P.B.1
Struhl, K.2
-
17
-
-
0029871680
-
Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations
-
Noble S.M., Guthrie C. Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations. Genetics 1996, 143:67-80.
-
(1996)
Genetics
, vol.143
, pp. 67-80
-
-
Noble, S.M.1
Guthrie, C.2
-
18
-
-
0024561487
-
5,6-Dichloro-1-beta-d-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro
-
Chodosh L.A., Fire A., Samuels M., Sharp P.A. 5,6-Dichloro-1-beta-d-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J. Biol. Chem. 1989, 264:2250-2257.
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 2250-2257
-
-
Chodosh, L.A.1
Fire, A.2
Samuels, M.3
Sharp, P.A.4
-
19
-
-
14444275279
-
DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs
-
Wada T., Takagi T., Yamaguchi Y., Ferdous A., Imai T., Hirose S., Sugimoto S., Yano K., Hartzog G.A., Winston F., Buratowski S., Handa H. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 1998, 12:343-356.
-
(1998)
Genes Dev.
, vol.12
, pp. 343-356
-
-
Wada, T.1
Takagi, T.2
Yamaguchi, Y.3
Ferdous, A.4
Imai, T.5
Hirose, S.6
Sugimoto, S.7
Yano, K.8
Hartzog, G.A.9
Winston, F.10
Buratowski, S.11
Handa, H.12
-
20
-
-
0034676431
-
A regulator of transcriptional elongation controls vertebrate neuronal development
-
Guo S., Yamaguchi Y., Schilbach S., Wada T., Lee J., Goddard A., French D., Handa H., Rosenthal A. A regulator of transcriptional elongation controls vertebrate neuronal development. Nature 2000, 408:366-369.
-
(2000)
Nature
, vol.408
, pp. 366-369
-
-
Guo, S.1
Yamaguchi, Y.2
Schilbach, S.3
Wada, T.4
Lee, J.5
Goddard, A.6
French, D.7
Handa, H.8
Rosenthal, A.9
-
21
-
-
0036713442
-
Novel domains and orthologues of eukaryotic transcription elongation factors
-
Ponting C.P. Novel domains and orthologues of eukaryotic transcription elongation factors. Nucleic Acids Res. 2002, 30:3643-3652.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 3643-3652
-
-
Ponting, C.P.1
-
22
-
-
4444336414
-
The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding
-
Charier G., Couprie J., Alpha-Bazin B., Meyer V., Quemeneur E., Guerois R., Callebaut I., Gilquin B., Zinn-Justin S. The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding. Structure 2004, 12:1551-1562.
-
(2004)
Structure
, vol.12
, pp. 1551-1562
-
-
Charier, G.1
Couprie, J.2
Alpha-Bazin, B.3
Meyer, V.4
Quemeneur, E.5
Guerois, R.6
Callebaut, I.7
Gilquin, B.8
Zinn-Justin, S.9
-
23
-
-
0031081575
-
Tudor domains in proteins that interact with RNA
-
Ponting C.P. Tudor domains in proteins that interact with RNA. Trends Biochem. Sci. 1997, 22:51-52.
-
(1997)
Trends Biochem. Sci.
, vol.22
, pp. 51-52
-
-
Ponting, C.P.1
-
24
-
-
77957849604
-
Tudor domain
-
Lasko P. Tudor domain. Curr. Biol. 2010, 20:R666-R667.
-
(2010)
Curr. Biol.
, vol.20
-
-
Lasko, P.1
-
25
-
-
0037205456
-
Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5
-
Pei Y., Shuman S. Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5. J. Biol. Chem. 2002, 277:19639-19648.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 19639-19648
-
-
Pei, Y.1
Shuman, S.2
-
26
-
-
0036336890
-
The elongation factors Pandora/Spt6 and Foggy/Spt5 promote transcription in the zebrafish embryo
-
Keegan B.R., Feldman J.L., Lee D.H., Koos D.S., Ho R.K., Stainier D.Y., Yelon D. The elongation factors Pandora/Spt6 and Foggy/Spt5 promote transcription in the zebrafish embryo. Development 2002, 129:1623-1632.
-
(2002)
Development
, vol.129
, pp. 1623-1632
-
-
Keegan, B.R.1
Feldman, J.L.2
Lee, D.H.3
Koos, D.S.4
Ho, R.K.5
Stainier, D.Y.6
Yelon, D.7
-
27
-
-
4544293017
-
Locus-specific requirements for Spt5 in transcriptional activation and repression in Drosophila
-
Jennings B.H., Shah S., Yamaguchi Y., Seki M., Phillips R.G., Handa H., Ish-Horowicz D. Locus-specific requirements for Spt5 in transcriptional activation and repression in Drosophila. Curr. Biol. 2004, 14:1680-1684.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1680-1684
-
-
Jennings, B.H.1
Shah, S.2
Yamaguchi, Y.3
Seki, M.4
Phillips, R.G.5
Handa, H.6
Ish-Horowicz, D.7
-
28
-
-
0037102566
-
CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo
-
Shim E.Y., Walker A.K., Shi Y., Blackwell T.K. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev. 2002, 16:2135-2146.
-
(2002)
Genes Dev.
, vol.16
, pp. 2135-2146
-
-
Shim, E.Y.1
Walker, A.K.2
Shi, Y.3
Blackwell, T.K.4
-
29
-
-
30744449491
-
P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation
-
Yamada T., Yamaguchi Y., Inukai N., Okamoto S., Mura T., Handa H. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol. Cell 2006, 21:227-237.
-
(2006)
Mol. Cell
, vol.21
, pp. 227-237
-
-
Yamada, T.1
Yamaguchi, Y.2
Inukai, N.3
Okamoto, S.4
Mura, T.5
Handa, H.6
-
30
-
-
0029905349
-
Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae
-
Basrai M.A., Kingsbury J., Koshland D., Spencer F., Hieter P. Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae. Mol. Cell. Biol. 1996, 16:2838-2847.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 2838-2847
-
-
Basrai, M.A.1
Kingsbury, J.2
Koshland, D.3
Spencer, F.4
Hieter, P.5
-
31
-
-
2442520137
-
Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae
-
Crotti L.B., Basrai M.A. Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae. EMBO J. 2004, 23:1804-1814.
-
(2004)
EMBO J.
, vol.23
, pp. 1804-1814
-
-
Crotti, L.B.1
Basrai, M.A.2
-
32
-
-
0033867524
-
The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo
-
Deuring R., Fanti L., Armstrong J.A., Sarte M., Papoulas O., Prestel M., Daubresse G., Verardo M., Moseley S.L., Berloco M., Tsukiyama T., Wu C., Pimpinelli S., Tamkun J.W. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 2000, 5:355-365.
-
(2000)
Mol. Cell
, vol.5
, pp. 355-365
-
-
Deuring, R.1
Fanti, L.2
Armstrong, J.A.3
Sarte, M.4
Papoulas, O.5
Prestel, M.6
Daubresse, G.7
Verardo, M.8
Moseley, S.L.9
Berloco, M.10
Tsukiyama, T.11
Wu, C.12
Pimpinelli, S.13
Tamkun, J.W.14
-
33
-
-
0030585741
-
Isolation and characterization of the human and mouse homologues (SUPT4H and Supt4h) of the yeast SPT4 gene
-
Chiang P.W., Wang S.Q., Smithivas P., Song W.J., Crombez E., Akhtar A., Im R., Greenfield J., Ramamoorthy S., Van Keuren M., Blackburn C.C., Tsai C.H., Kurnit D.M. Isolation and characterization of the human and mouse homologues (SUPT4H and Supt4h) of the yeast SPT4 gene. Genomics 1996, 34:368-375.
-
(1996)
Genomics
, vol.34
, pp. 368-375
-
-
Chiang, P.W.1
Wang, S.Q.2
Smithivas, P.3
Song, W.J.4
Crombez, E.5
Akhtar, A.6
Im, R.7
Greenfield, J.8
Ramamoorthy, S.9
Van Keuren, M.10
Blackburn, C.C.11
Tsai, C.H.12
Kurnit, D.M.13
-
34
-
-
0029896450
-
Identification and analysis of a functional human homolog of the SPT4 gene of Saccharomyces cerevisiae
-
Hartzog G.A., Basrai M.A., Ricupero-Hovasse S.L., Hieter P., Winston F. Identification and analysis of a functional human homolog of the SPT4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 1996, 16:2848-2856.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 2848-2856
-
-
Hartzog, G.A.1
Basrai, M.A.2
Ricupero-Hovasse, S.L.3
Hieter, P.4
Winston, F.5
-
35
-
-
0037398624
-
Structure-function analysis of human Spt4: evidence that hSpt4 and hSpt5 exert their roles in transcriptional elongation as parts of the DSIF complex
-
Kim D.K., Inukai N., Yamada T., Furuya A., Sato H., Yamaguchi Y., Wada T., Handa H. Structure-function analysis of human Spt4: evidence that hSpt4 and hSpt5 exert their roles in transcriptional elongation as parts of the DSIF complex. Genes Cells 2003, 8:371-378.
-
(2003)
Genes Cells
, vol.8
, pp. 371-378
-
-
Kim, D.K.1
Inukai, N.2
Yamada, T.3
Furuya, A.4
Sato, H.5
Yamaguchi, Y.6
Wada, T.7
Handa, H.8
-
36
-
-
38049146018
-
Protein characterization of Saccharomyces cerevisiae RNA polymerase II after in vivo cross-linking
-
Tardiff D.F., Abruzzi K.C., Rosbash M. Protein characterization of Saccharomyces cerevisiae RNA polymerase II after in vivo cross-linking. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:19948-19953.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 19948-19953
-
-
Tardiff, D.F.1
Abruzzi, K.C.2
Rosbash, M.3
-
37
-
-
0036150085
-
Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences
-
Bourgeois C.F., Kim Y.K., Churcher M.J., West M.J., Karn J. Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences. Mol. Cell. Biol. 2002, 22:1079-1093.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 1079-1093
-
-
Bourgeois, C.F.1
Kim, Y.K.2
Churcher, M.J.3
West, M.J.4
Karn, J.5
-
38
-
-
18144372773
-
Modulating HIV-1 replication by RNA interference directed against human transcription elongation factor SPT5
-
Ping Y.H., Chu C.Y., Cao H., Jacque J.M., Stevenson M., Rana T.M. Modulating HIV-1 replication by RNA interference directed against human transcription elongation factor SPT5. Retrovirology 2004, 1:46.
-
(2004)
Retrovirology
, vol.1
, pp. 46
-
-
Ping, Y.H.1
Chu, C.Y.2
Cao, H.3
Jacque, J.M.4
Stevenson, M.5
Rana, T.M.6
-
39
-
-
37849036555
-
RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes
-
Glover-Cutter K., Kim S., Espinosa J., Bentley D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat. Struct. Mol. Biol. 2008, 15:71-78.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 71-78
-
-
Glover-Cutter, K.1
Kim, S.2
Espinosa, J.3
Bentley, D.L.4
-
40
-
-
78149477660
-
Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation
-
Gilchrist D.A., Dos Santos G., Fargo D.C., Xie B., Gao Y., Li L., Adelman K. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 2010, 143:540-551.
-
(2010)
Cell
, vol.143
, pp. 540-551
-
-
Gilchrist, D.A.1
Dos Santos, G.2
Fargo, D.C.3
Xie, B.4
Gao, Y.5
Li, L.6
Adelman, K.7
-
41
-
-
77957766550
-
Uniform transitions of the general RNA polymerase II transcription complex
-
Mayer A., Lidschreiber M., Siebert M., Leike K., Soding J., Cramer P. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 2010, 17:1272-1278.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1272-1278
-
-
Mayer, A.1
Lidschreiber, M.2
Siebert, M.3
Leike, K.4
Soding, J.5
Cramer, P.6
-
42
-
-
77957239251
-
Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5
-
Pavri R., Gazumyan A., Jankovic M., Di Virgilio M., Klein I., Ansarah-Sobrinho C., Resch W., Yamane A., Reina San-Martin B., Barreto V., Nieland T.J., Root D.E., Casellas R., Nussenzweig M.C. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 2010, 143:122-133.
-
(2010)
Cell
, vol.143
, pp. 122-133
-
-
Pavri, R.1
Gazumyan, A.2
Jankovic, M.3
Di Virgilio, M.4
Klein, I.5
Ansarah-Sobrinho, C.6
Resch, W.7
Yamane, A.8
Reina San-Martin, B.9
Barreto, V.10
Nieland, T.J.11
Root, D.E.12
Casellas, R.13
Nussenzweig, M.C.14
-
43
-
-
77951920690
-
C-Myc regulates transcriptional pause release
-
Rahl P.B., Lin C.Y., Seila A.C., Flynn R.A., McCuine S., Burge C.B., Sharp P.A., Young R.A. c-Myc regulates transcriptional pause release. Cell 2010, 141:432-445.
-
(2010)
Cell
, vol.141
, pp. 432-445
-
-
Rahl, P.B.1
Lin, C.Y.2
Seila, A.C.3
Flynn, R.A.4
McCuine, S.5
Burge, C.B.6
Sharp, P.A.7
Young, R.A.8
-
44
-
-
78449255017
-
DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes
-
Drouin S., Laramee L., Jacques P.E., Forest A., Bergeron M., Robert F. DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet. 2010, 6:e1001173.
-
(2010)
PLoS Genet.
, vol.6
-
-
Drouin, S.1
Laramee, L.2
Jacques, P.E.3
Forest, A.4
Bergeron, M.5
Robert, F.6
-
45
-
-
0034667949
-
High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation
-
Andrulis E.D., Guzman E., Doring P., Werner J., Lis J.T. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 2000, 14:2635-2649.
-
(2000)
Genes Dev.
, vol.14
, pp. 2635-2649
-
-
Andrulis, E.D.1
Guzman, E.2
Doring, P.3
Werner, J.4
Lis, J.T.5
-
46
-
-
0034667805
-
Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster
-
Kaplan C.D., Morris J.R., Wu C., Winston F. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 2000, 14:2623-2634.
-
(2000)
Genes Dev.
, vol.14
, pp. 2623-2634
-
-
Kaplan, C.D.1
Morris, J.R.2
Wu, C.3
Winston, F.4
-
47
-
-
0345016384
-
Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II
-
Morillon A., Karabetsou N., O'Sullivan J., Kent N., Proudfoot N., Mellor J. Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 2003, 115:425-435.
-
(2003)
Cell
, vol.115
, pp. 425-435
-
-
Morillon, A.1
Karabetsou, N.2
O'Sullivan, J.3
Kent, N.4
Proudfoot, N.5
Mellor, J.6
-
48
-
-
77749261651
-
Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription
-
Quan T.K., Hartzog G.A. Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription. Genetics 2010, 184:321-334.
-
(2010)
Genetics
, vol.184
, pp. 321-334
-
-
Quan, T.K.1
Hartzog, G.A.2
-
49
-
-
0037415686
-
Molecular evidence for a positive role of Spt4 in transcription elongation
-
Rondon A.G., Garcia-Rubio M., Gonzalez-Barrera S., Aguilera A. Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 2003, 22:612-620.
-
(2003)
EMBO J.
, vol.22
, pp. 612-620
-
-
Rondon, A.G.1
Garcia-Rubio, M.2
Gonzalez-Barrera, S.3
Aguilera, A.4
-
50
-
-
84863160228
-
Spt4 is selectively required for transcription of extended trinucleotide repeats
-
Liu C.R., Chang C.R., Chern Y., Wang T.H., Hsieh W.C., Shen W.C., Chang C.Y., Chu I.C., Deng N., Cohen S.N., Cheng T.H. Spt4 is selectively required for transcription of extended trinucleotide repeats. Cell 2012, 148:690-701.
-
(2012)
Cell
, vol.148
, pp. 690-701
-
-
Liu, C.R.1
Chang, C.R.2
Chern, Y.3
Wang, T.H.4
Hsieh, W.C.5
Shen, W.C.6
Chang, C.Y.7
Chu, I.C.8
Deng, N.9
Cohen, S.N.10
Cheng, T.H.11
-
51
-
-
0032571254
-
Role of the human homolog of the yeast transcription factor SPT5 in HIV-1 Tat-activation
-
Wu-Baer F., Lane W.S., Gaynor R.B. Role of the human homolog of the yeast transcription factor SPT5 in HIV-1 Tat-activation. J. Mol. Biol. 1998, 277:179-197.
-
(1998)
J. Mol. Biol.
, vol.277
, pp. 179-197
-
-
Wu-Baer, F.1
Lane, W.S.2
Gaynor, R.B.3
-
52
-
-
1542314246
-
Elongation inhibition by DRB sensitivity-inducing factor is regulated by the A20 promoter via a novel negative element and NF-kappaB
-
Ainbinder E., Amir-Zilberstein L., Yamaguchi Y., Handa H., Dikstein R. Elongation inhibition by DRB sensitivity-inducing factor is regulated by the A20 promoter via a novel negative element and NF-kappaB. Mol. Cell. Biol. 2004, 24:2444-2454.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 2444-2454
-
-
Ainbinder, E.1
Amir-Zilberstein, L.2
Yamaguchi, Y.3
Handa, H.4
Dikstein, R.5
-
53
-
-
38349163133
-
Interplay between E-box and NF-kappaB in regulation of A20 gene by DRB sensitivity-inducing factor (DSIF)
-
Amir-Zilberstein L., Dikstein R. Interplay between E-box and NF-kappaB in regulation of A20 gene by DRB sensitivity-inducing factor (DSIF). J. Biol. Chem. 2008, 283:1317-1323.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 1317-1323
-
-
Amir-Zilberstein, L.1
Dikstein, R.2
-
54
-
-
79956316198
-
The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively
-
Anderson S.J., Sikes M.L., Zhang Y., French S.L., Salgia S., Beyer A.L., Nomura M., Schneider D.A. The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively. J. Biol. Chem. 2011, 286:18816-18824.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 18816-18824
-
-
Anderson, S.J.1
Sikes, M.L.2
Zhang, Y.3
French, S.L.4
Salgia, S.5
Beyer, A.L.6
Nomura, M.7
Schneider, D.A.8
-
55
-
-
79956319539
-
Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly
-
Viktorovskaya O.V., Appling F.D., Schneider D.A. Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly. J. Biol. Chem. 2011, 286:18825-18833.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 18825-18833
-
-
Viktorovskaya, O.V.1
Appling, F.D.2
Schneider, D.A.3
-
56
-
-
33748053333
-
RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing
-
Schneider D.A., French S.L., Osheim Y.N., Bailey A.O., Vu L., Dodd J., Yates J.R., Beyer A.L., Nomura M. RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:12707-12712.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 12707-12712
-
-
Schneider, D.A.1
French, S.L.2
Osheim, Y.N.3
Bailey, A.O.4
Vu, L.5
Dodd, J.6
Yates, J.R.7
Beyer, A.L.8
Nomura, M.9
-
57
-
-
0028905513
-
Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro
-
Burova E., Hung S.C., Sagitov V., Stitt B.L., Gottesman M.E. Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro. J. Bacteriol. 1995, 177:1388-1392.
-
(1995)
J. Bacteriol.
, vol.177
, pp. 1388-1392
-
-
Burova, E.1
Hung, S.C.2
Sagitov, V.3
Stitt, B.L.4
Gottesman, M.E.5
-
58
-
-
0032079954
-
Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli
-
Burns C.M., Richardson L.V., Richardson J.P. Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli. J. Mol. Biol. 1998, 278:307-316.
-
(1998)
J. Mol. Biol.
, vol.278
, pp. 307-316
-
-
Burns, C.M.1
Richardson, L.V.2
Richardson, J.P.3
-
59
-
-
0033032384
-
Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG
-
Zellars M., Squires C.L. Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG. Mol. Microbiol. 1999, 32:1296-1304.
-
(1999)
Mol. Microbiol.
, vol.32
, pp. 1296-1304
-
-
Zellars, M.1
Squires, C.L.2
-
60
-
-
0026726828
-
NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda
-
Li J., Horwitz R., McCracken S., Greenblatt J. NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda. J. Biol. Chem. 1992, 267:6012-6019.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 6012-6019
-
-
Li, J.1
Horwitz, R.2
McCracken, S.3
Greenblatt, J.4
-
61
-
-
58149312711
-
Regulator trafficking on bacterial transcription units in vivo
-
Mooney R.A., Davis S.E., Peters J.M., Rowland J.L., Ansari A.Z., Landick R. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 2009, 33:97-108.
-
(2009)
Mol. Cell
, vol.33
, pp. 97-108
-
-
Mooney, R.A.1
Davis, S.E.2
Peters, J.M.3
Rowland, J.L.4
Ansari, A.Z.5
Landick, R.6
-
62
-
-
77955059733
-
Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif
-
Hirtreiter A., Damsma G.E., Cheung A.C., Klose D., Grohmann D., Vojnic E., Martin A.C., Cramer P., Werner F. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res. 2010, 38:4040-4051.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 4040-4051
-
-
Hirtreiter, A.1
Damsma, G.E.2
Cheung, A.C.3
Klose, D.4
Grohmann, D.5
Vojnic, E.6
Martin, A.C.7
Cramer, P.8
Werner, F.9
-
63
-
-
1542328270
-
Transcriptional elongation control by RNA polymerase II: a new frontier
-
Shilatifard A. Transcriptional elongation control by RNA polymerase II: a new frontier. Biochim. Biophys. Acta 2004, 1677:79-86.
-
(2004)
Biochim. Biophys. Acta
, vol.1677
, pp. 79-86
-
-
Shilatifard, A.1
-
64
-
-
34848915239
-
Allosteric control of the RNA polymerase by the elongation factor RfaH
-
Svetlov V., Belogurov G.A., Shabrova E., Vassylyev D.G., Artsimovitch I. Allosteric control of the RNA polymerase by the elongation factor RfaH. Nucleic Acids Res. 2007, 35:5694-5705.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 5694-5705
-
-
Svetlov, V.1
Belogurov, G.A.2
Shabrova, E.3
Vassylyev, D.G.4
Artsimovitch, I.5
-
65
-
-
0034691146
-
Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals
-
Artsimovitch I., Landick R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:7090-7095.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 7090-7095
-
-
Artsimovitch, I.1
Landick, R.2
-
66
-
-
34547615329
-
DSIF contributes to transcriptional activation by DNA-binding activators by preventing pausing during transcription elongation
-
Zhu W., Wada T., Okabe S., Taneda T., Yamaguchi Y., Handa H. DSIF contributes to transcriptional activation by DNA-binding activators by preventing pausing during transcription elongation. Nucleic Acids Res. 2007, 35:4064-4075.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 4064-4075
-
-
Zhu, W.1
Wada, T.2
Okabe, S.3
Taneda, T.4
Yamaguchi, Y.5
Handa, H.6
-
67
-
-
3042789281
-
MRNA capping enzyme activity is coupled to an early transcription elongation
-
Kim H.J., Jeong S.H., Heo J.H., Jeong S.J., Kim S.T., Youn H.D., Han J.W., Lee H.W., Cho E.J. mRNA capping enzyme activity is coupled to an early transcription elongation. Mol. Cell. Biol. 2004, 24:6184-6193.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 6184-6193
-
-
Kim, H.J.1
Jeong, S.H.2
Heo, J.H.3
Jeong, S.J.4
Kim, S.T.5
Youn, H.D.6
Han, J.W.7
Lee, H.W.8
Cho, E.J.9
-
68
-
-
0033515521
-
NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation
-
Yamaguchi Y., Takagi T., Wada T., Yano K., Furuya A., Sugimoto S., Hasegawa J., Handa H. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 1999, 97:41-51.
-
(1999)
Cell
, vol.97
, pp. 41-51
-
-
Yamaguchi, Y.1
Takagi, T.2
Wada, T.3
Yano, K.4
Furuya, A.5
Sugimoto, S.6
Hasegawa, J.7
Handa, H.8
-
69
-
-
0037371682
-
Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex
-
Narita T., Yamaguchi Y., Yano K., Sugimoto S., Chanarat S., Wada T., Kim D.K., Hasegawa J., Omori M., Inukai N., Endoh M., Yamada T., Handa H. Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex. Mol. Cell. Biol. 2003, 23:1863-1873.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 1863-1873
-
-
Narita, T.1
Yamaguchi, Y.2
Yano, K.3
Sugimoto, S.4
Chanarat, S.5
Wada, T.6
Kim, D.K.7
Hasegawa, J.8
Omori, M.9
Inukai, N.10
Endoh, M.11
Yamada, T.12
Handa, H.13
-
70
-
-
33746403681
-
Controlling the elongation phase of transcription with P-TEFb
-
Peterlin B.M., Price D.H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 2006, 23:297-305.
-
(2006)
Mol. Cell
, vol.23
, pp. 297-305
-
-
Peterlin, B.M.1
Price, D.H.2
-
71
-
-
0035943710
-
Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo
-
Chao S.H., Price D.H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 2001, 276:31793-31799.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 31793-31799
-
-
Chao, S.H.1
Price, D.H.2
-
72
-
-
38549115170
-
P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo
-
Ni Z., Saunders A., Fuda N.J., Yao J., Suarez J.R., Webb W.W., Lis J.T. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo. Mol. Cell. Biol. 2008, 28:1161-1170.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 1161-1170
-
-
Ni, Z.1
Saunders, A.2
Fuda, N.J.3
Yao, J.4
Suarez, J.R.5
Webb, W.W.6
Lis, J.T.7
-
73
-
-
68849086180
-
Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex
-
Liu Y., Warfield L., Zhang C., Luo J., Allen J., Lang W.H., Ranish J., Shokat K.M., Hahn S. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol. Cell. Biol. 2009, 29:4852-4863.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4852-4863
-
-
Liu, Y.1
Warfield, L.2
Zhang, C.3
Luo, J.4
Allen, J.5
Lang, W.H.6
Ranish, J.7
Shokat, K.M.8
Hahn, S.9
-
74
-
-
0242321980
-
Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis
-
Pei Y., Shuman S. Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis. J. Biol. Chem. 2003, 278:43346-43356.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 43346-43356
-
-
Pei, Y.1
Shuman, S.2
-
75
-
-
0342748478
-
Domains in the SPT5 protein that modulate its transcriptional regulatory properties
-
Ivanov D., Kwak Y.T., Guo J., Gaynor R.B. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol. Cell. Biol. 2000, 20:2970-2983.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 2970-2983
-
-
Ivanov, D.1
Kwak, Y.T.2
Guo, J.3
Gaynor, R.B.4
-
76
-
-
0033583290
-
Structure and function of the human transcription elongation factor DSIF
-
Yamaguchi Y., Wada T., Watanabe D., Takagi T., Hasegawa J., Handa H. Structure and function of the human transcription elongation factor DSIF. J. Biol. Chem. 1999, 274:8085-8092.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 8085-8092
-
-
Yamaguchi, Y.1
Wada, T.2
Watanabe, D.3
Takagi, T.4
Hasegawa, J.5
Handa, H.6
-
77
-
-
72549083757
-
DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation
-
Chen Y., Yamaguchi Y., Tsugeno Y., Yamamoto J., Yamada T., Nakamura M., Hisatake K., Handa H. DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev. 2009, 23:2765-2777.
-
(2009)
Genes Dev.
, vol.23
, pp. 2765-2777
-
-
Chen, Y.1
Yamaguchi, Y.2
Tsugeno, Y.3
Yamamoto, J.4
Yamada, T.5
Nakamura, M.6
Hisatake, K.7
Handa, H.8
-
78
-
-
77951993585
-
Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD
-
Schneider S., Pei Y., Shuman S., Schwer B. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Mol. Cell. Biol. 2010, 30:2353-2364.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 2353-2364
-
-
Schneider, S.1
Pei, Y.2
Shuman, S.3
Schwer, B.4
-
79
-
-
0034764781
-
Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae
-
Lindstrom D.L., Hartzog G.A. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae. Genetics 2001, 159:487-497.
-
(2001)
Genetics
, vol.159
, pp. 487-497
-
-
Lindstrom, D.L.1
Hartzog, G.A.2
-
80
-
-
2542489173
-
Analysis of polymerase II elongation complexes by native gel electrophoresis. Evidence for a novel carboxyl-terminal domain-mediated termination mechanism
-
Zhang Z., Wu C.H., Gilmour D.S. Analysis of polymerase II elongation complexes by native gel electrophoresis. Evidence for a novel carboxyl-terminal domain-mediated termination mechanism. J. Biol. Chem. 2004, 279:23223-23228.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 23223-23228
-
-
Zhang, Z.1
Wu, C.H.2
Gilmour, D.S.3
-
81
-
-
34547563511
-
Properties of RNA polymerase II elongation complexes before and after the P-TEFb-mediated transition into productive elongation
-
Cheng B., Price D.H. Properties of RNA polymerase II elongation complexes before and after the P-TEFb-mediated transition into productive elongation. J. Biol. Chem. 2007, 282:21901-21912.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 21901-21912
-
-
Cheng, B.1
Price, D.H.2
-
82
-
-
77949312619
-
The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair
-
Ding B., LeJeune D., Li S. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. J. Biol. Chem. 2010, 285:5317-5326.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 5317-5326
-
-
Ding, B.1
LeJeune, D.2
Li, S.3
-
83
-
-
66349122952
-
Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5
-
Zhou K., Kuo W.H., Fillingham J., Greenblatt J.F. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:6956-6961.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 6956-6961
-
-
Zhou, K.1
Kuo, W.H.2
Fillingham, J.3
Greenblatt, J.F.4
-
84
-
-
84861855149
-
Coupling polymerase pausing and chromatin landscapes for precise regulation of transcription
-
Gilchrist D.A., Adelman K. Coupling polymerase pausing and chromatin landscapes for precise regulation of transcription. Biochim. Biophys. Acta 2012.
-
(2012)
Biochim. Biophys. Acta
-
-
Gilchrist, D.A.1
Adelman, K.2
-
85
-
-
0037131186
-
Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter
-
Eberhardy S.R., Farnham P.J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 2002, 277:40156-40162.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 40156-40162
-
-
Eberhardy, S.R.1
Farnham, P.J.2
-
86
-
-
0042337359
-
C-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis
-
Kanazawa S., Soucek L., Evan G., Okamoto T., Peterlin B.M. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 2003, 22:5707-5711.
-
(2003)
Oncogene
, vol.22
, pp. 5707-5711
-
-
Kanazawa, S.1
Soucek, L.2
Evan, G.3
Okamoto, T.4
Peterlin, B.M.5
-
87
-
-
76349090199
-
CDK8 is a positive regulator of transcriptional elongation within the serum response network
-
Donner A.J., Ebmeier C.C., Taatjes D.J., Espinosa J.M. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 2010, 17:194-201.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 194-201
-
-
Donner, A.J.1
Ebmeier, C.C.2
Taatjes, D.J.3
Espinosa, J.M.4
-
88
-
-
79959939884
-
Human mediator subunit MED26 functions as a docking site for transcription elongation factors
-
Takahashi H., Parmely T.J., Sato S., Tomomori-Sato C., Banks C.A., Kong S.E., Szutorisz H., Swanson S.K., Martin-Brown S., Washburn M.P., Florens L., Seidel C.W., Lin C., Smith E.R., Shilatifard A., Conaway R.C., Conaway J.W. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 2011, 146:92-104.
-
(2011)
Cell
, vol.146
, pp. 92-104
-
-
Takahashi, H.1
Parmely, T.J.2
Sato, S.3
Tomomori-Sato, C.4
Banks, C.A.5
Kong, S.E.6
Szutorisz, H.7
Swanson, S.K.8
Martin-Brown, S.9
Washburn, M.P.10
Florens, L.11
Seidel, C.W.12
Lin, C.13
Smith, E.R.14
Shilatifard, A.15
Conaway, R.C.16
Conaway, J.W.17
-
89
-
-
34547525335
-
Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator
-
Malik S., Barrero M.J., Jones T. Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:6182-6187.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 6182-6187
-
-
Malik, S.1
Barrero, M.J.2
Jones, T.3
-
90
-
-
77950619158
-
Activation of a poised RNAPII-dependent promoter requires both SAGA and mediator
-
Lee S.K., Fletcher A.G., Zhang L., Chen X., Fischbeck J.A., Stargell L.A. Activation of a poised RNAPII-dependent promoter requires both SAGA and mediator. Genetics 2010, 184:659-672.
-
(2010)
Genetics
, vol.184
, pp. 659-672
-
-
Lee, S.K.1
Fletcher, A.G.2
Zhang, L.3
Chen, X.4
Fischbeck, J.A.5
Stargell, L.A.6
-
91
-
-
84860580120
-
Role of mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae
-
Kremer S.B., Kim S., Jeon J.O., Moustafa Y.W., Chen A., Zhao J., Gross D.S. Role of mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae. Genetics 2012, 191:95-106.
-
(2012)
Genetics
, vol.191
, pp. 95-106
-
-
Kremer, S.B.1
Kim, S.2
Jeon, J.O.3
Moustafa, Y.W.4
Chen, A.5
Zhao, J.6
Gross, D.S.7
-
92
-
-
77954759030
-
The human Mediator complex: a versatile, genome-wide regulator of transcription
-
Taatjes D.J. The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem. Sci. 2010, 35:315-322.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 315-322
-
-
Taatjes, D.J.1
-
93
-
-
84861091327
-
Mutual remodeling and conformation grid: a mediator code?
-
Meyer P.A., Fu J. Mutual remodeling and conformation grid: a mediator code?. Structure 2012, 20:755-757.
-
(2012)
Structure
, vol.20
, pp. 755-757
-
-
Meyer, P.A.1
Fu, J.2
-
94
-
-
34447503929
-
Differential regulation of NF-kappaB by elongation factors is determined by core promoter type
-
Amir-Zilberstein L., Ainbinder E., Toube L., Yamaguchi Y., Handa H., Dikstein R. Differential regulation of NF-kappaB by elongation factors is determined by core promoter type. Mol. Cell. Biol. 2007, 27:5246-5259.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 5246-5259
-
-
Amir-Zilberstein, L.1
Ainbinder, E.2
Toube, L.3
Yamaguchi, Y.4
Handa, H.5
Dikstein, R.6
-
95
-
-
17044399754
-
Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit
-
Radonjic M., Andrau J.C., Lijnzaad P., Kemmeren P., Kockelkorn T.T., van Leenen D., van Berkum N.L., Holstege F.C. Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol. Cell 2005, 18:171-183.
-
(2005)
Mol. Cell
, vol.18
, pp. 171-183
-
-
Radonjic, M.1
Andrau, J.C.2
Lijnzaad, P.3
Kemmeren, P.4
Kockelkorn, T.T.5
van Leenen, D.6
van Berkum, N.L.7
Holstege, F.C.8
-
96
-
-
64249139132
-
RNA Pol II accumulates at promoters of growth genes during developmental arrest
-
Baugh L.R., Demodena J., Sternberg P.W. RNA Pol II accumulates at promoters of growth genes during developmental arrest. Science 2009, 324:92-94.
-
(2009)
Science
, vol.324
, pp. 92-94
-
-
Baugh, L.R.1
Demodena, J.2
Sternberg, P.W.3
-
97
-
-
0028007067
-
Binding of TFIID to the CYC1 TATA boxes in yeast occurs independently of upstream activating sequences
-
Chen J., Ding M., Pederson D.S. Binding of TFIID to the CYC1 TATA boxes in yeast occurs independently of upstream activating sequences. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:11909-11913.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 11909-11913
-
-
Chen, J.1
Ding, M.2
Pederson, D.S.3
-
98
-
-
0035020387
-
RNA polymerase II and TBP occupy the repressed CYC1 promoter
-
Martens C., Krett B., Laybourn P.J. RNA polymerase II and TBP occupy the repressed CYC1 promoter. Mol. Microbiol. 2001, 40:1009-1019.
-
(2001)
Mol. Microbiol.
, vol.40
, pp. 1009-1019
-
-
Martens, C.1
Krett, B.2
Laybourn, P.J.3
-
99
-
-
0029899068
-
A new class of activation-defective TATA-binding protein mutants: evidence for two steps of transcriptional activation in vivo
-
Stargell L.A., Struhl K. A new class of activation-defective TATA-binding protein mutants: evidence for two steps of transcriptional activation in vivo. Mol. Cell. Biol. 1996, 16:4456-4464.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 4456-4464
-
-
Stargell, L.A.1
Struhl, K.2
-
100
-
-
60349122111
-
A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome
-
Venters B.J., Pugh B.F. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 2009, 19:360-371.
-
(2009)
Genome Res.
, vol.19
, pp. 360-371
-
-
Venters, B.J.1
Pugh, B.F.2
-
101
-
-
0345698603
-
Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes
-
Simic R., Lindstrom D.L., Tran H.G., Roinick K.L., Costa P.J., Johnson A.D., Hartzog G.A., Arndt K.M. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 2003, 22:1846-1856.
-
(2003)
EMBO J.
, vol.22
, pp. 1846-1856
-
-
Simic, R.1
Lindstrom, D.L.2
Tran, H.G.3
Roinick, K.L.4
Costa, P.J.5
Johnson, A.D.6
Hartzog, G.A.7
Arndt, K.M.8
-
102
-
-
0037007217
-
The Paf1 complex physically and functionally associates with transcription elongation factors in vivo
-
Squazzo S.L., Costa P.J., Lindstrom D.L., Kumer K.E., Simic R., Jennings J.L., Link A.J., Arndt K.M., Hartzog G.A. The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. EMBO J. 2002, 21:1764-1774.
-
(2002)
EMBO J.
, vol.21
, pp. 1764-1774
-
-
Squazzo, S.L.1
Costa, P.J.2
Lindstrom, D.L.3
Kumer, K.E.4
Simic, R.5
Jennings, J.L.6
Link, A.J.7
Arndt, K.M.8
Hartzog, G.A.9
-
103
-
-
77953277032
-
The Paf1 complex: platform or player in RNA polymerase II transcription?
-
Jaehning J.A. The Paf1 complex: platform or player in RNA polymerase II transcription?. Biochim. Biophys. Acta 2010, 1799:379-388.
-
(2010)
Biochim. Biophys. Acta
, vol.1799
, pp. 379-388
-
-
Jaehning, J.A.1
-
104
-
-
15944393126
-
Nature of the nucleosomal barrier to RNA polymerase II
-
Kireeva M.L., Hancock B., Cremona G.H., Walter W., Studitsky V.M., Kashlev M. Nature of the nucleosomal barrier to RNA polymerase II. Mol. Cell 2005, 18:97-108.
-
(2005)
Mol. Cell
, vol.18
, pp. 97-108
-
-
Kireeva, M.L.1
Hancock, B.2
Cremona, G.H.3
Walter, W.4
Studitsky, V.M.5
Kashlev, M.6
-
105
-
-
27944450463
-
The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS
-
Wood A., Schneider J., Dover J., Johnston M., Shilatifard A. The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol. Cell 2005, 20:589-599.
-
(2005)
Mol. Cell
, vol.20
, pp. 589-599
-
-
Wood, A.1
Schneider, J.2
Dover, J.3
Johnston, M.4
Shilatifard, A.5
-
106
-
-
23944445861
-
BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex
-
Laribee R.N., Krogan N.J., Xiao T., Shibata Y., Hughes T.R., Greenblatt J.F., Strahl B.D. BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr. Biol. 2005, 15:1487-1493.
-
(2005)
Curr. Biol.
, vol.15
, pp. 1487-1493
-
-
Laribee, R.N.1
Krogan, N.J.2
Xiao, T.3
Shibata, Y.4
Hughes, T.R.5
Greenblatt, J.F.6
Strahl, B.D.7
-
107
-
-
33645814013
-
The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II
-
Qiu H., Hu C., Wong C.M., Hinnebusch A.G. The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol. Cell. Biol. 2006, 26:3135-3148.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 3135-3148
-
-
Qiu, H.1
Hu, C.2
Wong, C.M.3
Hinnebusch, A.G.4
-
108
-
-
0037313160
-
Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins
-
Lindstrom D.L., Squazzo S.L., Muster N., Burckin T.A., Wachter K.C., Emigh C.A., McCleery J.A., Yates J.R., Hartzog G.A. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol. Cell. Biol. 2003, 23:1368-1378.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 1368-1378
-
-
Lindstrom, D.L.1
Squazzo, S.L.2
Muster, N.3
Burckin, T.A.4
Wachter, K.C.5
Emigh, C.A.6
McCleery, J.A.7
Yates, J.R.8
Hartzog, G.A.9
-
109
-
-
77958608570
-
A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme
-
Suh M.H., Meyer P.A., Gu M., Ye P., Zhang M., Kaplan C.D., Lima C.D., Fu J. A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J. Biol. Chem. 2010, 285:34027-34038.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 34027-34038
-
-
Suh, M.H.1
Meyer, P.A.2
Gu, M.3
Ye, P.4
Zhang, M.5
Kaplan, C.D.6
Lima, C.D.7
Fu, J.8
-
110
-
-
55449110096
-
Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing
-
Xiao Y., Yang Y.H., Burckin T.A., Shiue L., Hartzog G.A., Segal M.R. Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing. PLoS Comput. Biol. 2005, 1:e39.
-
(2005)
PLoS Comput. Biol.
, vol.1
-
-
Xiao, Y.1
Yang, Y.H.2
Burckin, T.A.3
Shiue, L.4
Hartzog, G.A.5
Segal, M.R.6
-
111
-
-
20144379765
-
Exploring functional relationships between components of the gene expression machinery
-
Burckin T., Nagel R., Mandel-Gutfreund Y., Shiue L., Clark T.A., Chong J.L., Chang T.H., Squazzo S., Hartzog G., Ares M. Exploring functional relationships between components of the gene expression machinery. Nat. Struct. Mol. Biol. 2005, 12:175-182.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 175-182
-
-
Burckin, T.1
Nagel, R.2
Mandel-Gutfreund, Y.3
Shiue, L.4
Clark, T.A.5
Chong, J.L.6
Chang, T.H.7
Squazzo, S.8
Hartzog, G.9
Ares, M.10
-
112
-
-
21844435714
-
Npl3 is an antagonist of mRNA 3' end formation by RNA polymerase II
-
Bucheli M.E., Buratowski S. Npl3 is an antagonist of mRNA 3' end formation by RNA polymerase II. EMBO J. 2005, 24:2150-2160.
-
(2005)
EMBO J.
, vol.24
, pp. 2150-2160
-
-
Bucheli, M.E.1
Buratowski, S.2
-
113
-
-
0142059889
-
In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization
-
Cui Y., Denis C.L. In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization. Mol. Cell. Biol. 2003, 23:7887-7901.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7887-7901
-
-
Cui, Y.1
Denis, C.L.2
-
114
-
-
12544260507
-
Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus
-
Kaplan C.D., Holland M.J., Winston F. Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J. Biol. Chem. 2005, 280:913-922.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 913-922
-
-
Kaplan, C.D.1
Holland, M.J.2
Winston, F.3
-
115
-
-
77956285483
-
Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud
-
Shen Z., St-Denis A., Chartrand P. Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud. Genes Dev. 2010, 24:1914-1926.
-
(2010)
Genes Dev.
, vol.24
, pp. 1914-1926
-
-
Shen, Z.1
St-Denis, A.2
Chartrand, P.3
-
116
-
-
80052909536
-
A functional interface at the rDNA connects rRNA synthesis, pre-rRNA processing and nucleolar surveillance in budding yeast
-
Lepore N., Lafontaine D.L. A functional interface at the rDNA connects rRNA synthesis, pre-rRNA processing and nucleolar surveillance in budding yeast. PLoS One 2011, 6:e24962.
-
(2011)
PLoS One
, vol.6
-
-
Lepore, N.1
Lafontaine, D.L.2
-
117
-
-
0037180825
-
The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila
-
Andrulis E.D., Werner J., Nazarian A., Erdjument-Bromage H., Tempst P., Lis J.T. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 2002, 420:837-841.
-
(2002)
Nature
, vol.420
, pp. 837-841
-
-
Andrulis, E.D.1
Werner, J.2
Nazarian, A.3
Erdjument-Bromage, H.4
Tempst, P.5
Lis, J.T.6
-
118
-
-
0033566042
-
Transcription elongation factor hSPT5 stimulates mRNA capping
-
Wen Y., Shatkin A.J. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev. 1999, 13:1774-1779.
-
(1999)
Genes Dev.
, vol.13
, pp. 1774-1779
-
-
Wen, Y.1
Shatkin, A.J.2
-
119
-
-
56649106687
-
Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay
-
Cheng B., Price D.H. Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay. Nucleic Acids Res. 2008, 36:e135.
-
(2008)
Nucleic Acids Res.
, vol.36
-
-
Cheng, B.1
Price, D.H.2
-
120
-
-
77954889072
-
Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex
-
Missra A., Gilmour D.S. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:11301-11306.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 11301-11306
-
-
Missra, A.1
Gilmour, D.S.2
-
121
-
-
0035918157
-
DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation
-
Ping Y.H., Rana T.M. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J. Biol. Chem. 2001, 276:12951-12958.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 12951-12958
-
-
Ping, Y.H.1
Rana, T.M.2
-
122
-
-
9644307897
-
Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II
-
Ujvari A., Luse D.S. Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J. Biol. Chem. 2004, 279:49773-49779.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 49773-49779
-
-
Ujvari, A.1
Luse, D.S.2
-
123
-
-
70350005395
-
"Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions
-
Perales R., Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 2009, 36:178-191.
-
(2009)
Mol. Cell
, vol.36
, pp. 178-191
-
-
Perales, R.1
Bentley, D.2
-
124
-
-
84859969858
-
The Spt5 C-terminal region recruits yeast 3' RNA cleavage factor I
-
Mayer A., Schreieck A., Lidschreiber M., Leike K., Martin D.E., Cramer P. The Spt5 C-terminal region recruits yeast 3' RNA cleavage factor I. Mol. Cell. Biol. 2012, 32:1321-1331.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 1321-1331
-
-
Mayer, A.1
Schreieck, A.2
Lidschreiber, M.3
Leike, K.4
Martin, D.E.5
Cramer, P.6
-
125
-
-
77449116618
-
Plant-specific multisubunit RNA polymerase in gene silencing
-
Lahmy S., Bies-Etheve N., Lagrange T. Plant-specific multisubunit RNA polymerase in gene silencing. Epigenetics 2010, 5:4-8.
-
(2010)
Epigenetics
, vol.5
, pp. 4-8
-
-
Lahmy, S.1
Bies-Etheve, N.2
Lagrange, T.3
-
126
-
-
79959838293
-
Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing
-
Rowley M.J., Avrutsky M.I., Sifuentes C.J., Pereira L., Wierzbicki A.T. Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. PLoS Genetics 2011, 7:e1002120.
-
(2011)
PLoS Genetics
, vol.7
-
-
Rowley, M.J.1
Avrutsky, M.I.2
Sifuentes, C.J.3
Pereira, L.4
Wierzbicki, A.T.5
-
127
-
-
58149271019
-
An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II
-
Huang L., Jones A.M., Searle I., Patel K., Vogler H., Hubner N.C., Baulcombe D.C. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat. Struct. Mol. Biol. 2009, 16:91-93.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 91-93
-
-
Huang, L.1
Jones, A.M.2
Searle, I.3
Patel, K.4
Vogler, H.5
Hubner, N.C.6
Baulcombe, D.C.7
-
128
-
-
67349099134
-
RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family
-
Bies-Etheve N., Pontier D., Lahmy S., Picart C., Vega D., Cooke R., Lagrange T. RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep. 2009, 10:649-654.
-
(2009)
EMBO Rep.
, vol.10
, pp. 649-654
-
-
Bies-Etheve, N.1
Pontier, D.2
Lahmy, S.3
Picart, C.4
Vega, D.5
Cooke, R.6
Lagrange, T.7
-
129
-
-
65249093731
-
An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein
-
He X.J., Hsu Y.F., Zhu S., Wierzbicki A.T., Pontes O., Pikaard C.S., Liu H.L., Wang C.S., Jin H., Zhu J.K. An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 2009, 137:498-508.
-
(2009)
Cell
, vol.137
, pp. 498-508
-
-
He, X.J.1
Hsu, Y.F.2
Zhu, S.3
Wierzbicki, A.T.4
Pontes, O.5
Pikaard, C.S.6
Liu, H.L.7
Wang, C.S.8
Jin, H.9
Zhu, J.K.10
-
130
-
-
0034388027
-
Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair
-
Jansen L.E., den Dulk H., Brouns R.M., de Ruijter M., Brandsma J.A., Brouwer J. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J. 2000, 19:6498-6507.
-
(2000)
EMBO J.
, vol.19
, pp. 6498-6507
-
-
Jansen, L.E.1
den Dulk, H.2
Brouns, R.M.3
de Ruijter, M.4
Brandsma, J.A.5
Brouwer, J.6
-
131
-
-
0037102621
-
Transcription elongation factor Spt4 mediates loss of phosphorylated RNA polymerase II transcription in response to DNA damage
-
Jansen L.E., Belo A.I., Hulsker R., Brouwer J. Transcription elongation factor Spt4 mediates loss of phosphorylated RNA polymerase II transcription in response to DNA damage. Nucleic Acids Res. 2002, 30:3532-3539.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 3532-3539
-
-
Jansen, L.E.1
Belo, A.I.2
Hulsker, R.3
Brouwer, J.4
-
132
-
-
84860598427
-
The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination
-
Stanlie A., Begum N.A., Akiyama H., Honjo T. The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination. PLoS Genet. 2012, 8:e1002675.
-
(2012)
PLoS Genet.
, vol.8
-
-
Stanlie, A.1
Begum, N.A.2
Akiyama, H.3
Honjo, T.4
-
133
-
-
12044255564
-
Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription
-
Li J., Mason S.W., Greenblatt J. Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription. Genes Dev. 1993, 7:161-172.
-
(1993)
Genes Dev.
, vol.7
, pp. 161-172
-
-
Li, J.1
Mason, S.W.2
Greenblatt, J.3
-
134
-
-
77951541717
-
A NusE:NusG complex links transcription and translation
-
Burmann B.M., Schweimer K., Luo X., Wahl M.C., Stitt B.L., Gottesman M.E., Rosch P. A NusE:NusG complex links transcription and translation. Science 2010, 328:501-504.
-
(2010)
Science
, vol.328
, pp. 501-504
-
-
Burmann, B.M.1
Schweimer, K.2
Luo, X.3
Wahl, M.C.4
Stitt, B.L.5
Gottesman, M.E.6
Rosch, P.7
-
135
-
-
55249117324
-
Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation
-
Guo M., Xu F., Yamada J., Egelhofer T., Gao Y., Hartzog G.A., Teng M., Niu L. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. Structure 2008, 16:1649-1658.
-
(2008)
Structure
, vol.16
, pp. 1649-1658
-
-
Guo, M.1
Xu, F.2
Yamada, J.3
Egelhofer, T.4
Gao, Y.5
Hartzog, G.A.6
Teng, M.7
Niu, L.8
-
136
-
-
73849136441
-
Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface
-
Wenzel S., Martins B.M., Rosch P., Wohrl B.M. Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface. Biochem. J. 2010, 425:373-380.
-
(2010)
Biochem. J.
, vol.425
, pp. 373-380
-
-
Wenzel, S.1
Martins, B.M.2
Rosch, P.3
Wohrl, B.M.4
-
137
-
-
42749094167
-
The small hSpt4 subunit of the human transcription elongation factor DSIF is a Zn-finger protein with alpha/beta type topology
-
Wenzel S., Schweimer K., Rosch P., Wohrl B.M. The small hSpt4 subunit of the human transcription elongation factor DSIF is a Zn-finger protein with alpha/beta type topology. Biochem. Biophys. Res. Commun. 2008, 370:414-418.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.370
, pp. 414-418
-
-
Wenzel, S.1
Schweimer, K.2
Rosch, P.3
Wohrl, B.M.4
-
138
-
-
79952256560
-
RNA polymerase and transcription elongation factor Spt4/5 complex structure
-
Klein B.J., Bose D., Baker K.J., Yusoff Z.M., Zhang X., Murakami K.S. RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:546-550.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 546-550
-
-
Klein, B.J.1
Bose, D.2
Baker, K.J.3
Yusoff, Z.M.4
Zhang, X.5
Murakami, K.S.6
-
139
-
-
79953779997
-
Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
-
Martinez-Rucobo F.W., Sainsbury S., Cheung A.C., Cramer P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J. 2011, 30:1302-1310.
-
(2011)
EMBO J.
, vol.30
, pp. 1302-1310
-
-
Martinez-Rucobo, F.W.1
Sainsbury, S.2
Cheung, A.C.3
Cramer, P.4
-
140
-
-
68149163147
-
Crystal structure of NusG N-terminal (NGN) domain from Methanocaldococcus jannaschii and its interaction with rpoE
-
Zhou H., Liu Q., Gao Y., Teng M., Niu L. Crystal structure of NusG N-terminal (NGN) domain from Methanocaldococcus jannaschii and its interaction with rpoE. Proteins 2009, 76:787-793.
-
(2009)
Proteins
, vol.76
, pp. 787-793
-
-
Zhou, H.1
Liu, Q.2
Gao, Y.3
Teng, M.4
Niu, L.5
-
141
-
-
34147155174
-
Structural basis for converting a general transcription factor into an operon-specific virulence regulator
-
Belogurov G.A., Vassylyeva M.N., Svetlov V., Klyuyev S., Grishin N.V., Vassylyev D.G., Artsimovitch I. Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol. Cell 2007, 26:117-129.
-
(2007)
Mol. Cell
, vol.26
, pp. 117-129
-
-
Belogurov, G.A.1
Vassylyeva, M.N.2
Svetlov, V.3
Klyuyev, S.4
Grishin, N.V.5
Vassylyev, D.G.6
Artsimovitch, I.7
-
142
-
-
79960461851
-
Competing for the clamp: promoting RNA polymerase processivity and managing the transition from initiation to elongation
-
Hartzog G.A., Kaplan C.D. Competing for the clamp: promoting RNA polymerase processivity and managing the transition from initiation to elongation. Mol. Cell 2012, 43:161-163.
-
(2012)
Mol. Cell
, vol.43
, pp. 161-163
-
-
Hartzog, G.A.1
Kaplan, C.D.2
-
143
-
-
84857625656
-
A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life
-
Werner F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J. Mol. Biol. 2012, 417:13-27.
-
(2012)
J. Mol. Biol.
, vol.417
, pp. 13-27
-
-
Werner, F.1
-
144
-
-
0037133970
-
The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand
-
Artsimovitch I., Landick R. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 2002, 109:193-203.
-
(2002)
Cell
, vol.109
, pp. 193-203
-
-
Artsimovitch, I.1
Landick, R.2
-
145
-
-
77951157212
-
Functional regions of the N-terminal domain of the antiterminator RfaH
-
Belogurov G.A., Sevostyanova A., Svetlov V., Artsimovitch I. Functional regions of the N-terminal domain of the antiterminator RfaH. Mol. Microbiol. 2010, 76:286-301.
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 286-301
-
-
Belogurov, G.A.1
Sevostyanova, A.2
Svetlov, V.3
Artsimovitch, I.4
-
146
-
-
67650676737
-
Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators
-
Mooney R.A., Schweimer K., Rosch P., Gottesman M., Landick R. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol. 2009, 391:341-358.
-
(2009)
J. Mol. Biol.
, vol.391
, pp. 341-358
-
-
Mooney, R.A.1
Schweimer, K.2
Rosch, P.3
Gottesman, M.4
Landick, R.5
-
147
-
-
79960449643
-
The beta subunit gate loop is required for RNA polymerase modification by RfaH and NusG
-
Sevostyanova A., Belogurov G.A., Mooney R.A., Landick R., Artsimovitch I. The beta subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol. Cell 2011, 43:253-262.
-
(2011)
Mol. Cell
, vol.43
, pp. 253-262
-
-
Sevostyanova, A.1
Belogurov, G.A.2
Mooney, R.A.3
Landick, R.4
Artsimovitch, I.5
-
148
-
-
81255140709
-
The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex
-
Brzovic P.S., Heikaus C.C., Kisselev L., Vernon R., Herbig E., Pacheco D., Warfield L., Littlefield P., Baker D., Klevit R.E., Hahn S. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol. Cell 2011, 44:942-953.
-
(2011)
Mol. Cell
, vol.44
, pp. 942-953
-
-
Brzovic, P.S.1
Heikaus, C.C.2
Kisselev, L.3
Vernon, R.4
Herbig, E.5
Pacheco, D.6
Warfield, L.7
Littlefield, P.8
Baker, D.9
Klevit, R.E.10
Hahn, S.11
-
149
-
-
37749053887
-
Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions
-
Tompa P., Fuxreiter M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 2008, 33:2-8.
-
(2008)
Trends Biochem. Sci.
, vol.33
, pp. 2-8
-
-
Tompa, P.1
Fuxreiter, M.2
-
150
-
-
0035827332
-
Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution
-
Gnatt A.L., Cramer P., Fu J., Bushnell D.A., Kornberg R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 2001, 292:1876-1882.
-
(2001)
Science
, vol.292
, pp. 1876-1882
-
-
Gnatt, A.L.1
Cramer, P.2
Fu, J.3
Bushnell, D.A.4
Kornberg, R.D.5
-
151
-
-
10944232674
-
Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS
-
Kettenberger H., Armache K.J., Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 2004, 16:955-965.
-
(2004)
Mol. Cell
, vol.16
, pp. 955-965
-
-
Kettenberger, H.1
Armache, K.J.2
Cramer, P.3
-
152
-
-
27144526242
-
A functional role for the switch 2 region of yeast RNA polymerase II in transcription start site utilization and abortive initiation
-
Majovski R.C., Khaperskyy D.A., Ghazy M.A., Ponticelli A.S. A functional role for the switch 2 region of yeast RNA polymerase II in transcription start site utilization and abortive initiation. J. Biol. Chem. 2005, 280:34917-34923.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 34917-34923
-
-
Majovski, R.C.1
Khaperskyy, D.A.2
Ghazy, M.A.3
Ponticelli, A.S.4
-
153
-
-
0043244876
-
Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage
-
Kettenberger H., Armache K.J., Cramer P. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 2003, 114:347-357.
-
(2003)
Cell
, vol.114
, pp. 347-357
-
-
Kettenberger, H.1
Armache, K.J.2
Cramer, P.3
-
154
-
-
0028059269
-
The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes
-
Rudd M.D., Izban M.G., Luse D.S. The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:8057-8061.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 8057-8061
-
-
Rudd, M.D.1
Izban, M.G.2
Luse, D.S.3
-
155
-
-
0037591460
-
Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes
-
Weilbaecher R.G., Awrey D.E., Edwards A.M., Kane C.M. Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J. Biol. Chem. 2003, 278:24189-24199.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 24189-24199
-
-
Weilbaecher, R.G.1
Awrey, D.E.2
Edwards, A.M.3
Kane, C.M.4
-
156
-
-
66349138227
-
Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution
-
Wang D., Bushnell D.A., Huang X., Westover K.D., Levitt M., Kornberg R.D. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science 2009, 324:1203-1206.
-
(2009)
Science
, vol.324
, pp. 1203-1206
-
-
Wang, D.1
Bushnell, D.A.2
Huang, X.3
Westover, K.D.4
Levitt, M.5
Kornberg, R.D.6
-
157
-
-
79952440464
-
Structural basis of RNA polymerase II backtracking, arrest and reactivation
-
Cheung A.C., Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 2011, 471:249-253.
-
(2011)
Nature
, vol.471
, pp. 249-253
-
-
Cheung, A.C.1
Cramer, P.2
-
158
-
-
0037033094
-
A key role for the alpha 1 helix of human RAP74 in the initiation and elongation of RNA chains
-
Funk J.D., Nedialkov Y.A., Xu D., Burton Z.F. A key role for the alpha 1 helix of human RAP74 in the initiation and elongation of RNA chains. J. Biol. Chem. 2002, 277:46998-47003.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 46998-47003
-
-
Funk, J.D.1
Nedialkov, Y.A.2
Xu, D.3
Burton, Z.F.4
-
159
-
-
0027943675
-
Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II
-
Tan S., Aso T., Conaway R.C., Conaway J.W. Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. J. Biol. Chem. 1994, 269:25684-25691.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 25684-25691
-
-
Tan, S.1
Aso, T.2
Conaway, R.C.3
Conaway, J.W.4
-
160
-
-
0028242344
-
Functional analysis of Drosophila factor 5 (TFIIF), a general transcription factor
-
Kephart D.D., Wang B.Q., Burton Z.F., Price D.H. Functional analysis of Drosophila factor 5 (TFIIF), a general transcription factor. J. Biol. Chem. 1994, 269:13536-13543.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 13536-13543
-
-
Kephart, D.D.1
Wang, B.Q.2
Burton, Z.F.3
Price, D.H.4
-
161
-
-
77149124577
-
Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex
-
Eichner J., Chen H.T., Warfield L., Hahn S. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. EMBO J. 2010, 29:706-716.
-
(2010)
EMBO J.
, vol.29
, pp. 706-716
-
-
Eichner, J.1
Chen, H.T.2
Warfield, L.3
Hahn, S.4
-
162
-
-
34547683177
-
The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex
-
Chen H.T., Warfield L., Hahn S. The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat. Struct. Mol. Biol. 2007, 14:696-703.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 696-703
-
-
Chen, H.T.1
Warfield, L.2
Hahn, S.3
-
163
-
-
84866118613
-
Regulation of mammalian transcription by Gdown1 through a novel steric crosstalk revealed by cryo-EM
-
Wu Y.M., Chang J.W., Wang C.H., Lin Y.C., Wu P.L., Huang S.H., Chang C.C., Hu X., Gnatt A., Chang W.H. Regulation of mammalian transcription by Gdown1 through a novel steric crosstalk revealed by cryo-EM. EMBO J. 2012.
-
(2012)
EMBO J.
-
-
Wu, Y.M.1
Chang, J.W.2
Wang, C.H.3
Lin, Y.C.4
Wu, P.L.5
Huang, S.H.6
Chang, C.C.7
Hu, X.8
Gnatt, A.9
Chang, W.H.10
-
164
-
-
84862909057
-
Functional association of Gdown1 with RNA polymerase II poised on human genes
-
Cheng B., Li T., Rahl P.B., Adamson T.E., Loudas N.B., Guo J., Varzavand K., Cooper J.J., Hu X., Gnatt A., Young R.A., Price D.H. Functional association of Gdown1 with RNA polymerase II poised on human genes. Mol. Cell 2012, 45:38-50.
-
(2012)
Mol. Cell
, vol.45
, pp. 38-50
-
-
Cheng, B.1
Li, T.2
Rahl, P.B.3
Adamson, T.E.4
Loudas, N.B.5
Guo, J.6
Varzavand, K.7
Cooper, J.J.8
Hu, X.9
Gnatt, A.10
Young, R.A.11
Price, D.H.12
-
165
-
-
84862908533
-
Transcriptional regulation by Pol II(G) involving mediator and competitive interactions of Gdown1 and TFIIF with Pol II
-
Jishage M., Malik S., Wagner U., Uberheide B., Ishihama Y., Hu X., Chait B.T., Gnatt A., Ren B., Roeder R.G. Transcriptional regulation by Pol II(G) involving mediator and competitive interactions of Gdown1 and TFIIF with Pol II. Mol. Cell 2012, 45:51-63.
-
(2012)
Mol. Cell
, vol.45
, pp. 51-63
-
-
Jishage, M.1
Malik, S.2
Wagner, U.3
Uberheide, B.4
Ishihama, Y.5
Hu, X.6
Chait, B.T.7
Gnatt, A.8
Ren, B.9
Roeder, R.G.10
-
166
-
-
0035834647
-
A highly purified RNA polymerase II elongation control system
-
Renner D.B., Yamaguchi Y., Wada T., Handa H., Price D.H. A highly purified RNA polymerase II elongation control system. J. Biol. Chem. 2001, 276:42601-42609.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 42601-42609
-
-
Renner, D.B.1
Yamaguchi, Y.2
Wada, T.3
Handa, H.4
Price, D.H.5
-
167
-
-
44349165718
-
Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization
-
Khaperskyy D.A., Ammerman M.L., Majovski R.C., Ponticelli A.S. Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization. Mol. Cell. Biol. 2008, 28:3757-3766.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 3757-3766
-
-
Khaperskyy, D.A.1
Ammerman, M.L.2
Majovski, R.C.3
Ponticelli, A.S.4
-
168
-
-
0034725649
-
Mutational analysis of beta '260-309, a sigma 70 binding site located on Escherichia coli core RNA polymerase
-
Arthur T.M., Anthony L.C., Burgess R.R. Mutational analysis of beta '260-309, a sigma 70 binding site located on Escherichia coli core RNA polymerase. J. Biol. Chem. 2000, 275:23113-23119.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 23113-23119
-
-
Arthur, T.M.1
Anthony, L.C.2
Burgess, R.R.3
-
169
-
-
0037071844
-
Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution
-
Vassylyev D.G., Sekine S., Laptenko O., Lee J., Vassylyeva M.N., Borukhov S., Yokoyama S. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 2002, 417:712-719.
-
(2002)
Nature
, vol.417
, pp. 712-719
-
-
Vassylyev, D.G.1
Sekine, S.2
Laptenko, O.3
Lee, J.4
Vassylyeva, M.N.5
Borukhov, S.6
Yokoyama, S.7
-
170
-
-
38949110771
-
The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex
-
Sevostyanova A., Svetlov V., Vassylyev D.G., Artsimovitch I. The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:865-870.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 865-870
-
-
Sevostyanova, A.1
Svetlov, V.2
Vassylyev, D.G.3
Artsimovitch, I.4
-
171
-
-
69249241850
-
RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro
-
Grohmann D., Hirtreiter A., Werner F. RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro. Biochem. J. 2009, 421:339-343.
-
(2009)
Biochem. J.
, vol.421
, pp. 339-343
-
-
Grohmann, D.1
Hirtreiter, A.2
Werner, F.3
-
172
-
-
0036241663
-
Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo
-
Pokholok D.K., Hannett N.M., Young R.A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell 2002, 9:799-809.
-
(2002)
Mol. Cell
, vol.9
, pp. 799-809
-
-
Pokholok, D.K.1
Hannett, N.M.2
Young, R.A.3
-
173
-
-
0034903279
-
Promoter clearance by RNA polymerase II is an extended, multistep process strongly affected by sequence
-
Pal M., McKean D., Luse D.S. Promoter clearance by RNA polymerase II is an extended, multistep process strongly affected by sequence. Mol. Cell. Biol. 2001, 21:5815-5825.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 5815-5825
-
-
Pal, M.1
McKean, D.2
Luse, D.S.3
-
174
-
-
0037610786
-
The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23
-
Pal M., Luse D.S. The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:5700-5705.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 5700-5705
-
-
Pal, M.1
Luse, D.S.2
-
175
-
-
0035827346
-
Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution
-
Cramer P., Bushnell D.A., Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 2001, 292:1863-1876.
-
(2001)
Science
, vol.292
, pp. 1863-1876
-
-
Cramer, P.1
Bushnell, D.A.2
Kornberg, R.D.3
-
176
-
-
0037623333
-
Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties
-
Kwak Y.T., Guo J., Prajapati S., Park K.J., Surabhi R.M., Miller B., Gehrig P., Gaynor R.B. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol. Cell 2003, 11:1055-1066.
-
(2003)
Mol. Cell
, vol.11
, pp. 1055-1066
-
-
Kwak, Y.T.1
Guo, J.2
Prajapati, S.3
Park, K.J.4
Surabhi, R.M.5
Miller, B.6
Gehrig, P.7
Gaynor, R.B.8
|