메뉴 건너뛰기




Volumn 1829, Issue 1, 2013, Pages 105-115

The Spt4-Spt5 complex: A multi-faceted regulator of transcription elongation

Author keywords

DSIF; NELF; P TEFb; Spt4; Spt5; Transcription elongation

Indexed keywords

RNA POLYMERASE; TRANSCRIPTION ELONGATION FACTOR; TRANSCRIPTION FACTOR SPT4; TRANSCRIPTION FACTOR SPT5; UNCLASSIFIED DRUG;

EID: 84872424651     PISSN: 18749399     EISSN: 18764320     Source Type: Journal    
DOI: 10.1016/j.bbagrm.2012.08.007     Document Type: Review
Times cited : (116)

References (176)
  • 1
    • 0026629273 scopus 로고
    • Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates
    • Izban M.G., Luse D.S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 1992, 267:13647-13655.
    • (1992) J. Biol. Chem. , vol.267 , pp. 13647-13655
    • Izban, M.G.1    Luse, D.S.2
  • 2
    • 0025877255 scopus 로고
    • Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing
    • Izban M.G., Luse D.S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 1991, 5:683-696.
    • (1991) Genes Dev. , vol.5 , pp. 683-696
    • Izban, M.G.1    Luse, D.S.2
  • 4
    • 78651504121 scopus 로고    scopus 로고
    • Evolution of multisubunit RNA polymerases in the three domains of life
    • Werner F., Grohmann D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 2011, 9:85-98.
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 85-98
    • Werner, F.1    Grohmann, D.2
  • 5
    • 0022132080 scopus 로고
    • Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases
    • Allison L.A., Moyle M., Shales M., Ingles C.J. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 1985, 42:599-610.
    • (1985) Cell , vol.42 , pp. 599-610
    • Allison, L.A.1    Moyle, M.2    Shales, M.3    Ingles, C.J.4
  • 6
    • 0035074008 scopus 로고    scopus 로고
    • Transcription elongation complex: structure and function
    • Korzheva N., Mustaev A. Transcription elongation complex: structure and function. Curr. Opin. Microbiol. 2001, 4:119-125.
    • (2001) Curr. Opin. Microbiol. , vol.4 , pp. 119-125
    • Korzheva, N.1    Mustaev, A.2
  • 9
    • 0021152709 scopus 로고
    • Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae
    • Winston F., Chaleff D.T., Valent B., Fink G.R. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 1984, 107:179-197.
    • (1984) Genetics , vol.107 , pp. 179-197
    • Winston, F.1    Chaleff, D.T.2    Valent, B.3    Fink, G.R.4
  • 10
    • 0027523232 scopus 로고
    • Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae
    • Malone E.A., Fassler J.S., Winston F. Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae. Mol. Gen. Genet. 1993, 237:449-459.
    • (1993) Mol. Gen. Genet. , vol.237 , pp. 449-459
    • Malone, E.A.1    Fassler, J.S.2    Winston, F.3
  • 11
    • 0026208983 scopus 로고
    • SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat
    • Swanson M.S., Malone E.A., Winston F. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 1991, 11:4286.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 4286
    • Swanson, M.S.1    Malone, E.A.2    Winston, F.3
  • 12
    • 0026775612 scopus 로고
    • SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae
    • Swanson M.S., Winston F. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 1992, 132:325-336.
    • (1992) Genetics , vol.132 , pp. 325-336
    • Swanson, M.S.1    Winston, F.2
  • 13
    • 0032004953 scopus 로고    scopus 로고
    • Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae
    • Hartzog G.A., Wada T., Handa H., Winston F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 1998, 12:357-369.
    • (1998) Genes Dev. , vol.12 , pp. 357-369
    • Hartzog, G.A.1    Wada, T.2    Handa, H.3    Winston, F.4
  • 14
    • 0037073048 scopus 로고    scopus 로고
    • Promoting elongation with transcript cleavage stimulatory factors
    • Fish R.N., Kane C.M. Promoting elongation with transcript cleavage stimulatory factors. Biochim. Biophys. Acta 2002, 1577:287-307.
    • (2002) Biochim. Biophys. Acta , vol.1577 , pp. 287-307
    • Fish, R.N.1    Kane, C.M.2
  • 15
    • 0026633013 scopus 로고
    • 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae
    • Exinger F., Lacroute F. 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr. Genet. 1992, 22:9-11.
    • (1992) Curr. Genet. , vol.22 , pp. 9-11
    • Exinger, F.1    Lacroute, F.2
  • 16
    • 15244358670 scopus 로고    scopus 로고
    • Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo
    • Mason P.B., Struhl K. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol. Cell 2005, 17:831-840.
    • (2005) Mol. Cell , vol.17 , pp. 831-840
    • Mason, P.B.1    Struhl, K.2
  • 17
    • 0029871680 scopus 로고    scopus 로고
    • Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations
    • Noble S.M., Guthrie C. Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations. Genetics 1996, 143:67-80.
    • (1996) Genetics , vol.143 , pp. 67-80
    • Noble, S.M.1    Guthrie, C.2
  • 18
    • 0024561487 scopus 로고
    • 5,6-Dichloro-1-beta-d-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro
    • Chodosh L.A., Fire A., Samuels M., Sharp P.A. 5,6-Dichloro-1-beta-d-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J. Biol. Chem. 1989, 264:2250-2257.
    • (1989) J. Biol. Chem. , vol.264 , pp. 2250-2257
    • Chodosh, L.A.1    Fire, A.2    Samuels, M.3    Sharp, P.A.4
  • 21
    • 0036713442 scopus 로고    scopus 로고
    • Novel domains and orthologues of eukaryotic transcription elongation factors
    • Ponting C.P. Novel domains and orthologues of eukaryotic transcription elongation factors. Nucleic Acids Res. 2002, 30:3643-3652.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 3643-3652
    • Ponting, C.P.1
  • 23
    • 0031081575 scopus 로고    scopus 로고
    • Tudor domains in proteins that interact with RNA
    • Ponting C.P. Tudor domains in proteins that interact with RNA. Trends Biochem. Sci. 1997, 22:51-52.
    • (1997) Trends Biochem. Sci. , vol.22 , pp. 51-52
    • Ponting, C.P.1
  • 24
    • 77957849604 scopus 로고    scopus 로고
    • Tudor domain
    • Lasko P. Tudor domain. Curr. Biol. 2010, 20:R666-R667.
    • (2010) Curr. Biol. , vol.20
    • Lasko, P.1
  • 25
    • 0037205456 scopus 로고    scopus 로고
    • Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5
    • Pei Y., Shuman S. Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5. J. Biol. Chem. 2002, 277:19639-19648.
    • (2002) J. Biol. Chem. , vol.277 , pp. 19639-19648
    • Pei, Y.1    Shuman, S.2
  • 26
    • 0036336890 scopus 로고    scopus 로고
    • The elongation factors Pandora/Spt6 and Foggy/Spt5 promote transcription in the zebrafish embryo
    • Keegan B.R., Feldman J.L., Lee D.H., Koos D.S., Ho R.K., Stainier D.Y., Yelon D. The elongation factors Pandora/Spt6 and Foggy/Spt5 promote transcription in the zebrafish embryo. Development 2002, 129:1623-1632.
    • (2002) Development , vol.129 , pp. 1623-1632
    • Keegan, B.R.1    Feldman, J.L.2    Lee, D.H.3    Koos, D.S.4    Ho, R.K.5    Stainier, D.Y.6    Yelon, D.7
  • 28
    • 0037102566 scopus 로고    scopus 로고
    • CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo
    • Shim E.Y., Walker A.K., Shi Y., Blackwell T.K. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev. 2002, 16:2135-2146.
    • (2002) Genes Dev. , vol.16 , pp. 2135-2146
    • Shim, E.Y.1    Walker, A.K.2    Shi, Y.3    Blackwell, T.K.4
  • 29
    • 30744449491 scopus 로고    scopus 로고
    • P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation
    • Yamada T., Yamaguchi Y., Inukai N., Okamoto S., Mura T., Handa H. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol. Cell 2006, 21:227-237.
    • (2006) Mol. Cell , vol.21 , pp. 227-237
    • Yamada, T.1    Yamaguchi, Y.2    Inukai, N.3    Okamoto, S.4    Mura, T.5    Handa, H.6
  • 30
    • 0029905349 scopus 로고    scopus 로고
    • Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae
    • Basrai M.A., Kingsbury J., Koshland D., Spencer F., Hieter P. Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae. Mol. Cell. Biol. 1996, 16:2838-2847.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 2838-2847
    • Basrai, M.A.1    Kingsbury, J.2    Koshland, D.3    Spencer, F.4    Hieter, P.5
  • 31
    • 2442520137 scopus 로고    scopus 로고
    • Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae
    • Crotti L.B., Basrai M.A. Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae. EMBO J. 2004, 23:1804-1814.
    • (2004) EMBO J. , vol.23 , pp. 1804-1814
    • Crotti, L.B.1    Basrai, M.A.2
  • 34
    • 0029896450 scopus 로고    scopus 로고
    • Identification and analysis of a functional human homolog of the SPT4 gene of Saccharomyces cerevisiae
    • Hartzog G.A., Basrai M.A., Ricupero-Hovasse S.L., Hieter P., Winston F. Identification and analysis of a functional human homolog of the SPT4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 1996, 16:2848-2856.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 2848-2856
    • Hartzog, G.A.1    Basrai, M.A.2    Ricupero-Hovasse, S.L.3    Hieter, P.4    Winston, F.5
  • 35
    • 0037398624 scopus 로고    scopus 로고
    • Structure-function analysis of human Spt4: evidence that hSpt4 and hSpt5 exert their roles in transcriptional elongation as parts of the DSIF complex
    • Kim D.K., Inukai N., Yamada T., Furuya A., Sato H., Yamaguchi Y., Wada T., Handa H. Structure-function analysis of human Spt4: evidence that hSpt4 and hSpt5 exert their roles in transcriptional elongation as parts of the DSIF complex. Genes Cells 2003, 8:371-378.
    • (2003) Genes Cells , vol.8 , pp. 371-378
    • Kim, D.K.1    Inukai, N.2    Yamada, T.3    Furuya, A.4    Sato, H.5    Yamaguchi, Y.6    Wada, T.7    Handa, H.8
  • 36
    • 38049146018 scopus 로고    scopus 로고
    • Protein characterization of Saccharomyces cerevisiae RNA polymerase II after in vivo cross-linking
    • Tardiff D.F., Abruzzi K.C., Rosbash M. Protein characterization of Saccharomyces cerevisiae RNA polymerase II after in vivo cross-linking. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:19948-19953.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 19948-19953
    • Tardiff, D.F.1    Abruzzi, K.C.2    Rosbash, M.3
  • 37
    • 0036150085 scopus 로고    scopus 로고
    • Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences
    • Bourgeois C.F., Kim Y.K., Churcher M.J., West M.J., Karn J. Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences. Mol. Cell. Biol. 2002, 22:1079-1093.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 1079-1093
    • Bourgeois, C.F.1    Kim, Y.K.2    Churcher, M.J.3    West, M.J.4    Karn, J.5
  • 38
    • 18144372773 scopus 로고    scopus 로고
    • Modulating HIV-1 replication by RNA interference directed against human transcription elongation factor SPT5
    • Ping Y.H., Chu C.Y., Cao H., Jacque J.M., Stevenson M., Rana T.M. Modulating HIV-1 replication by RNA interference directed against human transcription elongation factor SPT5. Retrovirology 2004, 1:46.
    • (2004) Retrovirology , vol.1 , pp. 46
    • Ping, Y.H.1    Chu, C.Y.2    Cao, H.3    Jacque, J.M.4    Stevenson, M.5    Rana, T.M.6
  • 39
    • 37849036555 scopus 로고    scopus 로고
    • RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes
    • Glover-Cutter K., Kim S., Espinosa J., Bentley D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat. Struct. Mol. Biol. 2008, 15:71-78.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 71-78
    • Glover-Cutter, K.1    Kim, S.2    Espinosa, J.3    Bentley, D.L.4
  • 40
    • 78149477660 scopus 로고    scopus 로고
    • Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation
    • Gilchrist D.A., Dos Santos G., Fargo D.C., Xie B., Gao Y., Li L., Adelman K. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 2010, 143:540-551.
    • (2010) Cell , vol.143 , pp. 540-551
    • Gilchrist, D.A.1    Dos Santos, G.2    Fargo, D.C.3    Xie, B.4    Gao, Y.5    Li, L.6    Adelman, K.7
  • 44
    • 78449255017 scopus 로고    scopus 로고
    • DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes
    • Drouin S., Laramee L., Jacques P.E., Forest A., Bergeron M., Robert F. DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet. 2010, 6:e1001173.
    • (2010) PLoS Genet. , vol.6
    • Drouin, S.1    Laramee, L.2    Jacques, P.E.3    Forest, A.4    Bergeron, M.5    Robert, F.6
  • 45
    • 0034667949 scopus 로고    scopus 로고
    • High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation
    • Andrulis E.D., Guzman E., Doring P., Werner J., Lis J.T. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 2000, 14:2635-2649.
    • (2000) Genes Dev. , vol.14 , pp. 2635-2649
    • Andrulis, E.D.1    Guzman, E.2    Doring, P.3    Werner, J.4    Lis, J.T.5
  • 46
    • 0034667805 scopus 로고    scopus 로고
    • Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster
    • Kaplan C.D., Morris J.R., Wu C., Winston F. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 2000, 14:2623-2634.
    • (2000) Genes Dev. , vol.14 , pp. 2623-2634
    • Kaplan, C.D.1    Morris, J.R.2    Wu, C.3    Winston, F.4
  • 47
    • 0345016384 scopus 로고    scopus 로고
    • Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II
    • Morillon A., Karabetsou N., O'Sullivan J., Kent N., Proudfoot N., Mellor J. Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 2003, 115:425-435.
    • (2003) Cell , vol.115 , pp. 425-435
    • Morillon, A.1    Karabetsou, N.2    O'Sullivan, J.3    Kent, N.4    Proudfoot, N.5    Mellor, J.6
  • 48
    • 77749261651 scopus 로고    scopus 로고
    • Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription
    • Quan T.K., Hartzog G.A. Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription. Genetics 2010, 184:321-334.
    • (2010) Genetics , vol.184 , pp. 321-334
    • Quan, T.K.1    Hartzog, G.A.2
  • 49
    • 0037415686 scopus 로고    scopus 로고
    • Molecular evidence for a positive role of Spt4 in transcription elongation
    • Rondon A.G., Garcia-Rubio M., Gonzalez-Barrera S., Aguilera A. Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 2003, 22:612-620.
    • (2003) EMBO J. , vol.22 , pp. 612-620
    • Rondon, A.G.1    Garcia-Rubio, M.2    Gonzalez-Barrera, S.3    Aguilera, A.4
  • 51
    • 0032571254 scopus 로고    scopus 로고
    • Role of the human homolog of the yeast transcription factor SPT5 in HIV-1 Tat-activation
    • Wu-Baer F., Lane W.S., Gaynor R.B. Role of the human homolog of the yeast transcription factor SPT5 in HIV-1 Tat-activation. J. Mol. Biol. 1998, 277:179-197.
    • (1998) J. Mol. Biol. , vol.277 , pp. 179-197
    • Wu-Baer, F.1    Lane, W.S.2    Gaynor, R.B.3
  • 52
    • 1542314246 scopus 로고    scopus 로고
    • Elongation inhibition by DRB sensitivity-inducing factor is regulated by the A20 promoter via a novel negative element and NF-kappaB
    • Ainbinder E., Amir-Zilberstein L., Yamaguchi Y., Handa H., Dikstein R. Elongation inhibition by DRB sensitivity-inducing factor is regulated by the A20 promoter via a novel negative element and NF-kappaB. Mol. Cell. Biol. 2004, 24:2444-2454.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 2444-2454
    • Ainbinder, E.1    Amir-Zilberstein, L.2    Yamaguchi, Y.3    Handa, H.4    Dikstein, R.5
  • 53
    • 38349163133 scopus 로고    scopus 로고
    • Interplay between E-box and NF-kappaB in regulation of A20 gene by DRB sensitivity-inducing factor (DSIF)
    • Amir-Zilberstein L., Dikstein R. Interplay between E-box and NF-kappaB in regulation of A20 gene by DRB sensitivity-inducing factor (DSIF). J. Biol. Chem. 2008, 283:1317-1323.
    • (2008) J. Biol. Chem. , vol.283 , pp. 1317-1323
    • Amir-Zilberstein, L.1    Dikstein, R.2
  • 55
    • 79956319539 scopus 로고    scopus 로고
    • Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly
    • Viktorovskaya O.V., Appling F.D., Schneider D.A. Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly. J. Biol. Chem. 2011, 286:18825-18833.
    • (2011) J. Biol. Chem. , vol.286 , pp. 18825-18833
    • Viktorovskaya, O.V.1    Appling, F.D.2    Schneider, D.A.3
  • 57
    • 0028905513 scopus 로고
    • Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro
    • Burova E., Hung S.C., Sagitov V., Stitt B.L., Gottesman M.E. Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro. J. Bacteriol. 1995, 177:1388-1392.
    • (1995) J. Bacteriol. , vol.177 , pp. 1388-1392
    • Burova, E.1    Hung, S.C.2    Sagitov, V.3    Stitt, B.L.4    Gottesman, M.E.5
  • 58
    • 0032079954 scopus 로고    scopus 로고
    • Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli
    • Burns C.M., Richardson L.V., Richardson J.P. Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli. J. Mol. Biol. 1998, 278:307-316.
    • (1998) J. Mol. Biol. , vol.278 , pp. 307-316
    • Burns, C.M.1    Richardson, L.V.2    Richardson, J.P.3
  • 59
    • 0033032384 scopus 로고    scopus 로고
    • Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG
    • Zellars M., Squires C.L. Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG. Mol. Microbiol. 1999, 32:1296-1304.
    • (1999) Mol. Microbiol. , vol.32 , pp. 1296-1304
    • Zellars, M.1    Squires, C.L.2
  • 60
    • 0026726828 scopus 로고
    • NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda
    • Li J., Horwitz R., McCracken S., Greenblatt J. NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda. J. Biol. Chem. 1992, 267:6012-6019.
    • (1992) J. Biol. Chem. , vol.267 , pp. 6012-6019
    • Li, J.1    Horwitz, R.2    McCracken, S.3    Greenblatt, J.4
  • 63
    • 1542328270 scopus 로고    scopus 로고
    • Transcriptional elongation control by RNA polymerase II: a new frontier
    • Shilatifard A. Transcriptional elongation control by RNA polymerase II: a new frontier. Biochim. Biophys. Acta 2004, 1677:79-86.
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 79-86
    • Shilatifard, A.1
  • 65
    • 0034691146 scopus 로고    scopus 로고
    • Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals
    • Artsimovitch I., Landick R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:7090-7095.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 7090-7095
    • Artsimovitch, I.1    Landick, R.2
  • 66
    • 34547615329 scopus 로고    scopus 로고
    • DSIF contributes to transcriptional activation by DNA-binding activators by preventing pausing during transcription elongation
    • Zhu W., Wada T., Okabe S., Taneda T., Yamaguchi Y., Handa H. DSIF contributes to transcriptional activation by DNA-binding activators by preventing pausing during transcription elongation. Nucleic Acids Res. 2007, 35:4064-4075.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 4064-4075
    • Zhu, W.1    Wada, T.2    Okabe, S.3    Taneda, T.4    Yamaguchi, Y.5    Handa, H.6
  • 68
    • 0033515521 scopus 로고    scopus 로고
    • NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation
    • Yamaguchi Y., Takagi T., Wada T., Yano K., Furuya A., Sugimoto S., Hasegawa J., Handa H. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 1999, 97:41-51.
    • (1999) Cell , vol.97 , pp. 41-51
    • Yamaguchi, Y.1    Takagi, T.2    Wada, T.3    Yano, K.4    Furuya, A.5    Sugimoto, S.6    Hasegawa, J.7    Handa, H.8
  • 70
    • 33746403681 scopus 로고    scopus 로고
    • Controlling the elongation phase of transcription with P-TEFb
    • Peterlin B.M., Price D.H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 2006, 23:297-305.
    • (2006) Mol. Cell , vol.23 , pp. 297-305
    • Peterlin, B.M.1    Price, D.H.2
  • 71
    • 0035943710 scopus 로고    scopus 로고
    • Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo
    • Chao S.H., Price D.H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 2001, 276:31793-31799.
    • (2001) J. Biol. Chem. , vol.276 , pp. 31793-31799
    • Chao, S.H.1    Price, D.H.2
  • 72
    • 38549115170 scopus 로고    scopus 로고
    • P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo
    • Ni Z., Saunders A., Fuda N.J., Yao J., Suarez J.R., Webb W.W., Lis J.T. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo. Mol. Cell. Biol. 2008, 28:1161-1170.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 1161-1170
    • Ni, Z.1    Saunders, A.2    Fuda, N.J.3    Yao, J.4    Suarez, J.R.5    Webb, W.W.6    Lis, J.T.7
  • 73
    • 68849086180 scopus 로고    scopus 로고
    • Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex
    • Liu Y., Warfield L., Zhang C., Luo J., Allen J., Lang W.H., Ranish J., Shokat K.M., Hahn S. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol. Cell. Biol. 2009, 29:4852-4863.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4852-4863
    • Liu, Y.1    Warfield, L.2    Zhang, C.3    Luo, J.4    Allen, J.5    Lang, W.H.6    Ranish, J.7    Shokat, K.M.8    Hahn, S.9
  • 74
    • 0242321980 scopus 로고    scopus 로고
    • Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis
    • Pei Y., Shuman S. Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis. J. Biol. Chem. 2003, 278:43346-43356.
    • (2003) J. Biol. Chem. , vol.278 , pp. 43346-43356
    • Pei, Y.1    Shuman, S.2
  • 75
    • 0342748478 scopus 로고    scopus 로고
    • Domains in the SPT5 protein that modulate its transcriptional regulatory properties
    • Ivanov D., Kwak Y.T., Guo J., Gaynor R.B. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol. Cell. Biol. 2000, 20:2970-2983.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 2970-2983
    • Ivanov, D.1    Kwak, Y.T.2    Guo, J.3    Gaynor, R.B.4
  • 77
    • 72549083757 scopus 로고    scopus 로고
    • DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation
    • Chen Y., Yamaguchi Y., Tsugeno Y., Yamamoto J., Yamada T., Nakamura M., Hisatake K., Handa H. DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev. 2009, 23:2765-2777.
    • (2009) Genes Dev. , vol.23 , pp. 2765-2777
    • Chen, Y.1    Yamaguchi, Y.2    Tsugeno, Y.3    Yamamoto, J.4    Yamada, T.5    Nakamura, M.6    Hisatake, K.7    Handa, H.8
  • 78
    • 77951993585 scopus 로고    scopus 로고
    • Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD
    • Schneider S., Pei Y., Shuman S., Schwer B. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Mol. Cell. Biol. 2010, 30:2353-2364.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 2353-2364
    • Schneider, S.1    Pei, Y.2    Shuman, S.3    Schwer, B.4
  • 79
    • 0034764781 scopus 로고    scopus 로고
    • Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae
    • Lindstrom D.L., Hartzog G.A. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae. Genetics 2001, 159:487-497.
    • (2001) Genetics , vol.159 , pp. 487-497
    • Lindstrom, D.L.1    Hartzog, G.A.2
  • 80
    • 2542489173 scopus 로고    scopus 로고
    • Analysis of polymerase II elongation complexes by native gel electrophoresis. Evidence for a novel carboxyl-terminal domain-mediated termination mechanism
    • Zhang Z., Wu C.H., Gilmour D.S. Analysis of polymerase II elongation complexes by native gel electrophoresis. Evidence for a novel carboxyl-terminal domain-mediated termination mechanism. J. Biol. Chem. 2004, 279:23223-23228.
    • (2004) J. Biol. Chem. , vol.279 , pp. 23223-23228
    • Zhang, Z.1    Wu, C.H.2    Gilmour, D.S.3
  • 81
    • 34547563511 scopus 로고    scopus 로고
    • Properties of RNA polymerase II elongation complexes before and after the P-TEFb-mediated transition into productive elongation
    • Cheng B., Price D.H. Properties of RNA polymerase II elongation complexes before and after the P-TEFb-mediated transition into productive elongation. J. Biol. Chem. 2007, 282:21901-21912.
    • (2007) J. Biol. Chem. , vol.282 , pp. 21901-21912
    • Cheng, B.1    Price, D.H.2
  • 82
    • 77949312619 scopus 로고    scopus 로고
    • The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair
    • Ding B., LeJeune D., Li S. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. J. Biol. Chem. 2010, 285:5317-5326.
    • (2010) J. Biol. Chem. , vol.285 , pp. 5317-5326
    • Ding, B.1    LeJeune, D.2    Li, S.3
  • 83
    • 66349122952 scopus 로고    scopus 로고
    • Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5
    • Zhou K., Kuo W.H., Fillingham J., Greenblatt J.F. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:6956-6961.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 6956-6961
    • Zhou, K.1    Kuo, W.H.2    Fillingham, J.3    Greenblatt, J.F.4
  • 84
    • 84861855149 scopus 로고    scopus 로고
    • Coupling polymerase pausing and chromatin landscapes for precise regulation of transcription
    • Gilchrist D.A., Adelman K. Coupling polymerase pausing and chromatin landscapes for precise regulation of transcription. Biochim. Biophys. Acta 2012.
    • (2012) Biochim. Biophys. Acta
    • Gilchrist, D.A.1    Adelman, K.2
  • 85
    • 0037131186 scopus 로고    scopus 로고
    • Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter
    • Eberhardy S.R., Farnham P.J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 2002, 277:40156-40162.
    • (2002) J. Biol. Chem. , vol.277 , pp. 40156-40162
    • Eberhardy, S.R.1    Farnham, P.J.2
  • 86
    • 0042337359 scopus 로고    scopus 로고
    • C-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis
    • Kanazawa S., Soucek L., Evan G., Okamoto T., Peterlin B.M. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 2003, 22:5707-5711.
    • (2003) Oncogene , vol.22 , pp. 5707-5711
    • Kanazawa, S.1    Soucek, L.2    Evan, G.3    Okamoto, T.4    Peterlin, B.M.5
  • 87
    • 76349090199 scopus 로고    scopus 로고
    • CDK8 is a positive regulator of transcriptional elongation within the serum response network
    • Donner A.J., Ebmeier C.C., Taatjes D.J., Espinosa J.M. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 2010, 17:194-201.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 194-201
    • Donner, A.J.1    Ebmeier, C.C.2    Taatjes, D.J.3    Espinosa, J.M.4
  • 89
    • 34547525335 scopus 로고    scopus 로고
    • Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator
    • Malik S., Barrero M.J., Jones T. Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:6182-6187.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 6182-6187
    • Malik, S.1    Barrero, M.J.2    Jones, T.3
  • 90
    • 77950619158 scopus 로고    scopus 로고
    • Activation of a poised RNAPII-dependent promoter requires both SAGA and mediator
    • Lee S.K., Fletcher A.G., Zhang L., Chen X., Fischbeck J.A., Stargell L.A. Activation of a poised RNAPII-dependent promoter requires both SAGA and mediator. Genetics 2010, 184:659-672.
    • (2010) Genetics , vol.184 , pp. 659-672
    • Lee, S.K.1    Fletcher, A.G.2    Zhang, L.3    Chen, X.4    Fischbeck, J.A.5    Stargell, L.A.6
  • 91
    • 84860580120 scopus 로고    scopus 로고
    • Role of mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae
    • Kremer S.B., Kim S., Jeon J.O., Moustafa Y.W., Chen A., Zhao J., Gross D.S. Role of mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae. Genetics 2012, 191:95-106.
    • (2012) Genetics , vol.191 , pp. 95-106
    • Kremer, S.B.1    Kim, S.2    Jeon, J.O.3    Moustafa, Y.W.4    Chen, A.5    Zhao, J.6    Gross, D.S.7
  • 92
    • 77954759030 scopus 로고    scopus 로고
    • The human Mediator complex: a versatile, genome-wide regulator of transcription
    • Taatjes D.J. The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem. Sci. 2010, 35:315-322.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 315-322
    • Taatjes, D.J.1
  • 93
    • 84861091327 scopus 로고    scopus 로고
    • Mutual remodeling and conformation grid: a mediator code?
    • Meyer P.A., Fu J. Mutual remodeling and conformation grid: a mediator code?. Structure 2012, 20:755-757.
    • (2012) Structure , vol.20 , pp. 755-757
    • Meyer, P.A.1    Fu, J.2
  • 95
    • 17044399754 scopus 로고    scopus 로고
    • Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit
    • Radonjic M., Andrau J.C., Lijnzaad P., Kemmeren P., Kockelkorn T.T., van Leenen D., van Berkum N.L., Holstege F.C. Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol. Cell 2005, 18:171-183.
    • (2005) Mol. Cell , vol.18 , pp. 171-183
    • Radonjic, M.1    Andrau, J.C.2    Lijnzaad, P.3    Kemmeren, P.4    Kockelkorn, T.T.5    van Leenen, D.6    van Berkum, N.L.7    Holstege, F.C.8
  • 96
    • 64249139132 scopus 로고    scopus 로고
    • RNA Pol II accumulates at promoters of growth genes during developmental arrest
    • Baugh L.R., Demodena J., Sternberg P.W. RNA Pol II accumulates at promoters of growth genes during developmental arrest. Science 2009, 324:92-94.
    • (2009) Science , vol.324 , pp. 92-94
    • Baugh, L.R.1    Demodena, J.2    Sternberg, P.W.3
  • 97
    • 0028007067 scopus 로고
    • Binding of TFIID to the CYC1 TATA boxes in yeast occurs independently of upstream activating sequences
    • Chen J., Ding M., Pederson D.S. Binding of TFIID to the CYC1 TATA boxes in yeast occurs independently of upstream activating sequences. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:11909-11913.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 11909-11913
    • Chen, J.1    Ding, M.2    Pederson, D.S.3
  • 98
    • 0035020387 scopus 로고    scopus 로고
    • RNA polymerase II and TBP occupy the repressed CYC1 promoter
    • Martens C., Krett B., Laybourn P.J. RNA polymerase II and TBP occupy the repressed CYC1 promoter. Mol. Microbiol. 2001, 40:1009-1019.
    • (2001) Mol. Microbiol. , vol.40 , pp. 1009-1019
    • Martens, C.1    Krett, B.2    Laybourn, P.J.3
  • 99
    • 0029899068 scopus 로고    scopus 로고
    • A new class of activation-defective TATA-binding protein mutants: evidence for two steps of transcriptional activation in vivo
    • Stargell L.A., Struhl K. A new class of activation-defective TATA-binding protein mutants: evidence for two steps of transcriptional activation in vivo. Mol. Cell. Biol. 1996, 16:4456-4464.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 4456-4464
    • Stargell, L.A.1    Struhl, K.2
  • 100
    • 60349122111 scopus 로고    scopus 로고
    • A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome
    • Venters B.J., Pugh B.F. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 2009, 19:360-371.
    • (2009) Genome Res. , vol.19 , pp. 360-371
    • Venters, B.J.1    Pugh, B.F.2
  • 101
    • 0345698603 scopus 로고    scopus 로고
    • Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes
    • Simic R., Lindstrom D.L., Tran H.G., Roinick K.L., Costa P.J., Johnson A.D., Hartzog G.A., Arndt K.M. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 2003, 22:1846-1856.
    • (2003) EMBO J. , vol.22 , pp. 1846-1856
    • Simic, R.1    Lindstrom, D.L.2    Tran, H.G.3    Roinick, K.L.4    Costa, P.J.5    Johnson, A.D.6    Hartzog, G.A.7    Arndt, K.M.8
  • 103
    • 77953277032 scopus 로고    scopus 로고
    • The Paf1 complex: platform or player in RNA polymerase II transcription?
    • Jaehning J.A. The Paf1 complex: platform or player in RNA polymerase II transcription?. Biochim. Biophys. Acta 2010, 1799:379-388.
    • (2010) Biochim. Biophys. Acta , vol.1799 , pp. 379-388
    • Jaehning, J.A.1
  • 105
    • 27944450463 scopus 로고    scopus 로고
    • The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS
    • Wood A., Schneider J., Dover J., Johnston M., Shilatifard A. The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol. Cell 2005, 20:589-599.
    • (2005) Mol. Cell , vol.20 , pp. 589-599
    • Wood, A.1    Schneider, J.2    Dover, J.3    Johnston, M.4    Shilatifard, A.5
  • 106
    • 23944445861 scopus 로고    scopus 로고
    • BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex
    • Laribee R.N., Krogan N.J., Xiao T., Shibata Y., Hughes T.R., Greenblatt J.F., Strahl B.D. BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr. Biol. 2005, 15:1487-1493.
    • (2005) Curr. Biol. , vol.15 , pp. 1487-1493
    • Laribee, R.N.1    Krogan, N.J.2    Xiao, T.3    Shibata, Y.4    Hughes, T.R.5    Greenblatt, J.F.6    Strahl, B.D.7
  • 107
    • 33645814013 scopus 로고    scopus 로고
    • The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II
    • Qiu H., Hu C., Wong C.M., Hinnebusch A.G. The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol. Cell. Biol. 2006, 26:3135-3148.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 3135-3148
    • Qiu, H.1    Hu, C.2    Wong, C.M.3    Hinnebusch, A.G.4
  • 109
    • 77958608570 scopus 로고    scopus 로고
    • A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme
    • Suh M.H., Meyer P.A., Gu M., Ye P., Zhang M., Kaplan C.D., Lima C.D., Fu J. A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J. Biol. Chem. 2010, 285:34027-34038.
    • (2010) J. Biol. Chem. , vol.285 , pp. 34027-34038
    • Suh, M.H.1    Meyer, P.A.2    Gu, M.3    Ye, P.4    Zhang, M.5    Kaplan, C.D.6    Lima, C.D.7    Fu, J.8
  • 110
    • 55449110096 scopus 로고    scopus 로고
    • Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing
    • Xiao Y., Yang Y.H., Burckin T.A., Shiue L., Hartzog G.A., Segal M.R. Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing. PLoS Comput. Biol. 2005, 1:e39.
    • (2005) PLoS Comput. Biol. , vol.1
    • Xiao, Y.1    Yang, Y.H.2    Burckin, T.A.3    Shiue, L.4    Hartzog, G.A.5    Segal, M.R.6
  • 112
    • 21844435714 scopus 로고    scopus 로고
    • Npl3 is an antagonist of mRNA 3' end formation by RNA polymerase II
    • Bucheli M.E., Buratowski S. Npl3 is an antagonist of mRNA 3' end formation by RNA polymerase II. EMBO J. 2005, 24:2150-2160.
    • (2005) EMBO J. , vol.24 , pp. 2150-2160
    • Bucheli, M.E.1    Buratowski, S.2
  • 113
    • 0142059889 scopus 로고    scopus 로고
    • In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization
    • Cui Y., Denis C.L. In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization. Mol. Cell. Biol. 2003, 23:7887-7901.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 7887-7901
    • Cui, Y.1    Denis, C.L.2
  • 114
    • 12544260507 scopus 로고    scopus 로고
    • Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus
    • Kaplan C.D., Holland M.J., Winston F. Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J. Biol. Chem. 2005, 280:913-922.
    • (2005) J. Biol. Chem. , vol.280 , pp. 913-922
    • Kaplan, C.D.1    Holland, M.J.2    Winston, F.3
  • 115
    • 77956285483 scopus 로고    scopus 로고
    • Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud
    • Shen Z., St-Denis A., Chartrand P. Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud. Genes Dev. 2010, 24:1914-1926.
    • (2010) Genes Dev. , vol.24 , pp. 1914-1926
    • Shen, Z.1    St-Denis, A.2    Chartrand, P.3
  • 116
    • 80052909536 scopus 로고    scopus 로고
    • A functional interface at the rDNA connects rRNA synthesis, pre-rRNA processing and nucleolar surveillance in budding yeast
    • Lepore N., Lafontaine D.L. A functional interface at the rDNA connects rRNA synthesis, pre-rRNA processing and nucleolar surveillance in budding yeast. PLoS One 2011, 6:e24962.
    • (2011) PLoS One , vol.6
    • Lepore, N.1    Lafontaine, D.L.2
  • 118
    • 0033566042 scopus 로고    scopus 로고
    • Transcription elongation factor hSPT5 stimulates mRNA capping
    • Wen Y., Shatkin A.J. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev. 1999, 13:1774-1779.
    • (1999) Genes Dev. , vol.13 , pp. 1774-1779
    • Wen, Y.1    Shatkin, A.J.2
  • 119
    • 56649106687 scopus 로고    scopus 로고
    • Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay
    • Cheng B., Price D.H. Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay. Nucleic Acids Res. 2008, 36:e135.
    • (2008) Nucleic Acids Res. , vol.36
    • Cheng, B.1    Price, D.H.2
  • 120
    • 77954889072 scopus 로고    scopus 로고
    • Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex
    • Missra A., Gilmour D.S. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:11301-11306.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 11301-11306
    • Missra, A.1    Gilmour, D.S.2
  • 121
    • 0035918157 scopus 로고    scopus 로고
    • DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation
    • Ping Y.H., Rana T.M. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J. Biol. Chem. 2001, 276:12951-12958.
    • (2001) J. Biol. Chem. , vol.276 , pp. 12951-12958
    • Ping, Y.H.1    Rana, T.M.2
  • 122
    • 9644307897 scopus 로고    scopus 로고
    • Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II
    • Ujvari A., Luse D.S. Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J. Biol. Chem. 2004, 279:49773-49779.
    • (2004) J. Biol. Chem. , vol.279 , pp. 49773-49779
    • Ujvari, A.1    Luse, D.S.2
  • 123
    • 70350005395 scopus 로고    scopus 로고
    • "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions
    • Perales R., Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 2009, 36:178-191.
    • (2009) Mol. Cell , vol.36 , pp. 178-191
    • Perales, R.1    Bentley, D.2
  • 125
    • 77449116618 scopus 로고    scopus 로고
    • Plant-specific multisubunit RNA polymerase in gene silencing
    • Lahmy S., Bies-Etheve N., Lagrange T. Plant-specific multisubunit RNA polymerase in gene silencing. Epigenetics 2010, 5:4-8.
    • (2010) Epigenetics , vol.5 , pp. 4-8
    • Lahmy, S.1    Bies-Etheve, N.2    Lagrange, T.3
  • 126
    • 79959838293 scopus 로고    scopus 로고
    • Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing
    • Rowley M.J., Avrutsky M.I., Sifuentes C.J., Pereira L., Wierzbicki A.T. Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. PLoS Genetics 2011, 7:e1002120.
    • (2011) PLoS Genetics , vol.7
    • Rowley, M.J.1    Avrutsky, M.I.2    Sifuentes, C.J.3    Pereira, L.4    Wierzbicki, A.T.5
  • 128
    • 67349099134 scopus 로고    scopus 로고
    • RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family
    • Bies-Etheve N., Pontier D., Lahmy S., Picart C., Vega D., Cooke R., Lagrange T. RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep. 2009, 10:649-654.
    • (2009) EMBO Rep. , vol.10 , pp. 649-654
    • Bies-Etheve, N.1    Pontier, D.2    Lahmy, S.3    Picart, C.4    Vega, D.5    Cooke, R.6    Lagrange, T.7
  • 130
  • 131
    • 0037102621 scopus 로고    scopus 로고
    • Transcription elongation factor Spt4 mediates loss of phosphorylated RNA polymerase II transcription in response to DNA damage
    • Jansen L.E., Belo A.I., Hulsker R., Brouwer J. Transcription elongation factor Spt4 mediates loss of phosphorylated RNA polymerase II transcription in response to DNA damage. Nucleic Acids Res. 2002, 30:3532-3539.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 3532-3539
    • Jansen, L.E.1    Belo, A.I.2    Hulsker, R.3    Brouwer, J.4
  • 132
    • 84860598427 scopus 로고    scopus 로고
    • The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination
    • Stanlie A., Begum N.A., Akiyama H., Honjo T. The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination. PLoS Genet. 2012, 8:e1002675.
    • (2012) PLoS Genet. , vol.8
    • Stanlie, A.1    Begum, N.A.2    Akiyama, H.3    Honjo, T.4
  • 133
    • 12044255564 scopus 로고
    • Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription
    • Li J., Mason S.W., Greenblatt J. Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription. Genes Dev. 1993, 7:161-172.
    • (1993) Genes Dev. , vol.7 , pp. 161-172
    • Li, J.1    Mason, S.W.2    Greenblatt, J.3
  • 135
    • 55249117324 scopus 로고    scopus 로고
    • Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation
    • Guo M., Xu F., Yamada J., Egelhofer T., Gao Y., Hartzog G.A., Teng M., Niu L. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. Structure 2008, 16:1649-1658.
    • (2008) Structure , vol.16 , pp. 1649-1658
    • Guo, M.1    Xu, F.2    Yamada, J.3    Egelhofer, T.4    Gao, Y.5    Hartzog, G.A.6    Teng, M.7    Niu, L.8
  • 136
    • 73849136441 scopus 로고    scopus 로고
    • Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface
    • Wenzel S., Martins B.M., Rosch P., Wohrl B.M. Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface. Biochem. J. 2010, 425:373-380.
    • (2010) Biochem. J. , vol.425 , pp. 373-380
    • Wenzel, S.1    Martins, B.M.2    Rosch, P.3    Wohrl, B.M.4
  • 137
    • 42749094167 scopus 로고    scopus 로고
    • The small hSpt4 subunit of the human transcription elongation factor DSIF is a Zn-finger protein with alpha/beta type topology
    • Wenzel S., Schweimer K., Rosch P., Wohrl B.M. The small hSpt4 subunit of the human transcription elongation factor DSIF is a Zn-finger protein with alpha/beta type topology. Biochem. Biophys. Res. Commun. 2008, 370:414-418.
    • (2008) Biochem. Biophys. Res. Commun. , vol.370 , pp. 414-418
    • Wenzel, S.1    Schweimer, K.2    Rosch, P.3    Wohrl, B.M.4
  • 139
    • 79953779997 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
    • Martinez-Rucobo F.W., Sainsbury S., Cheung A.C., Cramer P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J. 2011, 30:1302-1310.
    • (2011) EMBO J. , vol.30 , pp. 1302-1310
    • Martinez-Rucobo, F.W.1    Sainsbury, S.2    Cheung, A.C.3    Cramer, P.4
  • 140
    • 68149163147 scopus 로고    scopus 로고
    • Crystal structure of NusG N-terminal (NGN) domain from Methanocaldococcus jannaschii and its interaction with rpoE
    • Zhou H., Liu Q., Gao Y., Teng M., Niu L. Crystal structure of NusG N-terminal (NGN) domain from Methanocaldococcus jannaschii and its interaction with rpoE. Proteins 2009, 76:787-793.
    • (2009) Proteins , vol.76 , pp. 787-793
    • Zhou, H.1    Liu, Q.2    Gao, Y.3    Teng, M.4    Niu, L.5
  • 142
    • 79960461851 scopus 로고    scopus 로고
    • Competing for the clamp: promoting RNA polymerase processivity and managing the transition from initiation to elongation
    • Hartzog G.A., Kaplan C.D. Competing for the clamp: promoting RNA polymerase processivity and managing the transition from initiation to elongation. Mol. Cell 2012, 43:161-163.
    • (2012) Mol. Cell , vol.43 , pp. 161-163
    • Hartzog, G.A.1    Kaplan, C.D.2
  • 143
    • 84857625656 scopus 로고    scopus 로고
    • A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life
    • Werner F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J. Mol. Biol. 2012, 417:13-27.
    • (2012) J. Mol. Biol. , vol.417 , pp. 13-27
    • Werner, F.1
  • 144
    • 0037133970 scopus 로고    scopus 로고
    • The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand
    • Artsimovitch I., Landick R. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 2002, 109:193-203.
    • (2002) Cell , vol.109 , pp. 193-203
    • Artsimovitch, I.1    Landick, R.2
  • 146
    • 67650676737 scopus 로고    scopus 로고
    • Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators
    • Mooney R.A., Schweimer K., Rosch P., Gottesman M., Landick R. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol. 2009, 391:341-358.
    • (2009) J. Mol. Biol. , vol.391 , pp. 341-358
    • Mooney, R.A.1    Schweimer, K.2    Rosch, P.3    Gottesman, M.4    Landick, R.5
  • 147
    • 79960449643 scopus 로고    scopus 로고
    • The beta subunit gate loop is required for RNA polymerase modification by RfaH and NusG
    • Sevostyanova A., Belogurov G.A., Mooney R.A., Landick R., Artsimovitch I. The beta subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol. Cell 2011, 43:253-262.
    • (2011) Mol. Cell , vol.43 , pp. 253-262
    • Sevostyanova, A.1    Belogurov, G.A.2    Mooney, R.A.3    Landick, R.4    Artsimovitch, I.5
  • 149
    • 37749053887 scopus 로고    scopus 로고
    • Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions
    • Tompa P., Fuxreiter M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 2008, 33:2-8.
    • (2008) Trends Biochem. Sci. , vol.33 , pp. 2-8
    • Tompa, P.1    Fuxreiter, M.2
  • 150
    • 0035827332 scopus 로고    scopus 로고
    • Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution
    • Gnatt A.L., Cramer P., Fu J., Bushnell D.A., Kornberg R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 2001, 292:1876-1882.
    • (2001) Science , vol.292 , pp. 1876-1882
    • Gnatt, A.L.1    Cramer, P.2    Fu, J.3    Bushnell, D.A.4    Kornberg, R.D.5
  • 151
    • 10944232674 scopus 로고    scopus 로고
    • Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS
    • Kettenberger H., Armache K.J., Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 2004, 16:955-965.
    • (2004) Mol. Cell , vol.16 , pp. 955-965
    • Kettenberger, H.1    Armache, K.J.2    Cramer, P.3
  • 152
    • 27144526242 scopus 로고    scopus 로고
    • A functional role for the switch 2 region of yeast RNA polymerase II in transcription start site utilization and abortive initiation
    • Majovski R.C., Khaperskyy D.A., Ghazy M.A., Ponticelli A.S. A functional role for the switch 2 region of yeast RNA polymerase II in transcription start site utilization and abortive initiation. J. Biol. Chem. 2005, 280:34917-34923.
    • (2005) J. Biol. Chem. , vol.280 , pp. 34917-34923
    • Majovski, R.C.1    Khaperskyy, D.A.2    Ghazy, M.A.3    Ponticelli, A.S.4
  • 153
    • 0043244876 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage
    • Kettenberger H., Armache K.J., Cramer P. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 2003, 114:347-357.
    • (2003) Cell , vol.114 , pp. 347-357
    • Kettenberger, H.1    Armache, K.J.2    Cramer, P.3
  • 154
    • 0028059269 scopus 로고
    • The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes
    • Rudd M.D., Izban M.G., Luse D.S. The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:8057-8061.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 8057-8061
    • Rudd, M.D.1    Izban, M.G.2    Luse, D.S.3
  • 155
    • 0037591460 scopus 로고    scopus 로고
    • Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes
    • Weilbaecher R.G., Awrey D.E., Edwards A.M., Kane C.M. Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J. Biol. Chem. 2003, 278:24189-24199.
    • (2003) J. Biol. Chem. , vol.278 , pp. 24189-24199
    • Weilbaecher, R.G.1    Awrey, D.E.2    Edwards, A.M.3    Kane, C.M.4
  • 156
    • 66349138227 scopus 로고    scopus 로고
    • Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution
    • Wang D., Bushnell D.A., Huang X., Westover K.D., Levitt M., Kornberg R.D. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science 2009, 324:1203-1206.
    • (2009) Science , vol.324 , pp. 1203-1206
    • Wang, D.1    Bushnell, D.A.2    Huang, X.3    Westover, K.D.4    Levitt, M.5    Kornberg, R.D.6
  • 157
    • 79952440464 scopus 로고    scopus 로고
    • Structural basis of RNA polymerase II backtracking, arrest and reactivation
    • Cheung A.C., Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 2011, 471:249-253.
    • (2011) Nature , vol.471 , pp. 249-253
    • Cheung, A.C.1    Cramer, P.2
  • 158
    • 0037033094 scopus 로고    scopus 로고
    • A key role for the alpha 1 helix of human RAP74 in the initiation and elongation of RNA chains
    • Funk J.D., Nedialkov Y.A., Xu D., Burton Z.F. A key role for the alpha 1 helix of human RAP74 in the initiation and elongation of RNA chains. J. Biol. Chem. 2002, 277:46998-47003.
    • (2002) J. Biol. Chem. , vol.277 , pp. 46998-47003
    • Funk, J.D.1    Nedialkov, Y.A.2    Xu, D.3    Burton, Z.F.4
  • 159
    • 0027943675 scopus 로고
    • Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II
    • Tan S., Aso T., Conaway R.C., Conaway J.W. Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. J. Biol. Chem. 1994, 269:25684-25691.
    • (1994) J. Biol. Chem. , vol.269 , pp. 25684-25691
    • Tan, S.1    Aso, T.2    Conaway, R.C.3    Conaway, J.W.4
  • 160
    • 0028242344 scopus 로고
    • Functional analysis of Drosophila factor 5 (TFIIF), a general transcription factor
    • Kephart D.D., Wang B.Q., Burton Z.F., Price D.H. Functional analysis of Drosophila factor 5 (TFIIF), a general transcription factor. J. Biol. Chem. 1994, 269:13536-13543.
    • (1994) J. Biol. Chem. , vol.269 , pp. 13536-13543
    • Kephart, D.D.1    Wang, B.Q.2    Burton, Z.F.3    Price, D.H.4
  • 161
    • 77149124577 scopus 로고    scopus 로고
    • Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex
    • Eichner J., Chen H.T., Warfield L., Hahn S. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. EMBO J. 2010, 29:706-716.
    • (2010) EMBO J. , vol.29 , pp. 706-716
    • Eichner, J.1    Chen, H.T.2    Warfield, L.3    Hahn, S.4
  • 162
    • 34547683177 scopus 로고    scopus 로고
    • The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex
    • Chen H.T., Warfield L., Hahn S. The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat. Struct. Mol. Biol. 2007, 14:696-703.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 696-703
    • Chen, H.T.1    Warfield, L.2    Hahn, S.3
  • 166
    • 0035834647 scopus 로고    scopus 로고
    • A highly purified RNA polymerase II elongation control system
    • Renner D.B., Yamaguchi Y., Wada T., Handa H., Price D.H. A highly purified RNA polymerase II elongation control system. J. Biol. Chem. 2001, 276:42601-42609.
    • (2001) J. Biol. Chem. , vol.276 , pp. 42601-42609
    • Renner, D.B.1    Yamaguchi, Y.2    Wada, T.3    Handa, H.4    Price, D.H.5
  • 167
    • 44349165718 scopus 로고    scopus 로고
    • Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization
    • Khaperskyy D.A., Ammerman M.L., Majovski R.C., Ponticelli A.S. Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization. Mol. Cell. Biol. 2008, 28:3757-3766.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 3757-3766
    • Khaperskyy, D.A.1    Ammerman, M.L.2    Majovski, R.C.3    Ponticelli, A.S.4
  • 168
    • 0034725649 scopus 로고    scopus 로고
    • Mutational analysis of beta '260-309, a sigma 70 binding site located on Escherichia coli core RNA polymerase
    • Arthur T.M., Anthony L.C., Burgess R.R. Mutational analysis of beta '260-309, a sigma 70 binding site located on Escherichia coli core RNA polymerase. J. Biol. Chem. 2000, 275:23113-23119.
    • (2000) J. Biol. Chem. , vol.275 , pp. 23113-23119
    • Arthur, T.M.1    Anthony, L.C.2    Burgess, R.R.3
  • 170
    • 38949110771 scopus 로고    scopus 로고
    • The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex
    • Sevostyanova A., Svetlov V., Vassylyev D.G., Artsimovitch I. The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:865-870.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 865-870
    • Sevostyanova, A.1    Svetlov, V.2    Vassylyev, D.G.3    Artsimovitch, I.4
  • 171
    • 69249241850 scopus 로고    scopus 로고
    • RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro
    • Grohmann D., Hirtreiter A., Werner F. RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro. Biochem. J. 2009, 421:339-343.
    • (2009) Biochem. J. , vol.421 , pp. 339-343
    • Grohmann, D.1    Hirtreiter, A.2    Werner, F.3
  • 172
    • 0036241663 scopus 로고    scopus 로고
    • Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo
    • Pokholok D.K., Hannett N.M., Young R.A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell 2002, 9:799-809.
    • (2002) Mol. Cell , vol.9 , pp. 799-809
    • Pokholok, D.K.1    Hannett, N.M.2    Young, R.A.3
  • 173
    • 0034903279 scopus 로고    scopus 로고
    • Promoter clearance by RNA polymerase II is an extended, multistep process strongly affected by sequence
    • Pal M., McKean D., Luse D.S. Promoter clearance by RNA polymerase II is an extended, multistep process strongly affected by sequence. Mol. Cell. Biol. 2001, 21:5815-5825.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 5815-5825
    • Pal, M.1    McKean, D.2    Luse, D.S.3
  • 174
    • 0037610786 scopus 로고    scopus 로고
    • The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23
    • Pal M., Luse D.S. The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:5700-5705.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 5700-5705
    • Pal, M.1    Luse, D.S.2
  • 175
    • 0035827346 scopus 로고    scopus 로고
    • Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution
    • Cramer P., Bushnell D.A., Kornberg R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 2001, 292:1863-1876.
    • (2001) Science , vol.292 , pp. 1863-1876
    • Cramer, P.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 176
    • 0037623333 scopus 로고    scopus 로고
    • Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties
    • Kwak Y.T., Guo J., Prajapati S., Park K.J., Surabhi R.M., Miller B., Gehrig P., Gaynor R.B. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol. Cell 2003, 11:1055-1066.
    • (2003) Mol. Cell , vol.11 , pp. 1055-1066
    • Kwak, Y.T.1    Guo, J.2    Prajapati, S.3    Park, K.J.4    Surabhi, R.M.5    Miller, B.6    Gehrig, P.7    Gaynor, R.B.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.