-
1
-
-
0034667949
-
High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: Roles in promoter proximal pausing and transcription elongation
-
Andrulis, E. D., E. Guzman, P. Doring, J. Werner, and J. T. Lis. 2000. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 14:2635-2649.
-
(2000)
Genes Dev.
, vol.14
, pp. 2635-2649
-
-
Andrulis, E.D.1
Guzman, E.2
Doring, P.3
Werner, J.4
Lis, J.T.5
-
2
-
-
0344959524
-
Definition of transcriptional pause elements in fission yeast
-
Aranda, A., and N. J. Proudfoot. 1999. Definition of transcriptional pause elements in fission yeast. Mol. Cell. Biol. 19:1251-1261.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 1251-1261
-
-
Aranda, A.1
Proudfoot, N.J.2
-
3
-
-
0034834248
-
Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data
-
Beaudoing, E., and D. Gautheret. 2001. Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Res. 11:1520-1526.
-
(2001)
Genome Res.
, vol.11
, pp. 1520-1526
-
-
Beaudoing, E.1
Gautheret, D.2
-
4
-
-
0026645025
-
Genetic isolation of ADA2: A potential transcriptional adaptor required for function of certain acidic activation domains
-
Berger, S. L., B. Pina, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and L. Guarente. 1992. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70:251-265.
-
(1992)
Cell
, vol.70
, pp. 251-265
-
-
Berger, S.L.1
Pina, B.2
Silverman, N.3
Marcus, G.A.4
Agapite, J.5
Regier, J.L.6
Triezenberg, S.J.7
Guarente, L.8
-
5
-
-
0030917088
-
Transcriptional termination signals for RNA polymerase II in fission yeast
-
Birse, C. E., B. A. Lee, K. Hansen, and N. J. Proudfoot. 1997. Transcriptional termination signals for RNA polymerase II in fission yeast. EMBO J. 16:3633-3643.
-
(1997)
EMBO J.
, vol.16
, pp. 3633-3643
-
-
Birse, C.E.1
Lee, B.A.2
Hansen, K.3
Proudfoot, N.J.4
-
6
-
-
0036150085
-
Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences
-
Bourgeois, C. F., Y. K. Kim, M. J. Churcher, M. J. West, and J. Karn. 2002. Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences. Mol. Cell. Biol. 22:1079-1093.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 1079-1093
-
-
Bourgeois, C.F.1
Kim, Y.K.2
Churcher, M.J.3
West, M.J.4
Karn, J.5
-
7
-
-
0035947082
-
Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination
-
Calvo, O., and J. Manley. 2001. Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination. Mol. Cell 7:1013-1023.
-
(2001)
Mol. Cell
, vol.7
, pp. 1013-1023
-
-
Calvo, O.1
Manley, J.2
-
8
-
-
0031439267
-
The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability
-
Chavez, S., and A. Aguilera. 1997. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev. 11:3459-3470.
-
(1997)
Genes Dev.
, vol.11
, pp. 3459-3470
-
-
Chavez, S.1
Aguilera, A.2
-
9
-
-
0034808138
-
Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae
-
Chavez, S., M. Garcia-Rubio, F. Prado, and A. Aguilera. 2001. Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Mol. Cell. Biol. 21:7054-7064.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 7054-7064
-
-
Chavez, S.1
Garcia-Rubio, M.2
Prado, F.3
Aguilera, A.4
-
10
-
-
0037086701
-
CCR4, a 3′-5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase
-
Chen, J., Y. C. Chiang, and C. L. Denis. 2002. CCR4, a 3′-5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21:1414-1426.
-
(2002)
EMBO J.
, vol.21
, pp. 1414-1426
-
-
Chen, J.1
Chiang, Y.C.2
Denis, C.L.3
-
11
-
-
0035824883
-
Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex
-
Chen, J., J. Rappsilber, Y. C. Chiang, P. Russell, M. Mann, and C. L. Denis. 2001. Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex. J. Mol. Biol. 314:683-694.
-
(2001)
J. Mol. Biol.
, vol.314
, pp. 683-694
-
-
Chen, J.1
Rappsilber, J.2
Chiang, Y.C.3
Russell, P.4
Mann, M.5
Denis, C.L.6
-
12
-
-
0029775651
-
ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB
-
Chiang, Y. C., P. Komarnitsky, D. Chase, and C. L. Denis. 1996. ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. J. Biol. Chem. 271:32359-32365.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 32359-32365
-
-
Chiang, Y.C.1
Komarnitsky, P.2
Chase, D.3
Denis, C.L.4
-
13
-
-
0027394010
-
CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters
-
Collart, M. A., and K. Struhl. 1993. CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters. EMBO J. 12:177-186.
-
(1993)
EMBO J.
, vol.12
, pp. 177-186
-
-
Collart, M.A.1
Struhl, K.2
-
14
-
-
0034255861
-
Control of elongation by RNA polymerase II
-
Conaway, J. W., A. Shilatifard, A. Dvir, and R. C. Conaway. 2000. Control of elongation by RNA polymerase II. Trends Biochem. Sci. 25:375-380.
-
(2000)
Trends Biochem. Sci.
, vol.25
, pp. 375-380
-
-
Conaway, J.W.1
Shilatifard, A.2
Dvir, A.3
Conaway, R.C.4
-
15
-
-
0027531889
-
Identification of three genes required for the glucose-dependent transcription of the yeast transcriptional activator ADR1
-
Cook, W. J., and C. L. Denis. 1993. Identification of three genes required for the glucose-dependent transcription of the yeast transcriptional activator ADR1. Curr. Genet. 23:192-200.
-
(1993)
Curr. Genet.
, vol.23
, pp. 192-200
-
-
Cook, W.J.1
Denis, C.L.2
-
16
-
-
0034724953
-
Architecture of RNA polymerase II and implications for the transcription mechanism
-
Cramer, P., D. A. Bushnell, J. Fu, A. L. Gnatt, B. Maier-Davis, N. E. Thompson, R. R. Burgess, A. M. Edwards, P. R. David, and R. D. Kornberg. 2000. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288:640-649.
-
(2000)
Science
, vol.288
, pp. 640-649
-
-
Cramer, P.1
Bushnell, D.A.2
Fu, J.3
Gnatt, A.L.4
Maier-Davis, B.5
Thompson, N.E.6
Burgess, R.R.7
Edwards, A.M.8
David, P.R.9
Kornberg, R.D.10
-
17
-
-
0034971991
-
Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation
-
Denis, C. L., Y. C. Chiang, Y. Cui, and J. Chen. 2001. Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation. Genetics 158:627-634.
-
(2001)
Genetics
, vol.158
, pp. 627-634
-
-
Denis, C.L.1
Chiang, Y.C.2
Cui, Y.3
Chen, J.4
-
18
-
-
0020697117
-
mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source
-
Denis, C. L., J. Ferguson, and E. T. Young. 1983. mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J. Biol. Chem. 258:1165-1171.
-
(1983)
J. Biol. Chem.
, vol.258
, pp. 1165-1171
-
-
Denis, C.L.1
Ferguson, J.2
Young, E.T.3
-
19
-
-
0025098691
-
The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentative and spt-mediated gene expression
-
Denis, C. L., and T. Malvar. 1990. The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentative and spt-mediated gene expression. Genetics 124:283-291.
-
(1990)
Genetics
, vol.124
, pp. 283-291
-
-
Denis, C.L.1
Malvar, T.2
-
20
-
-
0030789131
-
Alternative poly(A) site selection in complex transcription units: Means to an end?
-
Edwalds-Gilbert, G., K. L. Veraldi, and C. Milcarek. 1997. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 25:2547-2561.
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 2547-2561
-
-
Edwalds-Gilbert, G.1
Veraldi, K.L.2
Milcarek, C.3
-
21
-
-
0037089139
-
Probabilistic prediction of Saccharomyces cerevisiae mRNA 3′-processing sites
-
Graber, J. H., G. D. McAllister, and T. F. Smith. 2002. Probabilistic prediction of Saccharomyces cerevisiae mRNA 3′-processing sites. Nucleic Acids Res. 30:1851-1858.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 1851-1858
-
-
Graber, J.H.1
McAllister, G.D.2
Smith, T.F.3
-
22
-
-
0032004953
-
Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae
-
Hartzog, G. A., T. Wada, H. Handa, and F. Winston. 1998. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12:357-369.
-
(1998)
Genes Dev.
, vol.12
, pp. 357-369
-
-
Hartzog, G.A.1
Wada, T.2
Handa, H.3
Winston, F.4
-
23
-
-
0034634684
-
RNA polymerase II subunit Rpb9 regulates transcription elongation in vivo
-
Hemming, S. A., D. B. Jansma, P. F. Macgregor, A. Goryachev, J. D. Friesen, and A. M. Edwards. 2000. RNA polymerase II subunit Rpb9 regulates transcription elongation in vivo. J. Biol. Chem. 275:35506-35511.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 35506-35511
-
-
Hemming, S.A.1
Jansma, D.B.2
Macgregor, P.F.3
Goryachev, A.4
Friesen, J.D.5
Edwards, A.M.6
-
24
-
-
0032480229
-
RNA polymerase II is an essential mRNA polyadenylation factor
-
Hirose, Y., and J. L. Manley. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395:93-96.
-
(1998)
Nature
, vol.395
, pp. 93-96
-
-
Hirose, Y.1
Manley, J.L.2
-
25
-
-
0034669470
-
The two Saccharomyces cerevisiae SUA7 (TFIIB) transcripts differ at the 3′-end and respond differently to stress
-
Hoopes, B. C., G. D. Bowers, and M. J. DiVisconte. 2000. The two Saccharomyces cerevisiae SUA7 (TFIIB) transcripts differ at the 3′-end and respond differently to stress. Nucleic Acids Res. 28:4435-4443.
-
(2000)
Nucleic Acids Res.
, vol.28
, pp. 4435-4443
-
-
Hoopes, B.C.1
Bowers, G.D.2
DiVisconte, M.J.3
-
26
-
-
0026022089
-
Point mutations upstream of the yeast ADH2 poly(A) site significantly reduce the efficiency of 3′-end formation
-
Hyman, L. E., S. H. Seiler, J. Whoriskey, and C. L. Moore. 1991. Point mutations upstream of the yeast ADH2 poly(A) site significantly reduce the efficiency of 3′-end formation. Mol. Cell. Biol. 11:2004-2012.
-
(1991)
Mol. Cell. Biol.
, vol.11
, pp. 2004-2012
-
-
Hyman, L.E.1
Seiler, S.H.2
Whoriskey, J.3
Moore, C.L.4
-
27
-
-
0034667805
-
Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster
-
Kaplan, C. D., J. R. Morris, C. Wu, and F. Winston. 2000. Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 14:2623-2634.
-
(2000)
Genes Dev.
, vol.14
, pp. 2623-2634
-
-
Kaplan, C.D.1
Morris, J.R.2
Wu, C.3
Winston, F.4
-
28
-
-
0034974850
-
TFIIS enhances transcriptional elongation through an artificial arrest site in vivo
-
Kulish, D., and K. Struhl. 2001. TFIIS enhances transcriptional elongation through an artificial arrest site in vivo. Mol. Cell. Biol. 21:4162-4168.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 4162-4168
-
-
Kulish, D.1
Struhl, K.2
-
29
-
-
0031684847
-
Mutations in RNA polymerase II and elongation factor SII severely reduce mRNA levels in Saccharomyces cerevisiae
-
Lennon, J. C., III, M. Wind, L. Saunders, M. B. Hock, and D. Reines. 1998. Mutations in RNA polymerase II and elongation factor SII severely reduce mRNA levels in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:5771-5779.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 5771-5779
-
-
Lennon J.C. III1
Wind, M.2
Saunders, L.3
Hock, M.B.4
Reines, D.5
-
30
-
-
0037313160
-
Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins
-
Lindstrom, D. L., S. L. Squazzo, N. Muster, T. A. Burckin, K. C. Wachter, C. A. Emigh, J. A. McCleery, J. R. Yates III, and G. A. Hartzog. 2003. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol. Cell. Biol. 23:1368-1378.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 1368-1378
-
-
Lindstrom, D.L.1
Squazzo, S.L.2
Muster, N.3
Burckin, T.A.4
Wachter, K.C.5
Emigh, C.A.6
McCleery, J.A.7
Yates J.R. III8
Hartzog, G.A.9
-
31
-
-
0032481349
-
The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively
-
Liu, H. Y., V. Badarinarayana, D. C. Audino, J. Rappsilber, M. Mann, and C. L. Denis. 1998. The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J. 17:1096-1106.
-
(1998)
EMBO J.
, vol.17
, pp. 1096-1106
-
-
Liu, H.Y.1
Badarinarayana, V.2
Audino, D.C.3
Rappsilber, J.4
Mann, M.5
Denis, C.L.6
-
32
-
-
0037440012
-
Prioritized selection of oligodeoxyribonucleotide probes for efficient hybridization to RNA transcripts
-
Luebke, K. J., R. P. Balog, and H. R. Garner. 2003. Prioritized selection of oligodeoxyribonucleotide probes for efficient hybridization to RNA transcripts. Nucleic Acids Res. 31:750-758.
-
(2003)
Nucleic Acids Res.
, vol.31
, pp. 750-758
-
-
Luebke, K.J.1
Balog, R.P.2
Garner, H.R.3
-
33
-
-
0035951432
-
Quality control of mRNA function
-
Maquat, L. E., and G. G. Carmichael. 2001. Quality control of mRNA function. Cell 104:173-176.
-
(2001)
Cell
, vol.104
, pp. 173-176
-
-
Maquat, L.E.1
Carmichael, G.G.2
-
34
-
-
15644372864
-
5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II
-
McCracken, S., N. Fong, E. Rosonina, K. Yankulov, G. Brothers, D. Siderovski, A. Hessel, S. Foster, S. Shuman, and D. L. Bentley. 1997. 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11:3306-3318.
-
(1997)
Genes Dev.
, vol.11
, pp. 3306-3318
-
-
McCracken, S.1
Fong, N.2
Rosonina, E.3
Yankulov, K.4
Brothers, G.5
Siderovski, D.6
Hessel, A.7
Foster, S.8
Shuman, S.9
Bentley, D.L.10
-
35
-
-
0021769945
-
Analysis of full-length cDNA clones carrying GAL1 of Saccharomyces cerevisiae: A model system for cDNA expression
-
Miyajima, A., N. Nakayama, I. Miyajima, N. Arai, H. Okayama, and K. Arai. 1984. Analysis of full-length cDNA clones carrying GAL1 of Saccharomyces cerevisiae: a model system for cDNA expression. Nucleic Acids Res. 12:6397-6414.
-
(1984)
Nucleic Acids Res.
, vol.12
, pp. 6397-6414
-
-
Miyajima, A.1
Nakayama, N.2
Miyajima, I.3
Arai, N.4
Okayama, H.5
Arai, K.6
-
36
-
-
0037154982
-
A unified theory of gene expression
-
Orphanides, G., and D. Reinberg. 2002. A unified theory of gene expression. Cell 108:439-451.
-
(2002)
Cell
, vol.108
, pp. 439-451
-
-
Orphanides, G.1
Reinberg, D.2
-
37
-
-
0033566129
-
The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins
-
Orphanides, G., W. H. Wu, W. S. Lane, M. Hampsey, and D. Reinberg. 1999. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400:284-288.
-
(1999)
Nature
, vol.400
, pp. 284-288
-
-
Orphanides, G.1
Wu, W.H.2
Lane, W.S.3
Hampsey, M.4
Reinberg, D.5
-
38
-
-
0032971711
-
Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation
-
Otero, G., J. Fellows, Y. Li, T. de Bizemont, A. M. Dirac, C. M. Gustafsson, H. Erdjument-Bromage, P. Tempst, and J. Q. Svejstrup. 1999. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol. Cell 3:109-118.
-
(1999)
Mol. Cell
, vol.3
, pp. 109-118
-
-
Otero, G.1
Fellows, J.2
Li, Y.3
De Bizemont, T.4
Dirac, A.M.5
Gustafsson, C.M.6
Erdjument-Bromage, H.7
Tempst, P.8
Svejstrup, J.Q.9
-
39
-
-
0037205456
-
Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5
-
Pei, Y., and S. Shuman. 2002. Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5. J. Biol. Chem. 277:19639-19648.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 19639-19648
-
-
Pei, Y.1
Shuman, S.2
-
40
-
-
0036314855
-
An RNA polymerase pause site is associated with the immunoglobulin μs poly(A) site
-
Peterson, M. L., S. Bertolino, and F. Davis. 2002. An RNA polymerase pause site is associated with the immunoglobulin μs poly(A) site. Mol. Cell. Biol. 22:5606-5615.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 5606-5615
-
-
Peterson, M.L.1
Bertolino, S.2
Davis, F.3
-
41
-
-
0029862975
-
Mutations in the second largest subunit of RNA polymerase II cause 6-azauracil sensitivity in yeast and increased transcriptional arrest in vitro
-
Powell, W., and D. Reines. 1996. Mutations in the second largest subunit of RNA polymerase II cause 6-azauracil sensitivity in yeast and increased transcriptional arrest in vitro. J. Biol. Chem. 271:6866-6873.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 6866-6873
-
-
Powell, W.1
Reines, D.2
-
42
-
-
0037154967
-
Integrating mRNA processing with transcription
-
Proudfoot, N. J., A. Furger, and M. J. Dye. 2002. Integrating mRNA processing with transcription. Cell 108:501-512.
-
(2002)
Cell
, vol.108
, pp. 501-512
-
-
Proudfoot, N.J.1
Furger, A.2
Dye, M.J.3
-
43
-
-
0037415686
-
Molecular evidence for a positive role of Spt4 in transcription elongation
-
Rondon, A. G., M. Garcia-Rubio, S. Gonzalez-Barrera, and A. Aguilera. 2003. Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 22:612-620.
-
(2003)
EMBO J.
, vol.22
, pp. 612-620
-
-
Rondon, A.G.1
Garcia-Rubio, M.2
Gonzalez-Barrera, S.3
Aguilera, A.4
-
44
-
-
0028799704
-
REF2 encodes an RNA-binding protein directly involved in yeast mRNA 3′-end formation
-
Russnak, R., K. W. Nehrke, and T. Platt. 1995. REF#2 encodes an RNA-binding protein directly involved in yeast mRNA 3′-end formation. Mol. Cell. Biol. 15:1689-1697.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 1689-1697
-
-
Russnak, R.1
Nehrke, K.W.2
Platt, T.3
-
45
-
-
0033805924
-
Saccharomyces cerevisiae transcription elongation mutants are defective in PUR5 induction in response to nucleotide depletion
-
Shaw, R. J., and D. Reines. 2000. Saccharomyces cerevisiae transcription elongation mutants are defective in PUR5 induction in response to nucleotide depletion. Mol. Cell. Biol. 20:7427-7437.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 7427-7437
-
-
Shaw, R.J.1
Reines, D.2
-
46
-
-
0032531703
-
Regulation of poly(A) site choice of several yeast mRNAs
-
Sparks, K. A., and C. L. Dieckmann. 1998. Regulation of poly(A) site choice of several yeast mRNAs. Nucleic Acids Res. 26:4676-4687.
-
(1998)
Nucleic Acids Res.
, vol.26
, pp. 4676-4687
-
-
Sparks, K.A.1
Dieckmann, C.L.2
-
47
-
-
0030855457
-
Premature 3′-end formation of CBP1 mRNA results in the downregulation of cytochrome b mRNA during the induction of respiration in Saccharomyces cerevisiae
-
Sparks, K. A., S. A. Mayer, and C. L. Dieckmann. 1997. Premature 3′-end formation of CBP1 mRNA results in the downregulation of cytochrome b mRNA during the induction of respiration in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:4199-4207.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 4199-4207
-
-
Sparks, K.A.1
Mayer, S.A.2
Dieckmann, C.L.3
-
48
-
-
0037118052
-
TREX is a conserved complex coupling transcription with messenger RNA export
-
Strasser, K., S. Masuda, P. Mason, J. Pfannstiel, M. Oppizzi, S. Rodriguez-Navarro, A. G. Rondon, A. Aguilera, K. Struhl, R. Reed, and E. Hurt. 2002. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304-308.
-
(2002)
Nature
, vol.417
, pp. 304-308
-
-
Strasser, K.1
Masuda, S.2
Mason, P.3
Pfannstiel, J.4
Oppizzi, M.5
Rodriguez-Navarro, S.6
Rondon, A.G.7
Aguilera, A.8
Struhl, K.9
Reed, R.10
Hurt, E.11
-
49
-
-
0025869163
-
SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat
-
Swanson, M. S., E. A. Malone, and F. Winston. 1991. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11:3009-3019.
-
(1991)
Mol. Cell. Biol.
, vol.11
, pp. 3009-3019
-
-
Swanson, M.S.1
Malone, E.A.2
Winston, F.3
-
50
-
-
0026775612
-
SPT4, SPT5 and SPT6 interactions: Effects on transcription and viability in Saccharomyces cerevisiae
-
Swanson, M. S., and F. Winston. 1992. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 132:325-336.
-
(1992)
Genetics
, vol.132
, pp. 325-336
-
-
Swanson, M.S.1
Winston, F.2
-
51
-
-
0029034913
-
Dissection of transcription factor TFIIF functional domains required for initiation and elongation
-
Tan, S., R. C. Conaway, and J. W. Conaway. 1995. Dissection of transcription factor TFIIF functional domains required for initiation and elongation. Proc. Natl. Acad. Sci. USA 92:6042-6046.
-
(1995)
Proc. Natl. Acad. Sci. USA
, vol.92
, pp. 6042-6046
-
-
Tan, S.1
Conaway, R.C.2
Conaway, J.W.3
-
52
-
-
0035830508
-
The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae
-
Tucker, M., M. A. Valencia-Sanchez, R. R. Staples, J. Chen, C. L. Denis, and R. Parker. 2001. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104:377-386.
-
(2001)
Cell
, vol.104
, pp. 377-386
-
-
Tucker, M.1
Valencia-Sanchez, M.A.2
Staples, R.R.3
Chen, J.4
Denis, C.L.5
Parker, R.6
-
53
-
-
0031008221
-
Basic mechanisms of transcript elongation and its regulation
-
Uptain, S. M., C. M. Kane, and M. J. Chamberlin. 1997. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66:117-172.
-
(1997)
Annu. Rev. Biochem.
, vol.66
, pp. 117-172
-
-
Uptain, S.M.1
Kane, C.M.2
Chamberlin, M.J.3
-
54
-
-
14444275279
-
DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs
-
Wada, T., T. Takagi, Y. Yamaguchi, A. Ferdous, T. Imai, S. Hirose, S. Sugimoto, K. Yano, G. A. Hartzog, F. Winston, S. Buratowski, and H. Handa. 1998. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12:346-356.
-
(1998)
Genes Dev.
, vol.12
, pp. 346-356
-
-
Wada, T.1
Takagi, T.2
Yamaguchi, Y.3
Ferdous, A.4
Imai, T.5
Hirose, S.6
Sugimoto, S.7
Yano, K.8
Hartzog, G.A.9
Winston, F.10
Buratowski, S.11
Handa, H.12
-
55
-
-
0032534814
-
Evidence that P-TEFb alleviates the negative effects of DSIF on RNA polymerase II-dependent transcription in vitro
-
Wada, T., T. Takagi, Y. Yamaguguhi, D. Watanabe, and H. Handa. 1998. Evidence that P-TEFb alleviates the negative effects of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17:7395-7403.
-
(1998)
EMBO J.
, vol.17
, pp. 7395-7403
-
-
Wada, T.1
Takagi, T.2
Yamaguguhi, Y.3
Watanabe, D.4
Handa, H.5
-
56
-
-
0035853838
-
Analysis of gene induction and arrest site transcription in yeast with mutations in the transcription elongation machinery
-
Wind-Rotolo, M., and D. Reines. 2001. Analysis of gene induction and arrest site transcription in yeast with mutations in the transcription elongation machinery. J. Biol. Chem. 276:11531-11538.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 11531-11538
-
-
Wind-Rotolo, M.1
Reines, D.2
-
57
-
-
0034006399
-
Transcription elongation factor SII
-
Wind-Rotolo, M., and D. Reines. 2000. Transcription elongation factor SII. Bioessays 22:327-336.
-
(2000)
Bioessays
, vol.22
, pp. 327-336
-
-
Wind-Rotolo, M.1
Reines, D.2
-
59
-
-
0033515521
-
NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation
-
Yamaguchi, Y., T. Takagi, T. Wada, K. Yano, A. Furuya, S. Sugimoto, J. Hasegawa, and H. Handa. 1999. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41-51.
-
(1999)
Cell
, vol.97
, pp. 41-51
-
-
Yamaguchi, Y.1
Takagi, T.2
Wada, T.3
Yano, K.4
Furuya, A.5
Sugimoto, S.6
Hasegawa, J.7
Handa, H.8
-
60
-
-
0033583290
-
Structure and function of the human transcription elongation factor DSIF
-
Yamaguchi, Y., T. Wada, D. Watanabe, T. Takagi, J. Hasegawa, and H. Handa. 1999. Structure and function of the human transcription elongation factor DSIF. J. Biol. Chem. 274:8085-8092.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 8085-8092
-
-
Yamaguchi, Y.1
Wada, T.2
Watanabe, D.3
Takagi, T.4
Hasegawa, J.5
Handa, H.6
-
61
-
-
0033039863
-
Specific transcriptional pausing activates polyadenylation in a coupled in vitro system
-
Yonaha, M., and N. J. Proudfoot. 1999. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol. Cell 3:593-600.
-
(1999)
Mol. Cell
, vol.3
, pp. 593-600
-
-
Yonaha, M.1
Proudfoot, N.J.2
-
62
-
-
0034679725
-
Transcriptional termination and coupled polyadenylation in vitro
-
Yonaha, M., and N. J. Proudfoot. 2000. Transcriptional termination and coupled polyadenylation in vitro. EMBO J. 19:3770-3777.
-
(2000)
EMBO J.
, vol.19
, pp. 3770-3777
-
-
Yonaha, M.1
Proudfoot, N.J.2
|