메뉴 건너뛰기




Volumn 1829, Issue 1, 2013, Pages 141-150

Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis

Author keywords

CSB Rad26; MRNP biogenesis; Nucleotide excision repair; RNAPII transcription; THO; Transcription coupled repair

Indexed keywords

BACTERIAL DNA; MESSENGER RNA; MRNA RIBONUCLEOPROTEIN; RIBONUCLEOPROTEIN; RNA POLYMERASE II; UNCLASSIFIED DRUG;

EID: 84872422245     PISSN: 18749399     EISSN: 18764320     Source Type: Journal    
DOI: 10.1016/j.bbagrm.2012.09.008     Document Type: Review
Times cited : (36)

References (140)
  • 1
    • 0034733496 scopus 로고    scopus 로고
    • Nucleotide excision repair in yeast
    • Prakash S., Prakash L. Nucleotide excision repair in yeast. Mutat. Res. 2000, 451:13-24.
    • (2000) Mutat. Res. , vol.451 , pp. 13-24
    • Prakash, S.1    Prakash, L.2
  • 2
    • 62349131315 scopus 로고    scopus 로고
    • DNA repair in mammalian cells: nucleotide excision repair: variations on versatility
    • Nouspikel T. DNA repair in mammalian cells: nucleotide excision repair: variations on versatility. Cell. Mol. Life Sci. 2009, 66:994-1009.
    • (2009) Cell. Mol. Life Sci. , vol.66 , pp. 994-1009
    • Nouspikel, T.1
  • 4
    • 0037023774 scopus 로고    scopus 로고
    • Repair of active and silenced rDNA in yeast: the contributions of photolyase and transcription-couples nucleotide excision repair
    • Meier A., Livingstone-Zatchej M., Thoma F. Repair of active and silenced rDNA in yeast: the contributions of photolyase and transcription-couples nucleotide excision repair. J. Biol. Chem. 2002, 277:11845-11852.
    • (2002) J. Biol. Chem. , vol.277 , pp. 11845-11852
    • Meier, A.1    Livingstone-Zatchej, M.2    Thoma, F.3
  • 5
    • 0037154203 scopus 로고    scopus 로고
    • Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast
    • Conconi A., Bespalov V.A., Smerdon M.J. Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:649-654.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 649-654
    • Conconi, A.1    Bespalov, V.A.2    Smerdon, M.J.3
  • 6
    • 77955981319 scopus 로고    scopus 로고
    • Transcription-coupled nucleotide excision repair of a gene transcribed by bacteriophage T7 RNA polymerase in Escherichia coli
    • Ganesan A.K., Hanawalt P.C. Transcription-coupled nucleotide excision repair of a gene transcribed by bacteriophage T7 RNA polymerase in Escherichia coli. DNA Repair 2010, 9:958-963.
    • (2010) DNA Repair , vol.9 , pp. 958-963
    • Ganesan, A.K.1    Hanawalt, P.C.2
  • 7
    • 78649810619 scopus 로고    scopus 로고
    • Methods to study transcription-coupled repair in chromatin
    • Gaillard H., Wellinger R.E., Aguilera A. Methods to study transcription-coupled repair in chromatin. Methods Mol. Biol. 2009, 523:141-159.
    • (2009) Methods Mol. Biol. , vol.523 , pp. 141-159
    • Gaillard, H.1    Wellinger, R.E.2    Aguilera, A.3
  • 8
    • 0023663101 scopus 로고
    • Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene
    • Mellon I., Spivak G., Hanawalt P.C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 1987, 51:241-249.
    • (1987) Cell , vol.51 , pp. 241-249
    • Mellon, I.1    Spivak, G.2    Hanawalt, P.C.3
  • 9
    • 0024426244 scopus 로고
    • Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand
    • Mellon I., Hanawalt P.C. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 1989, 342:95-98.
    • (1989) Nature , vol.342 , pp. 95-98
    • Mellon, I.1    Hanawalt, P.C.2
  • 10
    • 0025316080 scopus 로고
    • Site-specific DNA repair at the nucleosome level in a yeast minichromosome
    • Smerdon M.J., Thoma F. Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell 1990, 61:675-684.
    • (1990) Cell , vol.61 , pp. 675-684
    • Smerdon, M.J.1    Thoma, F.2
  • 11
    • 0026486603 scopus 로고
    • Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription
    • Sweder K.S., Hanawalt P.C. Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc. Natl. Acad. Sci. U. S. A. 1992, 89:10696-10700.
    • (1992) Proc. Natl. Acad. Sci. U. S. A. , vol.89 , pp. 10696-10700
    • Sweder, K.S.1    Hanawalt, P.C.2
  • 12
    • 70350065725 scopus 로고    scopus 로고
    • Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity
    • Cleaver J.E., Lam E.T., Revet I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Genet. 2009, 10:756-768.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 756-768
    • Cleaver, J.E.1    Lam, E.T.2    Revet, I.3
  • 14
    • 0033486110 scopus 로고    scopus 로고
    • Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair
    • Thoma F. Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. EMBO J. 1999, 18:6585-6598.
    • (1999) EMBO J. , vol.18 , pp. 6585-6598
    • Thoma, F.1
  • 15
    • 79960329985 scopus 로고    scopus 로고
    • Prioritizing the repair of DNA damage that is encountered by RNA polymerase
    • Savery N. Prioritizing the repair of DNA damage that is encountered by RNA polymerase. Transcription 2011, 2:168-172.
    • (2011) Transcription , vol.2 , pp. 168-172
    • Savery, N.1
  • 17
    • 0027905034 scopus 로고
    • Molecular mechanism of transcription-repair coupling
    • Selby C.P., Sancar A. Molecular mechanism of transcription-repair coupling. Science 1993, 260:53-58.
    • (1993) Science , vol.260 , pp. 53-58
    • Selby, C.P.1    Sancar, A.2
  • 18
    • 0037077154 scopus 로고    scopus 로고
    • E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation
    • Park J.-S., Marr M.T., Roberts J.W. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 2002, 109:757-767.
    • (2002) Cell , vol.109 , pp. 757-767
    • Park, J.-S.1    Marr, M.T.2    Roberts, J.W.3
  • 19
    • 13844317928 scopus 로고    scopus 로고
    • RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair
    • Smith A.J., Savery N.J. RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair. Nucleic Acids Res. 2005, 33:755-764.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 755-764
    • Smith, A.J.1    Savery, N.J.2
  • 21
    • 78649968104 scopus 로고    scopus 로고
    • Regulation and rate enhancement during transcription-coupled DNA repair
    • Manelyte ., Kim Y.-I.T., Smith A.J., Smith R.M., Savery N.J. Regulation and rate enhancement during transcription-coupled DNA repair. Mol. Cell 2010, 40:714-724.
    • (2010) Mol. Cell , vol.40 , pp. 714-724
    • Manelyte, .1    Kim, Y.-I.T.2    Smith, A.J.3    Smith, R.M.4    Savery, N.J.5
  • 22
    • 67349225259 scopus 로고    scopus 로고
    • The alkyltransferase-like ybaZ gene product enhances nucleotide excision repair of O(6)-alkylguanine adducts in E. coli
    • Mazon G., Philippin G., Cadet J., Gasparutto D., Fuchs R.P. The alkyltransferase-like ybaZ gene product enhances nucleotide excision repair of O(6)-alkylguanine adducts in E. coli. DNA Repair 2009, 8:697-703.
    • (2009) DNA Repair , vol.8 , pp. 697-703
    • Mazon, G.1    Philippin, G.2    Cadet, J.3    Gasparutto, D.4    Fuchs, R.P.5
  • 23
    • 79955098363 scopus 로고    scopus 로고
    • Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis
    • Wagner K., Moolenaar G.F., Goosen N. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis. DNA Repair 2011, 10:483-496.
    • (2011) DNA Repair , vol.10 , pp. 483-496
    • Wagner, K.1    Moolenaar, G.F.2    Goosen, N.3
  • 26
    • 77954840190 scopus 로고    scopus 로고
    • The interaction between RNA polymerase and the elongation factor NusA
    • Yang X., Lewis P.J. The interaction between RNA polymerase and the elongation factor NusA. RNA Biol. 2010, 7:272-275.
    • (2010) RNA Biol. , vol.7 , pp. 272-275
    • Yang, X.1    Lewis, P.J.2
  • 27
    • 0025190985 scopus 로고
    • The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA
    • Venema J., van Hoffen A., Natarajan A.T., van Zeeland A.A., Mullenders L.H. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res. 1990, 18:443-448.
    • (1990) Nucleic Acids Res. , vol.18 , pp. 443-448
    • Venema, J.1    van Hoffen, A.2    Natarajan, A.T.3    van Zeeland, A.A.4    Mullenders, L.H.5
  • 28
    • 0027999206 scopus 로고
    • The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae
    • Verhage R., Zeeman A.M., de Groot N., Gleig F., Bang D.D., van de Putte P., Brouwer J. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 1994, 14:6135-6142.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 6135-6142
    • Verhage, R.1    Zeeman, A.M.2    de Groot, N.3    Gleig, F.4    Bang, D.D.5    van de Putte, P.6    Brouwer, J.7
  • 29
    • 33644619706 scopus 로고    scopus 로고
    • Prokaryotic nucleotide excision repair: the UvrABC system
    • Truglio J.J., Croteau D.L., Van Houten B., Kisker C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem. Rev. 2006, 106:233-252.
    • (2006) Chem. Rev. , vol.106 , pp. 233-252
    • Truglio, J.J.1    Croteau, D.L.2    Van Houten, B.3    Kisker, C.4
  • 30
    • 0025341294 scopus 로고
    • The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA
    • Venema J., Mullenders L.H., Natarajan A.T., van Zeeland A.A., Mayne L.V. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl. Acad. Sci. U. S. A. 1990, 87:4707-4711.
    • (1990) Proc. Natl. Acad. Sci. U. S. A. , vol.87 , pp. 4707-4711
    • Venema, J.1    Mullenders, L.H.2    Natarajan, A.T.3    van Zeeland, A.A.4    Mayne, L.V.5
  • 31
    • 0026465665 scopus 로고
    • ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes
    • Troelstra C., van Gool A., de Wit J., Vermeulen W., Bootsma D., Hoeijmakers J.H. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 1992, 71:939-953.
    • (1992) Cell , vol.71 , pp. 939-953
    • Troelstra, C.1    van Gool, A.2    de Wit, J.3    Vermeulen, W.4    Bootsma, D.5    Hoeijmakers, J.H.6
  • 32
    • 31444444611 scopus 로고    scopus 로고
    • Initiation of DNA repair mediated by a stalled RNA polymerase IIO
    • Laine J.P., Egly J.M. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J. 2006, 25:387-397.
    • (2006) EMBO J. , vol.25 , pp. 387-397
    • Laine, J.P.1    Egly, J.M.2
  • 33
    • 33747194740 scopus 로고    scopus 로고
    • Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo
    • Fousteri M., Vermeulen W., van Zeeland A.A., Mullenders L.H.F. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 2006, 23:471-482.
    • (2006) Mol. Cell , vol.23 , pp. 471-482
    • Fousteri, M.1    Vermeulen, W.2    van Zeeland, A.A.3    Mullenders, L.H.F.4
  • 37
    • 79451473121 scopus 로고    scopus 로고
    • Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage
    • Palomera-Sanchez Z., Zurita M. Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage. DNA Repair 2011, 10:119-125.
    • (2011) DNA Repair , vol.10 , pp. 119-125
    • Palomera-Sanchez, Z.1    Zurita, M.2
  • 39
    • 0029793038 scopus 로고    scopus 로고
    • Molecular cloning and characterization of Saccharomyces cerevisiae RAD28, the yeast homolog of the human Cockayne syndrome A (CSA) gene
    • Bhatia P.K., Verhage R.A., Brouwer J., Friedberg E.C. Molecular cloning and characterization of Saccharomyces cerevisiae RAD28, the yeast homolog of the human Cockayne syndrome A (CSA) gene. J. Bacteriol. 1996, 178:5977-5988.
    • (1996) J. Bacteriol. , vol.178 , pp. 5977-5988
    • Bhatia, P.K.1    Verhage, R.A.2    Brouwer, J.3    Friedberg, E.C.4
  • 41
    • 0030838622 scopus 로고    scopus 로고
    • Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae
    • Tijsterman M., Verhage R.A., van de Putte P., Tasseron-de Jong J.G., Brouwer J. Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:8027-8032.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 8027-8032
    • Tijsterman, M.1    Verhage, R.A.2    van de Putte, P.3    Tasseron-de Jong, J.G.4    Brouwer, J.5
  • 42
    • 0034159989 scopus 로고    scopus 로고
    • Excision repair at the level of the nucleotide in the upstream control region, the coding sequence and in the region where transcription terminates of the Saccharomyces cerevisiae MFA2 gene and the role of RAD26
    • Teng Y., Waters R. Excision repair at the level of the nucleotide in the upstream control region, the coding sequence and in the region where transcription terminates of the Saccharomyces cerevisiae MFA2 gene and the role of RAD26. Nucleic Acids Res. 2000, 28:1114-1119.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 1114-1119
    • Teng, Y.1    Waters, R.2
  • 43
    • 0030822591 scopus 로고    scopus 로고
    • Cockayne syndrome group B protein enhances elongation by RNA polymerase II
    • Selby C.P., Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:11205-11209.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 11205-11209
    • Selby, C.P.1    Sancar, A.2
  • 44
    • 0035201056 scopus 로고    scopus 로고
    • Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II
    • Lee S.K., Yu S.L., Prakash L., Prakash S. Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II. Mol. Cell. Biol. 2001, 21:8651-8656.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 8651-8656
    • Lee, S.K.1    Yu, S.L.2    Prakash, L.3    Prakash, S.4
  • 45
    • 0030902253 scopus 로고    scopus 로고
    • Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells
    • Balajee A.S., May A., Dianov G.L., Friedberg E.C., Bohr V.A. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:4306-4311.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 4306-4311
    • Balajee, A.S.1    May, A.2    Dianov, G.L.3    Friedberg, E.C.4    Bohr, V.A.5
  • 46
    • 77950513763 scopus 로고    scopus 로고
    • Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo
    • Malik S., Chaurasia P., Lahudkar S., Durairaj G., Shukla A., Bhaumik S.R. Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo. Nucleic Acids Res. 2010, 38:1461-1477.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 1461-1477
    • Malik, S.1    Chaurasia, P.2    Lahudkar, S.3    Durairaj, G.4    Shukla, A.5    Bhaumik, S.R.6
  • 47
    • 0037102621 scopus 로고    scopus 로고
    • Transcription elongation factor Spt4 mediates loss of phosphorylated RNA polymerase II transcription in response to DNA damage
    • Jansen L.E.T., Belo A.I., Hulsker R., Brouwer J. Transcription elongation factor Spt4 mediates loss of phosphorylated RNA polymerase II transcription in response to DNA damage. Nucleic Acids Res. 2002, 30:3532-3539.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 3532-3539
    • Jansen, L.E.T.1    Belo, A.I.2    Hulsker, R.3    Brouwer, J.4
  • 49
    • 35348929362 scopus 로고    scopus 로고
    • The roles of Rad16 and Rad26 in repairing repressed and actively transcribed genes in yeast
    • Li S., Ding B., LeJeune D., Ruggiero C., Chen X., Smerdon M.J. The roles of Rad16 and Rad26 in repairing repressed and actively transcribed genes in yeast. DNA Repair 2007, 6:1596-1606.
    • (2007) DNA Repair , vol.6 , pp. 1596-1606
    • Li, S.1    Ding, B.2    LeJeune, D.3    Ruggiero, C.4    Chen, X.5    Smerdon, M.J.6
  • 50
    • 3042652965 scopus 로고    scopus 로고
    • In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand
    • Bucheli M., Sweder K. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand. Mol. Microbiol. 2004, 52:1653-1663.
    • (2004) Mol. Microbiol. , vol.52 , pp. 1653-1663
    • Bucheli, M.1    Sweder, K.2
  • 51
    • 80053569699 scopus 로고    scopus 로고
    • Pervasive transcription - lessons from yeast
    • Tisseur M., Kwapisz M., Morillon A. Pervasive transcription - lessons from yeast. Biochimie 2011, 93:1889-1896.
    • (2011) Biochimie , vol.93 , pp. 1889-1896
    • Tisseur, M.1    Kwapisz, M.2    Morillon, A.3
  • 52
    • 56849093493 scopus 로고    scopus 로고
    • A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster
    • Houseley J., Rubbi L., Grunstein M., Tollervey D., Vogelauer M. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol. Cell 2008, 32:685-695.
    • (2008) Mol. Cell , vol.32 , pp. 685-695
    • Houseley, J.1    Rubbi, L.2    Grunstein, M.3    Tollervey, D.4    Vogelauer, M.5
  • 53
    • 0037031218 scopus 로고    scopus 로고
    • Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers
    • Spivak G., Itoh T., Matsunaga T., Nikaido O., Hanawalt P., Yamaizumi M. Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers. DNA Repair 2002, 1:629-643.
    • (2002) DNA Repair , vol.1 , pp. 629-643
    • Spivak, G.1    Itoh, T.2    Matsunaga, T.3    Nikaido, O.4    Hanawalt, P.5    Yamaizumi, M.6
  • 57
    • 0031020871 scopus 로고    scopus 로고
    • Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II
    • Selby C.P., Sancar A. Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J. Biol. Chem. 1997, 272:1885-1890.
    • (1997) J. Biol. Chem. , vol.272 , pp. 1885-1890
    • Selby, C.P.1    Sancar, A.2
  • 60
    • 0037324344 scopus 로고    scopus 로고
    • Functional consequences of mutations in the conserved SF2 motifs and post-translational phosphorylation of the CSB protein
    • Christiansen M., Stevnsner T., Modin C., Martensen P.M., Brosh R.M., Bohr V.A. Functional consequences of mutations in the conserved SF2 motifs and post-translational phosphorylation of the CSB protein. Nucleic Acids Res. 2003, 31:963-973.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 963-973
    • Christiansen, M.1    Stevnsner, T.2    Modin, C.3    Martensen, P.M.4    Brosh, R.M.5    Bohr, V.A.6
  • 61
    • 0037160513 scopus 로고    scopus 로고
    • Phenotypic consequences of mutations in the conserved motifs of the putative helicase domain of the human Cockayne syndrome group B gene
    • Muftuoglu M., Selzer R., Tuo J., Brosh R.M., Bohr V.A. Phenotypic consequences of mutations in the conserved motifs of the putative helicase domain of the human Cockayne syndrome group B gene. Gene 2002, 283:27-40.
    • (2002) Gene , vol.283 , pp. 27-40
    • Muftuoglu, M.1    Selzer, R.2    Tuo, J.3    Brosh, R.M.4    Bohr, V.A.5
  • 62
  • 63
    • 33745460647 scopus 로고    scopus 로고
    • Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling
    • Newman J.C., Bailey A.D., Weiner A.M. Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:9613-9618.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 9613-9618
    • Newman, J.C.1    Bailey, A.D.2    Weiner, A.M.3
  • 64
    • 74749084156 scopus 로고    scopus 로고
    • UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression
    • Lake R.J., Geyko A., Hemashettar G., Zhao Y., Fan H.-Y. UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression. Mol. Cell 2010, 37:235-246.
    • (2010) Mol. Cell , vol.37 , pp. 235-246
    • Lake, R.J.1    Geyko, A.2    Hemashettar, G.3    Zhao, Y.4    Fan, H.-Y.5
  • 65
    • 33744795969 scopus 로고    scopus 로고
    • CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome
    • Groisman R., Kuraoka I., Chevallier O., Gaye N., Magnaldo T., Tanaka K., Kisselev A.F., Harel-Bellan A., Nakatani Y. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 2006, 20:1429-1434.
    • (2006) Genes Dev. , vol.20 , pp. 1429-1434
    • Groisman, R.1    Kuraoka, I.2    Chevallier, O.3    Gaye, N.4    Magnaldo, T.5    Tanaka, K.6    Kisselev, A.F.7    Harel-Bellan, A.8    Nakatani, Y.9
  • 69
    • 46449087802 scopus 로고    scopus 로고
    • Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus
    • Luna R., Gaillard H., González-Aguilera C., Aguilera A. Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 2008, 117:319-331.
    • (2008) Chromosoma , vol.117 , pp. 319-331
    • Luna, R.1    Gaillard, H.2    González-Aguilera, C.3    Aguilera, A.4
  • 70
    • 51549111789 scopus 로고    scopus 로고
    • Quality control of mRNP in the nucleus
    • Schmid M., Jensen T.H. Quality control of mRNP in the nucleus. Chromosoma 2008, 117:419-429.
    • (2008) Chromosoma , vol.117 , pp. 419-429
    • Schmid, M.1    Jensen, T.H.2
  • 71
    • 79956097915 scopus 로고    scopus 로고
    • Linking gene regulation to mRNA production and export
    • Rodríguez-Navarro S., Hurt E. Linking gene regulation to mRNA production and export. Curr. Opin. Cell Biol. 2011, 23:302-309.
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 302-309
    • Rodríguez-Navarro, S.1    Hurt, E.2
  • 72
    • 84860443663 scopus 로고    scopus 로고
    • New clues to understand the role of THO and other functionally related factors in mRNP biogenesis
    • Luna R., Rondón A.G., Aguilera A. New clues to understand the role of THO and other functionally related factors in mRNP biogenesis. Biochim. Biophys. Acta 2012, 1819:514-520.
    • (2012) Biochim. Biophys. Acta , vol.1819 , pp. 514-520
    • Luna, R.1    Rondón, A.G.2    Aguilera, A.3
  • 75
    • 77955664901 scopus 로고    scopus 로고
    • The interface between transcription and mRNP export: from THO to THSC/TREX-2
    • Rondón A.G., Jimeno S., Aguilera A. The interface between transcription and mRNP export: from THO to THSC/TREX-2. Biochim. Biophys. Acta 2010, 1799:533-538.
    • (2010) Biochim. Biophys. Acta , vol.1799 , pp. 533-538
    • Rondón, A.G.1    Jimeno, S.2    Aguilera, A.3
  • 78
    • 34547640820 scopus 로고    scopus 로고
    • A new connection of mRNP biogenesis and export with transcription-coupled repair
    • Gaillard H., Wellinger R.E., Aguilera A. A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res. 2007, 35:3893-3906.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 3893-3906
    • Gaillard, H.1    Wellinger, R.E.2    Aguilera, A.3
  • 79
    • 79958061525 scopus 로고    scopus 로고
    • The Prp19 complex is a novel transcription elongation factor required for TREX occupancy at transcribed genes
    • Chanarat S., Seizl M., Strässer K. The Prp19 complex is a novel transcription elongation factor required for TREX occupancy at transcribed genes. Genes Dev. 2011, 25:1147-1158.
    • (2011) Genes Dev. , vol.25 , pp. 1147-1158
    • Chanarat, S.1    Seizl, M.2    Strässer, K.3
  • 81
    • 77953277032 scopus 로고    scopus 로고
    • The Paf1 complex: platform or player in RNA polymerase II transcription?
    • Jaehning J.A. The Paf1 complex: platform or player in RNA polymerase II transcription?. Biochim. Biophys. Acta 2010, 1799:379-388.
    • (2010) Biochim. Biophys. Acta , vol.1799 , pp. 379-388
    • Jaehning, J.A.1
  • 82
    • 84155195139 scopus 로고    scopus 로고
    • The Ccr4-not complex
    • Collart M.A., Panasenko O.O. The Ccr4-not complex. Gene 2012, 492:42-53.
    • (2012) Gene , vol.492 , pp. 42-53
    • Collart, M.A.1    Panasenko, O.O.2
  • 83
    • 69449094660 scopus 로고    scopus 로고
    • The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome
    • Azzouz N., Panasenko O.O., Colau G., Collart M.A. The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome. PLoS One 2009, 4:e6760.
    • (2009) PLoS One , vol.4
    • Azzouz, N.1    Panasenko, O.O.2    Colau, G.3    Collart, M.A.4
  • 85
    • 80053199328 scopus 로고    scopus 로고
    • Implication of Ccr4-Not complex function in mRNA quality control in Saccharomyces cerevisiae
    • Assenholt J., Mouaikel J., Saguez C., Rougemaille M., Libri D., Jensen T.H. Implication of Ccr4-Not complex function in mRNA quality control in Saccharomyces cerevisiae. RNA 2011, 17:1788-1794.
    • (2011) RNA , vol.17 , pp. 1788-1794
    • Assenholt, J.1    Mouaikel, J.2    Saguez, C.3    Rougemaille, M.4    Libri, D.5    Jensen, T.H.6
  • 88
    • 0141819093 scopus 로고    scopus 로고
    • Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination
    • Huertas P., Aguilera A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 2003, 12:711-721.
    • (2003) Mol. Cell , vol.12 , pp. 711-721
    • Huertas, P.1    Aguilera, A.2
  • 89
    • 57349185689 scopus 로고    scopus 로고
    • The THP1-SAC3-SUS1-CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability
    • González-Aguilera C., Tous C., Gómez-González B., Huertas P., Luna R., Aguilera A. The THP1-SAC3-SUS1-CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability. Mol. Biol. Cell 2008, 19:4310-4318.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 4310-4318
    • González-Aguilera, C.1    Tous, C.2    Gómez-González, B.3    Huertas, P.4    Luna, R.5    Aguilera, A.6
  • 90
    • 84255177502 scopus 로고    scopus 로고
    • RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability
    • Wahba L., Amon J.D., Koshland D., Vuica-Ross M. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol. Cell 2011, 44:978-988.
    • (2011) Mol. Cell , vol.44 , pp. 978-988
    • Wahba, L.1    Amon, J.D.2    Koshland, D.3    Vuica-Ross, M.4
  • 93
    • 67949100544 scopus 로고    scopus 로고
    • R-loops do not accumulate in transcription-defective hpr1-101 mutants: implications for the functional role of THO/TREX
    • Gómez-González B., Aguilera A. R-loops do not accumulate in transcription-defective hpr1-101 mutants: implications for the functional role of THO/TREX. Nucleic Acids Res. 2009, 37:4315-4321.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 4315-4321
    • Gómez-González, B.1    Aguilera, A.2
  • 94
    • 0026059285 scopus 로고
    • Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes
    • Woychik N.A., Lane W.S., Young R.A. Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes. J. Biol. Chem. 1991, 266:19053-19055.
    • (1991) J. Biol. Chem. , vol.266 , pp. 19053-19055
    • Woychik, N.A.1    Lane, W.S.2    Young, R.A.3
  • 95
    • 0028913403 scopus 로고
    • RNA polymerase II subunit RPB9 is required for accurate start site selection
    • Hull M.W., McKune K., Woychik N.A. RNA polymerase II subunit RPB9 is required for accurate start site selection. Genes Dev. 1995, 9:481-490.
    • (1995) Genes Dev. , vol.9 , pp. 481-490
    • Hull, M.W.1    McKune, K.2    Woychik, N.A.3
  • 96
    • 33644746221 scopus 로고    scopus 로고
    • RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo
    • Nesser N.K., Peterson D.O., Hawley D.K. RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:3268-3273.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 3268-3273
    • Nesser, N.K.1    Peterson, D.O.2    Hawley, D.K.3
  • 97
    • 0030987775 scopus 로고    scopus 로고
    • Transcription elongation through DNA arrest sites. A multistep process involving both RNA polymerase II subunit RPB9 and TFIIS
    • Awrey D.E., Weilbaecher R.G., Hemming S.A., Orlicky S.M., Kane C.M., Edwards A.M. Transcription elongation through DNA arrest sites. A multistep process involving both RNA polymerase II subunit RPB9 and TFIIS. J. Biol. Chem. 1997, 272:14747-14754.
    • (1997) J. Biol. Chem. , vol.272 , pp. 14747-14754
    • Awrey, D.E.1    Weilbaecher, R.G.2    Hemming, S.A.3    Orlicky, S.M.4    Kane, C.M.5    Edwards, A.M.6
  • 99
    • 0036845496 scopus 로고    scopus 로고
    • Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae
    • Li S., Smerdon M.J. Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae. EMBO J. 2002, 21:5921-5929.
    • (2002) EMBO J. , vol.21 , pp. 5921-5929
    • Li, S.1    Smerdon, M.J.2
  • 100
    • 0034723392 scopus 로고    scopus 로고
    • Yeast RNA polymerase II subunit RPB9. Mapping of domains required for transcription elongation
    • Hemming S.A., Edwards A.M. Yeast RNA polymerase II subunit RPB9. Mapping of domains required for transcription elongation. J. Biol. Chem. 2000, 275:2288-2294.
    • (2000) J. Biol. Chem. , vol.275 , pp. 2288-2294
    • Hemming, S.A.1    Edwards, A.M.2
  • 101
    • 33845425008 scopus 로고    scopus 로고
    • Evidence that the transcription elongation function of Rpb9 is involved in transcription-coupled DNA repair in Saccharomyces cerevisiae
    • Li S., Ding B., Chen R., Ruggiero C., Chen X. Evidence that the transcription elongation function of Rpb9 is involved in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 2006, 26:9430-9441.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 9430-9441
    • Li, S.1    Ding, B.2    Chen, R.3    Ruggiero, C.4    Chen, X.5
  • 102
    • 0029989059 scopus 로고    scopus 로고
    • Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae
    • Sun Z.W., Tessmer A., Hampsey M. Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae. Nucleic Acids Res. 1996, 24:2560-2566.
    • (1996) Nucleic Acids Res. , vol.24 , pp. 2560-2566
    • Sun, Z.W.1    Tessmer, A.2    Hampsey, M.3
  • 105
    • 70149118362 scopus 로고    scopus 로고
    • Phosphorylation of the RNA polymerase II C-terminal domain by TFIIH kinase is not essential for transcription of Saccharomyces cerevisiae genome
    • Hong S.W., Hong S.M., Yoo J.W., Lee Y.C., Kim S., Lis J.T., Lee D.-K. Phosphorylation of the RNA polymerase II C-terminal domain by TFIIH kinase is not essential for transcription of Saccharomyces cerevisiae genome. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:14276-14280.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 14276-14280
    • Hong, S.W.1    Hong, S.M.2    Yoo, J.W.3    Lee, Y.C.4    Kim, S.5    Lis, J.T.6    Lee, D.-K.7
  • 106
    • 0031775217 scopus 로고    scopus 로고
    • Defective Kin28, a subunit of yeast TFIIH, impairs transcription-coupled but not global genome nucleotide excision repair
    • Tijsterman M., Tasseron-de Jong J.G., Verhage R.A., Brouwer J. Defective Kin28, a subunit of yeast TFIIH, impairs transcription-coupled but not global genome nucleotide excision repair. Mutat. Res. 1998, 409:181-188.
    • (1998) Mutat. Res. , vol.409 , pp. 181-188
    • Tijsterman, M.1    Tasseron-de Jong, J.G.2    Verhage, R.A.3    Brouwer, J.4
  • 107
    • 78650953523 scopus 로고    scopus 로고
    • Strand-specific PCR of UV radiation-damaged genomic DNA revealed an essential role of DNA-PKcs in the transcription-coupled repair
    • An J., Yang T., Huang Y., Liu F., Sun J., Wang Y., Xu Q., Wu D., Zhou P. Strand-specific PCR of UV radiation-damaged genomic DNA revealed an essential role of DNA-PKcs in the transcription-coupled repair. BMC Biochem. 2011, 12:2.
    • (2011) BMC Biochem. , vol.12 , pp. 2
    • An, J.1    Yang, T.2    Huang, Y.3    Liu, F.4    Sun, J.5    Wang, Y.6    Xu, Q.7    Wu, D.8    Zhou, P.9
  • 108
    • 0037124373 scopus 로고    scopus 로고
    • Synapsis of DNA ends by DNA-dependent protein kinase
    • DeFazio L.G., Stansel R.M., Griffith J.D., Chu G. Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J. 2002, 21:3192-3200.
    • (2002) EMBO J. , vol.21 , pp. 3192-3200
    • DeFazio, L.G.1    Stansel, R.M.2    Griffith, J.D.3    Chu, G.4
  • 109
    • 0032520731 scopus 로고    scopus 로고
    • UV sensitivity and impaired nucleotide excision repair in DNA-dependent protein kinase mutant cells
    • Muller C., Calsou P., Frit P., Cayrol C., Carter T., Salles B. UV sensitivity and impaired nucleotide excision repair in DNA-dependent protein kinase mutant cells. Nucleic Acids Res. 1998, 26:1382-1389.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 1382-1389
    • Muller, C.1    Calsou, P.2    Frit, P.3    Cayrol, C.4    Carter, T.5    Salles, B.6
  • 110
  • 111
    • 77949312619 scopus 로고    scopus 로고
    • The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair
    • Ding B., LeJeune D., Li S. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. J. Biol. Chem. 2010, 285:5317-5326.
    • (2010) J. Biol. Chem. , vol.285 , pp. 5317-5326
    • Ding, B.1    LeJeune, D.2    Li, S.3
  • 112
    • 0034141509 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair in yeast transcription factor IIE (TFIIE) mutants
    • Lommel L., Gregory S.M., Becker K.I., Sweder K.S. Transcription-coupled DNA repair in yeast transcription factor IIE (TFIIE) mutants. Nucleic Acids Res. 2000, 28:835-842.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 835-842
    • Lommel, L.1    Gregory, S.M.2    Becker, K.I.3    Sweder, K.S.4
  • 114
    • 34547743163 scopus 로고    scopus 로고
    • Activation of RNA polymerase I transcription by Cockayne syndrome group B protein and histone methyltransferase G9a
    • Yuan X., Feng W., Imhof A., Grummt I., Zhou Y. Activation of RNA polymerase I transcription by Cockayne syndrome group B protein and histone methyltransferase G9a. Mol. Cell 2007, 27:585-595.
    • (2007) Mol. Cell , vol.27 , pp. 585-595
    • Yuan, X.1    Feng, W.2    Imhof, A.3    Grummt, I.4    Zhou, Y.5
  • 115
    • 50049131790 scopus 로고    scopus 로고
    • Truncated Cockayne syndrome B protein represses elongation by RNA polymerase I
    • Lebedev A., Scharffetter-Kochanek K., Iben S. Truncated Cockayne syndrome B protein represses elongation by RNA polymerase I. J. Mol. Biol. 2008, 382:266-274.
    • (2008) J. Mol. Biol. , vol.382 , pp. 266-274
    • Lebedev, A.1    Scharffetter-Kochanek, K.2    Iben, S.3
  • 116
    • 60549089376 scopus 로고    scopus 로고
    • The Paf1 complex is required for efficient transcription elongation by RNA polymerase I
    • Zhang Y., Sikes M.L., Beyer A.L., Schneider D.A. The Paf1 complex is required for efficient transcription elongation by RNA polymerase I. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:2153-2158.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 2153-2158
    • Zhang, Y.1    Sikes, M.L.2    Beyer, A.L.3    Schneider, D.A.4
  • 118
    • 33846980409 scopus 로고    scopus 로고
    • CPD damage recognition by transcribing RNA polymerase II
    • Brueckner F., Hennecke U., Carell T., Cramer P. CPD damage recognition by transcribing RNA polymerase II. Science 2007, 315:859-862.
    • (2007) Science , vol.315 , pp. 859-862
    • Brueckner, F.1    Hennecke, U.2    Carell, T.3    Cramer, P.4
  • 120
    • 0032827035 scopus 로고    scopus 로고
    • Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae
    • Beaudenon S.L., Huacani M.R., Wang G., McDonnell D.P., Huibregtse J.M. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999, 19:6972-6979.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 6972-6979
    • Beaudenon, S.L.1    Huacani, M.R.2    Wang, G.3    McDonnell, D.P.4    Huibregtse, J.M.5
  • 122
    • 3142691854 scopus 로고    scopus 로고
    • DNA damage-induced Def1-RNA polymerase II interaction and Def1 requirement for polymerase ubiquitylation in vitro
    • Reid J., Svejstrup J.Q. DNA damage-induced Def1-RNA polymerase II interaction and Def1 requirement for polymerase ubiquitylation in vitro. J. Biol. Chem. 2004, 279:29875-29878.
    • (2004) J. Biol. Chem. , vol.279 , pp. 29875-29878
    • Reid, J.1    Svejstrup, J.Q.2
  • 123
    • 0037326318 scopus 로고    scopus 로고
    • Rescue of arrested RNA polymerase II complexes
    • Svejstrup J.Q. Rescue of arrested RNA polymerase II complexes. J. Cell Sci. 2003, 116:447-451.
    • (2003) J. Cell Sci. , vol.116 , pp. 447-451
    • Svejstrup, J.Q.1
  • 124
    • 34347341691 scopus 로고    scopus 로고
    • Yeast Rpb9 plays an important role in ubiquitylation and degradation of Rpb1 in response to UV-induced DNA damage
    • Chen X., Ruggiero C., Li S. Yeast Rpb9 plays an important role in ubiquitylation and degradation of Rpb1 in response to UV-induced DNA damage. Mol. Cell. Biol. 2007, 27:4617-4625.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 4617-4625
    • Chen, X.1    Ruggiero, C.2    Li, S.3
  • 125
    • 0030804783 scopus 로고    scopus 로고
    • RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair
    • Selby C.P., Drapkin R., Reinberg D., Sancar A. RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair. Nucleic Acids Res. 1997, 25:787-793.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 787-793
    • Selby, C.P.1    Drapkin, R.2    Reinberg, D.3    Sancar, A.4
  • 126
    • 0028106162 scopus 로고
    • Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template
    • Donahue B.A., Yin S., Taylor J.S., Reines D., Hanawalt P.C. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:8502-8506.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 8502-8506
    • Donahue, B.A.1    Yin, S.2    Taylor, J.S.3    Reines, D.4    Hanawalt, P.C.5
  • 128
    • 79952440464 scopus 로고    scopus 로고
    • Structural basis of RNA polymerase II backtracking, arrest and reactivation
    • Cheung A.C.M., Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 2011, 471:249-253.
    • (2011) Nature , vol.471 , pp. 249-253
    • Cheung, A.C.M.1    Cramer, P.2
  • 129
    • 10944232674 scopus 로고    scopus 로고
    • Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS
    • Kettenberger H., Armache K.J., Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 2004, 16:955-965.
    • (2004) Mol. Cell , vol.16 , pp. 955-965
    • Kettenberger, H.1    Armache, K.J.2    Cramer, P.3
  • 130
    • 0026647901 scopus 로고
    • The RNA polymerase II elongation complex factor-dependent transcription elongation involves nascent RNA cleavage
    • Reines D., Ghanouni P., Li Q.Q., Mote J. The RNA polymerase II elongation complex factor-dependent transcription elongation involves nascent RNA cleavage. J. Biol. Chem. 1992, 267:15516-15522.
    • (1992) J. Biol. Chem. , vol.267 , pp. 15516-15522
    • Reines, D.1    Ghanouni, P.2    Li, Q.Q.3    Mote, J.4
  • 131
    • 0033588105 scopus 로고    scopus 로고
    • Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA
    • Tornaletti S., Reines D., Hanawalt P.C. Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J. Biol. Chem. 1999, 274:24124-24130.
    • (1999) J. Biol. Chem. , vol.274 , pp. 24124-24130
    • Tornaletti, S.1    Reines, D.2    Hanawalt, P.C.3
  • 132
    • 78650420054 scopus 로고    scopus 로고
    • RNA interference against transcription elongation factor SII does not support its role in transcription-coupled nucleotide excision repair
    • MacKinnon-Roy C., Stubbert L.J., McKay B.C. RNA interference against transcription elongation factor SII does not support its role in transcription-coupled nucleotide excision repair. Mutat. Res. 2011, 706:53-58.
    • (2011) Mutat. Res. , vol.706 , pp. 53-58
    • MacKinnon-Roy, C.1    Stubbert, L.J.2    McKay, B.C.3
  • 133
    • 78049414233 scopus 로고    scopus 로고
    • Transcription factor IIS impacts UV-inhibited transcription
    • Jensen A., Mullenders L.H.F. Transcription factor IIS impacts UV-inhibited transcription. DNA Repair 2010, 9:1142-1150.
    • (2010) DNA Repair , vol.9 , pp. 1142-1150
    • Jensen, A.1    Mullenders, L.H.F.2
  • 134
    • 0030945450 scopus 로고    scopus 로고
    • Transcription elongation factor S-II is not required for transcription-coupled repair in yeast
    • Verhage R.A., Heyn J., van de Putte P., Brouwer J. Transcription elongation factor S-II is not required for transcription-coupled repair in yeast. Mol. Gen. Genet. 1997, 254:284-290.
    • (1997) Mol. Gen. Genet. , vol.254 , pp. 284-290
    • Verhage, R.A.1    Heyn, J.2    van de Putte, P.3    Brouwer, J.4
  • 135
    • 79952609007 scopus 로고    scopus 로고
    • The multifunctional Ccr4-Not complex directly promotes transcription elongation
    • Kruk J.A., Dutta A., Fu J., Gilmour D.S., Reese J.C. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 2011, 25:581-593.
    • (2011) Genes Dev. , vol.25 , pp. 581-593
    • Kruk, J.A.1    Dutta, A.2    Fu, J.3    Gilmour, D.S.4    Reese, J.C.5
  • 136
    • 0037196071 scopus 로고    scopus 로고
    • Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis
    • Doetsch P.W. Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat. Res. 2002, 510:131-140.
    • (2002) Mutat. Res. , vol.510 , pp. 131-140
    • Doetsch, P.W.1
  • 137
    • 34047096423 scopus 로고    scopus 로고
    • Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells
    • Marietta C., Brooks P.J. Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells. EMBO Rep. 2007, 8:388-393.
    • (2007) EMBO Rep. , vol.8 , pp. 388-393
    • Marietta, C.1    Brooks, P.J.2
  • 139
    • 0036258264 scopus 로고    scopus 로고
    • Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases
    • Lee S.-K., Yu S.-L., Prakash L., Prakash S. Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol. Cell. Biol. 2002, 22:4383-4389.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 4383-4389
    • Lee, S.-K.1    Yu, S.-L.2    Prakash, L.3    Prakash, S.4
  • 140
    • 58149300223 scopus 로고    scopus 로고
    • A novel class of mRNA-containing cytoplasmic granules are produced in response to UV-irradiation
    • Gaillard H., Aguilera A. A novel class of mRNA-containing cytoplasmic granules are produced in response to UV-irradiation. Mol. Biol. Cell 2008, 19:4980-4992.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 4980-4992
    • Gaillard, H.1    Aguilera, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.