메뉴 건너뛰기




Volumn 16, Issue 2, 1996, Pages 496-502

Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair

Author keywords

[No Author keywords available]

Indexed keywords

FUNGAL DNA;

EID: 0030050017     PISSN: 02707306     EISSN: None     Source Type: Journal    
DOI: 10.1128/MCB.16.2.496     Document Type: Article
Times cited : (94)

References (39)
  • 2
    • 0026712449 scopus 로고
    • Molecular cloning of RAD16, a gene involved in differential repair in Saccharomyces cerevisiae
    • Bang, D. D., R. Verhage, N. Goosen, J. Brouwer, and P, van de Putte. 1992. Molecular cloning of RAD16, a gene involved in differential repair in Saccharomyces cerevisiae. Nucleic Acids Res. 20:3925-3931.
    • (1992) Nucleic Acids Res. , vol.20 , pp. 3925-3931
    • Bang, D.D.1    Verhage, R.2    Goosen, N.3    Brouwer, J.4    Van De Putte, P.5
  • 3
    • 0026530466 scopus 로고
    • Yeast RAD14 and human xeroderma pigmentosum group a DNA-repair genes encode homologous proteins
    • Bankmann, M., L. Prakash, and S. Prakash. 1992 Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature (London) 355:555-558.
    • (1992) Nature (London) , vol.355 , pp. 555-558
    • Bankmann, M.1    Prakash, L.2    Prakash, S.3
  • 4
    • 0021905437 scopus 로고
    • DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall
    • Bohr, V. A., C. A. Smith, D. S. Okumoto, and P. C. Hanawalt. 1985 DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall Cell 40: 359-369.
    • (1985) Cell , vol.40 , pp. 359-369
    • Bohr, V.A.1    Smith, C.A.2    Okumoto, D.S.3    Hanawalt, P.C.4
  • 5
    • 0028106162 scopus 로고
    • Transcript cleavage by RNA polymerase H arrested by a cyclobutane pyrimidine dimer in the DNA template
    • Donahue, B. A., S. Yin, J.-S. Taylor, D. Reines, and P. C. Hanawalt. 1994. Transcript cleavage by RNA polymerase H arrested by a cyclobutane pyrimidine dimer in the DNA template Proc. Natl Acad. Sci. USA 91:8502-8506.
    • (1994) Proc. Natl Acad. Sci. USA , vol.91 , pp. 8502-8506
    • Donahue, B.A.1    Yin, S.2    Taylor, J.-S.3    Reines, D.4    Hanawalt, P.C.5
  • 6
    • 0028282580 scopus 로고
    • Where transcription meets repair
    • Drapkin, R., A. Sancar, and D. Reinberg. 1994 Where transcription meets repair. Cell 77:9-12
    • (1994) Cell , vol.77 , pp. 9-12
    • Drapkin, R.1    Sancar, A.2    Reinberg, D.3
  • 8
    • 0029019788 scopus 로고
    • Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH
    • Guzder, S. N., Y. Habraken, P. Sung, L. Prakash, and S. Prakash. 1995. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J. Biol. Chem. 270: 12973-12976
    • (1995) J. Biol. Chem. , vol.270 , pp. 12973-12976
    • Guzder, S.N.1    Habraken, Y.2    Sung, P.3    Prakash, L.4    Prakash, S.5
  • 10
    • 0028919756 scopus 로고
    • Histone H3 and H4 N-termini interact with Sir3 and Sir4 proteins, a molecular model for the formation of heterochromatin in yeast
    • Hecht, A., T. Laroche, S. Strahl-Bolsinger, S. M. Gasser, and M. Grunstein. 1995 Histone H3 and H4 N-termini interact with Sir3 and Sir4 proteins, a molecular model for the formation of heterochromatin in yeast Cell 80:583- 592.
    • (1995) Cell , vol.80 , pp. 583-592
    • Hecht, A.1    Laroche, T.2    Strahl-Bolsinger, S.3    Gasser, S.M.4    Grunstein, M.5
  • 12
    • 0027967644 scopus 로고
    • Human nucleotide excision repair syndromes molecular clues to unexpected intricacies
    • Hoeijmakers, J. H. J. 1994. Human nucleotide excision repair syndromes molecular clues to unexpected intricacies. Eur. J. Cancer 30A:1912-1921.
    • (1994) Eur. J. Cancer , vol.30 A , pp. 1912-1921
    • Hoeijmakers, J.H.J.1
  • 13
    • 0028923540 scopus 로고
    • Intragenic domains of strand-specific repair in Escherichia coli
    • Kunala, S., and D. E. Brash. 1995 Intragenic domains of strand-specific repair in Escherichia coli. J Mol. Biol. 246:264-272
    • (1995) J Mol. Biol. , vol.246 , pp. 264-272
    • Kunala, S.1    Brash, D.E.2
  • 14
    • 0026440707 scopus 로고
    • Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II
    • Leadon, S. A., and D. A. Lawrence. 1992. Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J. Biol. Chem. 267:23175-23182
    • (1992) J. Biol. Chem. , vol.267 , pp. 23175-23182
    • Leadon, S.A.1    Lawrence, D.A.2
  • 15
    • 0024426244 scopus 로고
    • Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand
    • Mellon, I., and P. C. Hanawalt. 1989. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 342:95-98.
    • (1989) Nature , vol.342 , pp. 95-98
    • Mellon, I.1    Hanawalt, P.C.2
  • 16
    • 0023663101 scopus 로고
    • Selective removal of transcription blocking DNA damage from the transcribed strand of the mammalian DHFR gene
    • Mellon, I. M., G. S. Spivak, and P. C. Hanawalt. 1987. Selective removal of transcription blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51:241-249.
    • (1987) Cell , vol.51 , pp. 241-249
    • Mellon, I.M.1    Spivak, G.S.2    Hanawalt, P.C.3
  • 17
    • 0028896837 scopus 로고
    • Reconstitution of human DNA repair excision nuclease in a highly defined system
    • Mu, D., C.-H. Park, T. Matsunaga, D. S. Hsu, J. T. Reardon, and A. Sancar. 1995 Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol Chem 270:2415-2418.
    • (1995) J. Biol Chem , vol.270 , pp. 2415-2418
    • Mu, D.1    Park, C.-H.2    Matsunaga, T.3    Hsu, D.S.4    Reardon, J.T.5    Sancar, A.6
  • 18
    • 0020478689 scopus 로고
    • Purification and characterization of normal and mutant forms of T4endoV
    • Nakabeppu, Y., K. Yamashita, and M. Sekiguchi. 1982. Purification and characterization of normal and mutant forms of T4endoV. J. Biol. Chem. 257:2556-2562.
    • (1982) J. Biol. Chem. , vol.257 , pp. 2556-2562
    • Nakabeppu, Y.1    Yamashita, K.2    Sekiguchi, M.3
  • 19
    • 0028109333 scopus 로고
    • Interaction of yeast RAD7 and SIR3 proteins: Implications for DNA repair and chromatin structure
    • Paetkau, D. W., J. A. Riese, W. S. MacMorran, R. A. Woods, and R. D. Gietz. 1994. Interaction of yeast RAD7 and SIR3 proteins: implications for DNA repair and chromatin structure. Genes Dev. 8:2035-2045
    • (1994) Genes Dev. , vol.8 , pp. 2035-2045
    • Paetkau, D.W.1    Riese, J.A.2    MacMorran, W.S.3    Woods, R.A.4    Gietz, R.D.5
  • 20
    • 0028987268 scopus 로고
    • The SWI/SNF complex: A chromatin remodeling machine?
    • Peterson, C. L., and J. W. Tamkun. 1995. The SWI/SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20:143-146.
    • (1995) Trends Biochem. Sci. , vol.20 , pp. 143-146
    • Peterson, C.L.1    Tamkun, J.W.2
  • 21
    • 0020645054 scopus 로고
    • One step gene disruption in yeast
    • Rothstein, R. J. 1983. One step gene disruption in yeast. Methods Enzymol 101:202-211
    • (1983) Methods Enzymol , vol.101 , pp. 202-211
    • Rothstein, R.J.1
  • 24
    • 0026354699 scopus 로고
    • E. coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair, in vitro complementation with purified coupling factor
    • Selby, C. P., E. V. Witkin, and A. Sancar. 1991 E. coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair, in vitro complementation with purified coupling factor Proc. Natl. Acad. Sci USA 88: 11574-11578
    • (1991) Proc. Natl. Acad. Sci USA , vol.88 , pp. 11574-11578
    • Selby, C.P.1    Witkin, E.V.2    Sancar, A.3
  • 25
    • 0027905034 scopus 로고
    • Molecular mechanism of transcription- Repair coupling
    • Selby, C. P., and A. Sancar. 1993. Molecular mechanism of transcription- repair coupling. Science 260:53-58.
    • (1993) Science , vol.260 , pp. 53-58
    • Selby, C.P.1    Sancar, A.2
  • 27
    • 0025316080 scopus 로고
    • Site-specific DNA repair at the nucleosome level in a yeast minichromosome
    • Smerdon, M. J., and F. Thoma. 1990 Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell 61:675-684.
    • (1990) Cell , vol.61 , pp. 675-684
    • Smerdon, M.J.1    Thoma, F.2
  • 28
    • 0019799663 scopus 로고
    • The organization and transcription of the galactose gene cluster of Saccharomyces
    • St. John, T. P., and R. W. Davis. 1981. The organization and transcription of the galactose gene cluster of Saccharomyces. J Mol. Biol. 152:285-315.
    • (1981) J Mol. Biol. , vol.152 , pp. 285-315
    • St. John, T.P.1    Davis, R.W.2
  • 30
    • 0026486603 scopus 로고
    • Preferential repair of cyclobutane pyrimidine dimers m the transcribed strand of a gene m yeast chromosomes and plasmids is dependent on transcription
    • Sweder, K. S., and P. C. Hanawalt. 1992. Preferential repair of cyclobutane pyrimidine dimers m the transcribed strand of a gene m yeast chromosomes and plasmids is dependent on transcription. Proc. Natl. Acad. Sci. USA 89:10696-10700.
    • (1992) Proc. Natl. Acad. Sci. USA , vol.89 , pp. 10696-10700
    • Sweder, K.S.1    Hanawalt, P.C.2
  • 32
    • 0025736111 scopus 로고
    • New insights in DNA repair: Preferential repair of transcriptionally active DNA
    • Terleth, C., P. van de Putte, and J. Brouwer. 1990. New insights in DNA repair: preferential repair of transcriptionally active DNA. Mutagenesis 6:103-111.
    • (1990) Mutagenesis , vol.6 , pp. 103-111
    • Terleth, C.1    Van De Putte, P.2    Brouwer, J.3
  • 33
    • 0026465665 scopus 로고
    • ERCC6, a member of a subfamily of putative helicases, is involved m Cockayne's syndrome and preterential repair of active genes
    • Troelstra, C., A. van Gool, J. de Wit, W. Vermeulen, D. Bootsma, and J. H. J. Hoeijmakers. 1992. ERCC6, a member of a subfamily of putative helicases, is involved m Cockayne's syndrome and preterential repair of active genes Cell 71:939-953
    • (1992) Cell , vol.71 , pp. 939-953
    • Troelstra, C.1    Van Gool, A.2    De Wit, J.3    Vermeulen, W.4    Bootsma, D.5    Hoeijmakers, J.H.J.6
  • 36
    • 0025341294 scopus 로고
    • The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA
    • Venema, J., L. H. F. Mullenders, A. T. Natarajan, A. A. van Zeeland, and L. V. Mayne. 1990. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl. Acad. Sci. USA 87:4707-4711.
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 4707-4711
    • Venema, J.1    Mullenders, L.H.F.2    Natarajan, A.T.3    Van Zeeland, A.A.4    Mayne, L.V.5
  • 37
    • 0025775473 scopus 로고
    • Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes
    • Venema, J., A. van Hoffen, V. Karcagi, A. T. Natarajan, A. A. van Zeeland, and L. H. F. Mullenders. 1991. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol. Cell Biol 11:4128-4134
    • (1991) Mol. Cell Biol , vol.11 , pp. 4128-4134
    • Venema, J.1    Van Hoffen, A.2    Karcagi, V.3    Natarajan, A.T.4    Van Zeeland, A.A.5    Mullenders, L.H.F.6
  • 38
    • 0027999206 scopus 로고
    • The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiue
    • Verhage, R., A.-M. Zeeman, N. de Groot, F. Gleig, D. D. Bang, P. van de Putte, and J. Brouwer. 1994. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiue. Mol Cell. Biol. 14:6135-6142.
    • (1994) Mol Cell. Biol. , vol.14 , pp. 6135-6142
    • Verhage, R.1    Zeeman, A.-M.2    De Groot, N.3    Gleig, F.4    Bang, D.D.5    Van De Putte, P.6    Brouwer, J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.