메뉴 건너뛰기




Volumn 27, Issue 13, 2007, Pages 4617-4625

Yeast Rpb9 plays an important role in ubiquitylation and degradation of Rpb1 in response to UV-induced DNA damage

Author keywords

[No Author keywords available]

Indexed keywords

PROTEASOME; PROTEIN; PROTEIN RAD26; PROTEIN RPB1; PROTEIN RPB9; RNA POLYMERASE II; UNCLASSIFIED DRUG;

EID: 34347341691     PISSN: 02707306     EISSN: None     Source Type: Journal    
DOI: 10.1128/MCB.00404-07     Document Type: Article
Times cited : (29)

References (58)
  • 1
    • 0032827035 scopus 로고    scopus 로고
    • Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae
    • Beaudenon, S. L., M. R. Huacani, G. Wang, D. P. McDonnell, and J. M. Huibregtse. 1999. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:6972-6979.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 6972-6979
    • Beaudenon, S.L.1    Huacani, M.R.2    Wang, G.3    McDonnell, D.P.4    Huibregtse, J.M.5
  • 2
    • 0035340869 scopus 로고    scopus 로고
    • Trichothiodystrophy, a transcription syndrome
    • Bergmann, E., and J. M. Egly. 2001. Trichothiodystrophy, a transcription syndrome. Trends Genet. 17:279-286.
    • (2001) Trends Genet , vol.17 , pp. 279-286
    • Bergmann, E.1    Egly, J.M.2
  • 4
    • 0036468364 scopus 로고    scopus 로고
    • Multisubunit RNA polymerases
    • Cramer, P. 2002. Multisubunit RNA polymerases. Curr. Opin. Struct. Biol. 12:89-97.
    • (2002) Curr. Opin. Struct. Biol , vol.12 , pp. 89-97
    • Cramer, P.1
  • 5
    • 0035827346 scopus 로고    scopus 로고
    • Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution
    • Cramer, P., D. A. Bushnell, and R. D. Kornberg. 2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292:1863-1876.
    • (2001) Science , vol.292 , pp. 1863-1876
    • Cramer, P.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 6
    • 0035975859 scopus 로고    scopus 로고
    • The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins
    • Einhauer, A., and A. Jungbauer. 2001. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J. Biochem. Biophys. Methods 49:455-465.
    • (2001) J. Biochem. Biophys. Methods , vol.49 , pp. 455-465
    • Einhauer, A.1    Jungbauer, A.2
  • 8
    • 0028609129 scopus 로고
    • Role of a small RNA pol II subunit in TATA to transcription start site spacing
    • Furter-Graves, E. M., B. D. Hall, and R. Furter. 1994. Role of a small RNA pol II subunit in TATA to transcription start site spacing. Nucleic Acids Res. 22:4932-4936.
    • (1994) Nucleic Acids Res , vol.22 , pp. 4932-4936
    • Furter-Graves, E.M.1    Hall, B.D.2    Furter, R.3
  • 9
    • 0035016612 scopus 로고    scopus 로고
    • Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: Analyses using recombinant yeast histones and immobilized templates
    • Gelbart, M. E., T. Rechsteiner, T. J. Richmond, and T. Tsukiyama. 2001. Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol. Cell. Biol. 21:2098-2106.
    • (2001) Mol. Cell. Biol , vol.21 , pp. 2098-2106
    • Gelbart, M.E.1    Rechsteiner, T.2    Richmond, T.J.3    Tsukiyama, T.4
  • 10
    • 0035827332 scopus 로고    scopus 로고
    • Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 Å resolution
    • Gnatt, A. L., P. Cramer, J. Fu, D. A. Bushnell, and R. D. Kornberg. 2001. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292:1876-1882.
    • (2001) Science , vol.292 , pp. 1876-1882
    • Gnatt, A.L.1    Cramer, P.2    Fu, J.3    Bushnell, D.A.4    Kornberg, R.D.5
  • 11
    • 0032004953 scopus 로고    scopus 로고
    • Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae
    • Hartzog, G. A., T. Wada, H. Handa, and F. Winston. 1998. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12:357-369.
    • (1998) Genes Dev , vol.12 , pp. 357-369
    • Hartzog, G.A.1    Wada, T.2    Handa, H.3    Winston, F.4
  • 13
    • 0242300110 scopus 로고    scopus 로고
    • A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery
    • Hitchcock, A. L., K. Auld, S. P. Gygi, and P. A. Silver. 2003. A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc. Natl. Acad. Sci. USA 100:12735-12740.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 12735-12740
    • Hitchcock, A.L.1    Auld, K.2    Gygi, S.P.3    Silver, P.A.4
  • 14
    • 0030888109 scopus 로고    scopus 로고
    • The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase
    • Huibregtse, J. M., J. C. Yang, and S. L. Beaudenon. 1997. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 94:3656-3661.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 3656-3661
    • Huibregtse, J.M.1    Yang, J.C.2    Beaudenon, S.L.3
  • 15
    • 0028913403 scopus 로고
    • RNA polymerase II subunit RPB9 is required for accurate start site selection
    • Hull, M. W., K. McKune, and N. A. Woychik. 1995. RNA polymerase II subunit RPB9 is required for accurate start site selection. Genes Dev. 9:481-490.
    • (1995) Genes Dev , vol.9 , pp. 481-490
    • Hull, M.W.1    McKune, K.2    Woychik, N.A.3
  • 16
    • 0034388027 scopus 로고    scopus 로고
    • Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair
    • Jansen, L. E., H. den Dulk, R. M. Brouns, M. de Ruijter, J. A. Brandsma, and J. Brouwer. 2000. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J. 19:6498-6507.
    • (2000) EMBO J , vol.19 , pp. 6498-6507
    • Jansen, L.E.1    den Dulk, H.2    Brouns, R.M.3    de Ruijter, M.4    Brandsma, J.A.5    Brouwer, J.6
  • 17
    • 0025974219 scopus 로고
    • Tackling the protease problem in Saccharomyces cerevisiae
    • Jones, E. W. 1991. Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 194:428-453.
    • (1991) Methods Enzymol , vol.194 , pp. 428-453
    • Jones, E.W.1
  • 18
    • 33644966829 scopus 로고    scopus 로고
    • RNA polymerase II blockage by cisplatin-damaged DNA. Stability and polyubiquitylation of stalled polymerase
    • Jung, Y., and S. J. Lippard. 2006. RNA polymerase II blockage by cisplatin-damaged DNA. Stability and polyubiquitylation of stalled polymerase. J. Biol. Chem. 281:1361-1370.
    • (2006) J. Biol. Chem , vol.281 , pp. 1361-1370
    • Jung, Y.1    Lippard, S.J.2
  • 19
    • 0032189348 scopus 로고    scopus 로고
    • Proteasome inhibitors: Valuable new tools for cell biologists
    • Lee, D. H., and A. L. Goldberg. 1998. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8:397-403.
    • (1998) Trends Cell Biol , vol.8 , pp. 397-403
    • Lee, D.H.1    Goldberg, A.L.2
  • 20
    • 0000870917 scopus 로고    scopus 로고
    • Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae
    • Lee, D. H., and A. L. Goldberg. 1996. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J. Biol. Chem. 271:27280-27284.
    • (1996) J. Biol. Chem , vol.271 , pp. 27280-27284
    • Lee, D.H.1    Goldberg, A.L.2
  • 21
    • 0037007036 scopus 로고    scopus 로고
    • Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro
    • Lee, K. B., D. Wang, S. J. Lippard, and P. A. Sharp. 2002. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc. Natl. Acad. Sci. USA 99:4239-4244.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 4239-4244
    • Lee, K.B.1    Wang, D.2    Lippard, S.J.3    Sharp, P.A.4
  • 22
    • 33845425008 scopus 로고    scopus 로고
    • Evidence that the transcription elongation function of Rpb9 is involved in transcription-coupled DNA repair in Saccharomyces cerevisiae
    • Li, S., B. Ding, R. Chen, C. Ruggiero, and X. Chen. 2006. Evidence that the transcription elongation function of Rpb9 is involved in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 26:9430-9441.
    • (2006) Mol. Cell. Biol , vol.26 , pp. 9430-9441
    • Li, S.1    Ding, B.2    Chen, R.3    Ruggiero, C.4    Chen, X.5
  • 23
    • 1842689672 scopus 로고    scopus 로고
    • Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes
    • Li, S., and M. J. Smerdon. 2004. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes. J. Biol. Chem. 279:14418-14426.
    • (2004) J. Biol. Chem , vol.279 , pp. 14418-14426
    • Li, S.1    Smerdon, M.J.2
  • 24
    • 0036845496 scopus 로고    scopus 로고
    • Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae
    • Li, S., and M. J. Smerdon. 2002. Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae. EMBO J. 21:5921-5929.
    • (2002) EMBO J , vol.21 , pp. 5921-5929
    • Li, S.1    Smerdon, M.J.2
  • 25
    • 0025916461 scopus 로고
    • The genetic defect in the Chinese hamster ovary cell mutant UV61 permits moderate selective repair of cyclobutane pyrimidine dimers in an expressed gene
    • Lommel, L., and P. C. Hanawalt. 1991. The genetic defect in the Chinese hamster ovary cell mutant UV61 permits moderate selective repair of cyclobutane pyrimidine dimers in an expressed gene. Mutat. Res. 255:183-191.
    • (1991) Mutat. Res , vol.255 , pp. 183-191
    • Lommel, L.1    Hanawalt, P.C.2
  • 26
    • 0036385807 scopus 로고    scopus 로고
    • RNA polymerase II large subunit is cleaved by caspases during DNA damage-induced apoptosis
    • Lu, Y., Z. Luo, and D. B. Bregman. 2002. RNA polymerase II large subunit is cleaved by caspases during DNA damage-induced apoptosis. Biochem. Biophys. Res. Commun. 296:954-961.
    • (2002) Biochem. Biophys. Res. Commun , vol.296 , pp. 954-961
    • Lu, Y.1    Luo, Z.2    Bregman, D.B.3
  • 27
    • 20444399163 scopus 로고    scopus 로고
    • The regulation of proteasome degradation by multi-ubiquitin chain binding proteins
    • Miller, J., and C. Gordon. 2005. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins. FEBS Lett. 579:3224-3230.
    • (2005) FEBS Lett , vol.579 , pp. 3224-3230
    • Miller, J.1    Gordon, C.2
  • 29
    • 33644746221 scopus 로고    scopus 로고
    • RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo
    • Nesser, N. K., D. O. Peterson, and D. K. Hawley. 2006. RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo. Proc. Natl. Acad. Sci. USA 103:3268-3273.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 3268-3273
    • Nesser, N.K.1    Peterson, D.O.2    Hawley, D.K.3
  • 30
    • 0037077154 scopus 로고    scopus 로고
    • Park, J. S., M. T. Marr, and J. W. Roberts. 2002. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109:757-767.
    • Park, J. S., M. T. Marr, and J. W. Roberts. 2002. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109:757-767.
  • 31
    • 0034733496 scopus 로고    scopus 로고
    • Nucleotide excision repair in yeast
    • Prakash, S., and L. Prakash. 2000. Nucleotide excision repair in yeast. Mutat. Res. 451:13-24.
    • (2000) Mutat. Res , vol.451 , pp. 13-24
    • Prakash, S.1    Prakash, L.2
  • 32
    • 0032570562 scopus 로고    scopus 로고
    • Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair
    • Ratner, J. N., B. Balasubramanian, J. Corden, S. L. Warren, and D. B. Bregman. 1998. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273:5184-5189.
    • (1998) J. Biol. Chem , vol.273 , pp. 5184-5189
    • Ratner, J.N.1    Balasubramanian, B.2    Corden, J.3    Warren, S.L.4    Bregman, D.B.5
  • 34
    • 3142691854 scopus 로고    scopus 로고
    • DNA damage-induced Def1-RNA polymerase II interaction and Def1 requirement for polymerase ubiquitylation in vitro
    • Reid, J., and J. Q. Svejstrup. 2004. DNA damage-induced Def1-RNA polymerase II interaction and Def1 requirement for polymerase ubiquitylation in vitro. J. Biol. Chem. 279:29875-29878.
    • (2004) J. Biol. Chem , vol.279 , pp. 29875-29878
    • Reid, J.1    Svejstrup, J.Q.2
  • 35
    • 34147193817 scopus 로고    scopus 로고
    • ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells
    • Ribar, B., L. Prakash, and S. Prakash. 2007. ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells. Mol. Cell. Biol. 27:3211-3216.
    • (2007) Mol. Cell. Biol , vol.27 , pp. 3211-3216
    • Ribar, B.1    Prakash, L.2    Prakash, S.3
  • 36
    • 33646883307 scopus 로고    scopus 로고
    • Requirement of ELC1 for RNA polymerase II polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae
    • Ribar, B., L. Prakash, and S. Prakash. 2006. Requirement of ELC1 for RNA polymerase II polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 26:3999-4005.
    • (2006) Mol. Cell. Biol , vol.26 , pp. 3999-4005
    • Ribar, B.1    Prakash, L.2    Prakash, S.3
  • 37
    • 0037415686 scopus 로고    scopus 로고
    • Molecular evidence for a positive role of Spt4 in transcription elongation
    • Rondon, A. G., M. Garcia-Rubio, S. Gonzalez-Barrera, and A. Aguilera. 2003. Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 22:612-620.
    • (2003) EMBO J , vol.22 , pp. 612-620
    • Rondon, A.G.1    Garcia-Rubio, M.2    Gonzalez-Barrera, S.3    Aguilera, A.4
  • 39
    • 0016588178 scopus 로고
    • Inhibitors of macromolecular synthesis in yeast
    • Schindler, D., and J. Davies. 1975. Inhibitors of macromolecular synthesis in yeast. Methods Cell Biol. 12:17-38.
    • (1975) Methods Cell Biol , vol.12 , pp. 17-38
    • Schindler, D.1    Davies, J.2
  • 40
    • 0027905034 scopus 로고
    • Molecular mechanism of transcription-repair coupling
    • Selby, C. P., and A. Sancar. 1993. Molecular mechanism of transcription-repair coupling. Science 260:53-58.
    • (1993) Science , vol.260 , pp. 53-58
    • Selby, C.P.1    Sancar, A.2
  • 41
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 42
    • 20444428382 scopus 로고    scopus 로고
    • Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest
    • Somesh, B. P., J. Reid, W. F. Liu, T. M. Sogaard, H. Erdjument-Bromage, P. Tempst, and J. Q. Svejstrup. 2005. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 121:913-923.
    • (2005) Cell , vol.121 , pp. 913-923
    • Somesh, B.P.1    Reid, J.2    Liu, W.F.3    Sogaard, T.M.4    Erdjument-Bromage, H.5    Tempst, P.6    Svejstrup, J.Q.7
  • 43
    • 0029989059 scopus 로고    scopus 로고
    • Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae
    • Sun, Z. W., A. Tessmer, and M. Hampsey. 1996. Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae. Nucleic Acids Res. 24:2560-2566.
    • (1996) Nucleic Acids Res , vol.24 , pp. 2560-2566
    • Sun, Z.W.1    Tessmer, A.2    Hampsey, M.3
  • 44
    • 0037326318 scopus 로고    scopus 로고
    • Rescue of arrested RNA polymerase II complexes
    • Svejstrup, J. Q. 2003. Rescue of arrested RNA polymerase II complexes. J. Cell Sci. 116:447-451.
    • (2003) J. Cell Sci , vol.116 , pp. 447-451
    • Svejstrup, J.Q.1
  • 45
    • 0026775612 scopus 로고
    • SPT4, SPT5 and SPT6 interactions: Effects on transcription and viability in Saccharomyces cerevisiae
    • Swanson, M. S., and F. Winston. 1992. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 132:325-336.
    • (1992) Genetics , vol.132 , pp. 325-336
    • Swanson, M.S.1    Winston, F.2
  • 46
    • 0026465665 scopus 로고
    • ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes
    • Troelstra, C., A. van Gool, J. de Wit, W. Vermeulen, D. Bootsma, and J. H. Hoeijmakers. 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71:939-953.
    • (1992) Cell , vol.71 , pp. 939-953
    • Troelstra, C.1    van Gool, A.2    de Wit, J.3    Vermeulen, W.4    Bootsma, D.5    Hoeijmakers, J.H.6
  • 49
    • 0037155793 scopus 로고    scopus 로고
    • The Rpb9 subunit of RNA polymerase II binds transcription factor TFIIE and interferes with the SAGA and elongator histone acetyltransferases
    • Van Mullein, V., M. Wery, M. Werner, J. Vandenhaute, and P. Thuriaux. 2002. The Rpb9 subunit of RNA polymerase II binds transcription factor TFIIE and interferes with the SAGA and elongator histone acetyltransferases. J. Biol. Chem. 277:10220-10225.
    • (2002) J. Biol. Chem , vol.277 , pp. 10220-10225
    • Van Mullein, V.1    Wery, M.2    Werner, M.3    Vandenhaute, J.4    Thuriaux, P.5
  • 50
    • 0025341294 scopus 로고
    • The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA
    • Venema, J., L. H. Mullenders, A. T. Natarajan, A. A. van Zeeland, and L. V. Mayne. 1990. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl. Acad. Sci. USA 87:4707-4711.
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 4707-4711
    • Venema, J.1    Mullenders, L.H.2    Natarajan, A.T.3    van Zeeland, A.A.4    Mayne, L.V.5
  • 51
    • 0025775473 scopus 로고
    • Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes
    • Venema, J., A. van Hoffen, V. Karcagi, A. T. Natarajan, A. A. van Zeeland, and L. H. Mullenders. 1991. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol. Cell. Biol. 11:4128-4134.
    • (1991) Mol. Cell. Biol , vol.11 , pp. 4128-4134
    • Venema, J.1    van Hoffen, A.2    Karcagi, V.3    Natarajan, A.T.4    van Zeeland, A.A.5    Mullenders, L.H.6
  • 52
    • 0025190985 scopus 로고
    • The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA
    • Venema, J., A. van Hoffen, A. T. Natarajan, A. A. van Zeeland, and L. H. Mullenders. 1990. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res. 18:443-448.
    • (1990) Nucleic Acids Res , vol.18 , pp. 443-448
    • Venema, J.1    van Hoffen, A.2    Natarajan, A.T.3    van Zeeland, A.A.4    Mullenders, L.H.5
  • 53
    • 0027999206 scopus 로고
    • The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae
    • Verhage, R., A. M. Zeeman, N. de Groot, F. Gleig, D. D. Bang, P. van de Putte, and J. Brouwer. 1994. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6135-6142.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 6135-6142
    • Verhage, R.1    Zeeman, A.M.2    de Groot, N.3    Gleig, F.4    Bang, D.D.5    van de Putte, P.6    Brouwer, J.7
  • 57
    • 0033515521 scopus 로고    scopus 로고
    • NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation
    • Yamaguchi, Y., T. Takagi, T. Wada, K. Yano, A. Furuya, S. Sugimoto, J. Hasegawa, and H. Handa. 1999. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41-51.
    • (1999) Cell , vol.97 , pp. 41-51
    • Yamaguchi, Y.1    Takagi, T.2    Wada, T.3    Yano, K.4    Furuya, A.5    Sugimoto, S.6    Hasegawa, J.7    Handa, H.8
  • 58
    • 1542676413 scopus 로고    scopus 로고
    • Yeast RNA polymerase II lacking the Rpb9 subunit is impaired for interaction with transcription factor IIF
    • Ziegler, L. M., D. A. Khaperskyy, M. L. Ammerman, and A. S. Ponticelli. 2003. Yeast RNA polymerase II lacking the Rpb9 subunit is impaired for interaction with transcription factor IIF. J. Biol. Chem. 278:48950-48956.
    • (2003) J. Biol. Chem , vol.278 , pp. 48950-48956
    • Ziegler, L.M.1    Khaperskyy, D.A.2    Ammerman, M.L.3    Ponticelli, A.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.