-
1
-
-
34547169439
-
Structure of TOR and its complex with KOG1
-
Adami A, Garcia-Alvarez B, Arias-Palomo E, Barford D, Llorca O. 2007. Structure of TOR and its complex with KOG1. Mol. Cell 27:509-516.
-
(2007)
Mol. Cell
, vol.27
, pp. 509-516
-
-
Adami, A.1
Garcia-Alvarez, B.2
Arias-Palomo, E.3
Barford, D.4
Llorca, O.5
-
2
-
-
33646143793
-
Localization of Rheb to the endomembrane is critical for its signaling function
-
Buerger C, DeVries B, Stambolic V. 2006. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem. Biophys. Res. Commun. 344:869-880.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.344
, pp. 869-880
-
-
Buerger, C.1
DeVries, B.2
Stambolic, V.3
-
3
-
-
77955443001
-
Critical roles for mTORC2- and rapamycininsensitive mTORC1-complexes in growth and survival of BCR-ABLexpressing leukemic cells
-
Carayol N, et al. 2010. Critical roles for mTORC2- and rapamycininsensitive mTORC1-complexes in growth and survival of BCR-ABLexpressing leukemic cells. Proc. Natl. Acad. Sci. U. S. A. 107:12469-12474.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 12469-12474
-
-
Carayol, N.1
-
4
-
-
0037732600
-
LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway
-
Chen EJ, Kaiser CA. 2003. LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J. Cell Biol. 161:333-347.
-
(2003)
J. Cell Biol.
, vol.161
, pp. 333-347
-
-
Chen, E.J.1
Kaiser, C.A.2
-
5
-
-
0141733277
-
A nutrient sensor mechanism controls Drosophila growth
-
Colombani J, et al. 2003. A nutrient sensor mechanism controls Drosophila growth. Cell 114:9-749.
-
(2003)
Cell
, vol.114
, pp. 749
-
-
Colombani, J.1
-
6
-
-
49649122013
-
Flow cytometric analysis of Drosophila cells
-
de la Cruz AF, Edgar BA. 2008. Flow cytometric analysis of Drosophila cells. Methods Mol. Biol. 420:373-389.
-
(2008)
Methods Mol. Biol.
, vol.420
, pp. 373-389
-
-
de la Cruz, A.F.1
Edgar, B.A.2
-
7
-
-
70350545722
-
Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1
-
Dibble CC, Asara JM, Manning BD. 2009. Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol. Cell. Biol. 29:5657-5670.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5657-5670
-
-
Dibble, C.C.1
Asara, J.M.2
Manning, B.D.3
-
8
-
-
79953216041
-
Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate
-
Gan X, Wang J, Su B, Wu D. 2011. Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 286:10998-11002.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 10998-11002
-
-
Gan, X.1
Wang, J.2
Su, B.3
Wu, D.4
-
9
-
-
0037418177
-
Ends-out, or replacement, gene targeting in Drosophila
-
Gong WJ, Golic KG. 2003. Ends-out, or replacement, gene targeting in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 100:2556-2561.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 2556-2561
-
-
Gong, W.J.1
Golic, K.G.2
-
10
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
-
Guertin DA, et al. 2006. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11:859-871.
-
(2006)
Dev. Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
-
11
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K, et al. 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177-189.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
-
12
-
-
3342958797
-
The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins
-
Harrington LS, et al. 2004. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166:213-223.
-
(2004)
J. Cell Biol.
, vol.166
, pp. 213-223
-
-
Harrington, L.S.1
-
13
-
-
34548151890
-
P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration
-
Hernandez-Negrete I, et al. 2007. P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J. Biol. Chem. 282:23708-23715.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 23708-23715
-
-
Hernandez-Negrete, I.1
-
14
-
-
33947330747
-
Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth
-
Hietakangas V, Cohen SM. 2007. Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth. Genes Dev. 21:632-637.
-
(2007)
Genes Dev
, vol.21
, pp. 632-637
-
-
Hietakangas, V.1
Cohen, S.M.2
-
15
-
-
68049126433
-
Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors
-
Huang J, Wu S, Wu CL, Manning BD. 2009. Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res. 69:6107-6114.
-
(2009)
Cancer Res
, vol.69
, pp. 6107-6114
-
-
Huang, J.1
Wu, S.2
Wu, C.L.3
Manning, B.D.4
-
16
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K, Li Y, Zhu T, Wu J, Guan KL. 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4:648-657.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
17
-
-
33749076673
-
SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
-
Jacinto E, et al. 2006. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125-137.
-
(2006)
Cell
, vol.127
, pp. 125-137
-
-
Jacinto, E.1
-
18
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, et al. 2004. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6:1122-1128.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
-
19
-
-
65949103405
-
Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1
-
doi:10.1371/journal.pbio.1000060
-
Jones KT, Greer ER, Pearce D, Ashrafi K. 2009. Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS Biol. 7:e60. doi:10.1371/journal.pbio.1000060
-
(2009)
PLoS Biol
, vol.7
-
-
Jones, K.T.1
Greer, E.R.2
Pearce, D.3
Ashrafi, K.4
-
20
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender A, et al. 2010. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11:390-401.
-
(2010)
Cell Metab
, vol.11
, pp. 390-401
-
-
Kalender, A.1
-
21
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R, et al. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10: 457-468.
-
(2002)
Mol. Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
-
22
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. 2005. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15:702-713.
-
(2005)
Curr. Biol.
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
23
-
-
0142157634
-
EM-1, TNF- α, NFB, and MAP kinase in tubers of the tuberous sclerosis complex
-
Maldonado M, et al. 2003. EM-1, TNF- α, NFB, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol Dis. 14:279-290.
-
(2003)
Neurobiol Dis
, vol.14
, pp. 279-290
-
-
Maldonado, M.1
-
24
-
-
79960470913
-
mTOR complex 2 signaling and functions
-
Oh WJ, Jacinto E. 2011. mTOR complex 2 signaling and functions. Cell Cycle 10:2305-2316.
-
(2011)
Cell Cycle
, vol.10
, pp. 2305-2316
-
-
Oh, W.J.1
Jacinto, E.2
-
25
-
-
78649712949
-
mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
-
Oh WJ, et al. 2010. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 29:3939-3951.
-
(2010)
EMBO J
, vol.29
, pp. 3939-3951
-
-
Oh, W.J.1
-
26
-
-
0035805162
-
Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size
-
Potter CJ, Huang H, Xu T. 2001. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105:357-368.
-
(2001)
Cell
, vol.105
, pp. 357-368
-
-
Potter, C.J.1
Huang, H.2
Xu, T.3
-
27
-
-
0036714127
-
Akt regulates growth by directly phosphorylating Tsc2
-
Potter CJ, Pedraza LG, Xu T. 2002. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4:658-665.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 658-665
-
-
Potter, C.J.1
Pedraza, L.G.2
Xu, T.3
-
28
-
-
0030809956
-
Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4
-
Roberg KJ, Bickel S, Rowley N, Kaiser CA. 1997. Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics 147:1569-1584.
-
(1997)
LST7 and LST8. Genetics
, vol.147
, pp. 1569-1584
-
-
Roberg, K.J.1
Bickel, S.2
Rowley, N.3
Kaiser, C.A.4
-
29
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, et al. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
30
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
-
31
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, et al. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14:1296-1302.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
-
32
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098-1101.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
33
-
-
0038643484
-
Rheb promotes cell growth as a component of the insulin/TOR signalling network
-
Saucedo LJ, et al. 2003. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5:566-571.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 566-571
-
-
Saucedo, L.J.1
-
34
-
-
4344563878
-
Role and regulation of starvation-induced autophagy in the Drosophila fat body
-
Scott RC, Schuldiner O, Neufeld TP. 2004. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell 7:167-178.
-
(2004)
Dev. Cell
, vol.7
, pp. 167-178
-
-
Scott, R.C.1
Schuldiner, O.2
Neufeld, T.P.3
-
35
-
-
4544343980
-
Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies
-
Shah OJ, Wang Z, Hunter T. 2004. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 14:1650-1656.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1650-1656
-
-
Shah, O.J.1
Wang, Z.2
Hunter, T.3
-
36
-
-
33748950810
-
Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability
-
Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA. 2006. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev. Cell 11:583-589.
-
(2006)
Dev. Cell
, vol.11
, pp. 583-589
-
-
Shiota, C.1
Woo, J.T.2
Lindner, J.3
Shelton, K.D.4
Magnuson, M.A.5
-
37
-
-
61449244533
-
Rictor/ TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans
-
Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G. 2009. Rictor/ TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev. 23:496-511.
-
(2009)
Genes Dev
, vol.23
, pp. 496-511
-
-
Soukas, A.A.1
Kane, E.A.2
Carr, C.E.3
Melo, J.A.4
Ruvkun, G.5
-
38
-
-
0038304516
-
Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
-
Stocker H, et al. 2003. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 5:559-565.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 559-565
-
-
Stocker, H.1
-
39
-
-
0345192349
-
A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype
-
Stowers RS, Schwarz TL. 1999. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152:1631-1639.
-
(1999)
Genetics
, vol.152
, pp. 1631-1639
-
-
Stowers, R.S.1
Schwarz, T.L.2
-
40
-
-
79953211540
-
Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling
-
Tato I, Bartrons R, Ventura F, Rosa JL. 2011. Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J. Biol. Chem. 286:6128-6142.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 6128-6142
-
-
Tato, I.1
Bartrons, R.2
Ventura, F.3
Rosa, J.L.4
-
41
-
-
77149163803
-
Rictor is a novel target of p70 S6 kinase-1
-
Treins C, Warne PH, Magnuson MA, Pende M, Downward J. 2010. Rictor is a novel target of p70 S6 kinase-1. Oncogene 29:1003-1016.
-
(2010)
Oncogene
, vol.29
, pp. 1003-1016
-
-
Treins, C.1
Warne, P.H.2
Magnuson, M.A.3
Pende, M.4
Downward, J.5
-
42
-
-
27944508336
-
Dissecting independent channel and scaffolding roles of the Drosophila transient receptor potential channel
-
Wang T, Jiao Y, Montell C. 2005. Dissecting independent channel and scaffolding roles of the Drosophila transient receptor potential channel. J. Cell Biol. 171:685-694.
-
(2005)
J. Cell Biol.
, vol.171
, pp. 685-694
-
-
Wang, T.1
Jiao, Y.2
Montell, C.3
-
43
-
-
69949180640
-
TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease
-
Wang T, Lao U, Edgar BA. 2009. TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J. Cell Biol. 186:703-711.
-
(2009)
J. Cell Biol.
, vol.186
, pp. 703-711
-
-
Wang, T.1
Lao, U.2
Edgar, B.A.3
-
44
-
-
33845421982
-
A phosphoinositide synthase required for a sustained light response
-
Wang T, Montell C. 2006. A phosphoinositide synthase required for a sustained light response. J. Neurosci. 26:12816-12825.
-
(2006)
J. Neurosci.
, vol.26
, pp. 12816-12825
-
-
Wang, T.1
Montell, C.2
-
45
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124:471-484.
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
46
-
-
33646485688
-
TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity
-
Yang Q, Inoki K, Kim E, Guan KL. 2006. TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc. Natl. Acad. Sci. U. S. A. 103:6811-6816.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 6811-6816
-
-
Yang, Q.1
Inoki, K.2
Kim, E.3
Guan, K.L.4
-
47
-
-
77953091045
-
Structure of the human mTOR complex I and its implications for rapamycin inhibition
-
Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. 2010. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 38:768-774.
-
(2010)
Mol. Cell
, vol.38
, pp. 768-774
-
-
Yip, C.K.1
Murata, K.2
Walz, T.3
Sabatini, D.M.4
Kang, S.A.5
-
48
-
-
35348950503
-
Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex
-
Zeng LH, et al. 2007. Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiol Dis. 28:184-196.
-
(2007)
Neurobiol Dis
, vol.28
, pp. 184-196
-
-
Zeng, L.H.1
-
49
-
-
0034312315
-
Regulation of cellular growth by the Drosophila target of rapamycin dTOR
-
Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. 2000. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14:12-2724.
-
(2000)
Genes Dev
, vol.14
, pp. 12-2724
-
-
Zhang, H.1
Stallock, J.P.2
Ng, J.C.3
Reinhard, C.4
Neufeld, T.P.5
-
50
-
-
0038141979
-
Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
-
Zhang Y, et al. 2003. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5:578-581.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 578-581
-
-
Zhang, Y.1
-
51
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla V, Stracka D, Oppliger W, Hall MN. 2011. Activation of mTORC2 by association with the ribosome. Cell 144:757-768.
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
52
-
-
78650510609
-
mTOR: from growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12:21-35.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
|