메뉴 건너뛰기




Volumn 16, Issue 8, 2012, Pages 819-832

Can targeting SIRT-1 to treat type 2 diabetes be a good strategy? A review

Author keywords

Resveratrol; SIRT1; SIRT1 activator; Type 2 diabetes mellitus

Indexed keywords

BUTEIN; CHECKPOINT KINASE 2; FISETIN; HISTONE ACETYLTRANSFERASE PCAF; HISTONE DEACETYLASE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; INSULIN; NICOTINAMIDE ADENINE DINUCLEOTIDE; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR; PICEATANNOL; PINOSYLVIN; QUERCETIN; RESVERATROL; SIRTUIN 1; SIRTUIN 2; SIRTUIN 3; SIRTUIN 4; SIRTUIN 5; SIRTUIN 6; SIRTUIN 7;

EID: 84863929754     PISSN: 14728222     EISSN: 17447631     Source Type: Journal    
DOI: 10.1517/14728222.2012.703656     Document Type: Review
Times cited : (32)

References (95)
  • 1
    • 84872208484 scopus 로고    scopus 로고
    • A website provided with the current statistical information about diabetes
    • Brussels, Belgium. Available from
    • Regional overview, International Diabetes Federation. Brussels, Belgium. Available from: Http://www.idf.org/diabetesatlas/regional-overview . A website provided with the current statistical information about diabetes.
    • Regional Overview International Diabetes Federation
  • 2
    • 79955614502 scopus 로고    scopus 로고
    • Genetics of type 2 diabetes: Pathophysiologic and clinical relevance
    • Herder C, Roden M. Genetics of type 2 diabetes: Pathophysiologic and clinical relevance. Eur J Clin Invest 2011;41(6):679-92
    • (2011) Eur. J. Clin. Invest. , vol.41 , Issue.6 , pp. 679-692
    • Herder, C.1    Roden, M.2
  • 3
    • 84885467038 scopus 로고    scopus 로고
    • Diagnosis and classification of diabetes mellitus
    • American Diabetes Association.
    • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2011;3(1):562-9
    • (2011) Diabetes Care , vol.3 , Issue.1 , pp. 562-569
  • 4
    • 60449118870 scopus 로고    scopus 로고
    • SIRT1 genetic variation and mortality in type 2 diabetes: Interaction with smoking and dietary niacin
    • Zillikens MC, van Meurs JBJ, Sijbrands EJG, et al. SIRT1 genetic variation and mortality in type 2 diabetes: Interaction with smoking and dietary niacin. Free Radic Biol Med 2009;46(6):836-41
    • (2009) Free Radic. Biol. Med. , vol.46 , Issue.6 , pp. 836-841
    • Zillikens, M.C.1    Van Meurs, J.B.J.2    Sijbrands, E.J.G.3
  • 5
    • 0035936763 scopus 로고    scopus 로고
    • New perspectives into the molecular pathogenesis and treatment of type 2 diabetes
    • Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 2001; 104(4):517
    • (2001) Cell , vol.104 , Issue.4 , pp. 517
    • Saltiel, A.R.1
  • 6
    • 2342466734 scopus 로고    scopus 로고
    • Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030
    • Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-53
    • (2004) Diabetes Care , vol.27 , pp. 1047-1053
    • Wild, S.1    Roglic, G.2    Green, A.3
  • 7
    • 0037223174 scopus 로고    scopus 로고
    • Prevalence of obesity, diabetes, and obesity-related health risk factors 2001
    • Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003;289(1):76
    • (2003) JAMA , vol.289 , Issue.1 , pp. 76
    • Mokdad, A.H.1    Ford, E.S.2    Bowman, B.A.3
  • 8
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434(7029):113-18
    • (2005) Nature , vol.434 , Issue.7029 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3
  • 9
    • 81555226055 scopus 로고    scopus 로고
    • SIRTuins: Molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription
    • Ramkumar R, Richa G, Marija KD, Constantinos D. SIRTuins: Molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol 2011;2011:1-17
    • (2011) J. Biomed. Biotechnol. , vol.2011 , pp. 1-17
    • Ramkumar, R.1    Richa, G.2    Marija, K.D.3    Constantinos, D.4
  • 10
    • 0037160097 scopus 로고    scopus 로고
    • Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
    • Bitterman KJ, Anderson RM, Cohen HY, et al. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002;277(47):45099
    • (2002) J. Biol. Chem. , vol.277 , Issue.47 , pp. 45099
    • Bitterman, K.J.1    Anderson, R.M.2    Cohen, H.Y.3
  • 11
    • 0041571570 scopus 로고    scopus 로고
    • Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry
    • Sauve AA, Schramm VL. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry (N Y) 2003;42(31):9249-56
    • (2003) Biochemistry (N. Y.) , vol.42 , Issue.31 , pp. 9249-9256
    • Sauve, A.A.1    Schramm, V.L.2
  • 12
    • 0037066738 scopus 로고    scopus 로고
    • Conserved enzymatic production and biological effect of O-acetyl-ADPribose by silent information regulator 2-like NAD -dependent deacetylases
    • Borra MT, O'Neill FJ, Jackson MD, et al. Conserved enzymatic production and biological effect of O-acetyl-ADPribose by silent information regulator 2-like NAD -dependent deacetylases. J Biol Chem 2002;277(15):12632
    • (2002) J. Biol. Chem. , vol.277 , Issue.15 , pp. 12632
    • Borra, M.T.1    O'Neill, F.J.2    Jackson, M.D.3
  • 13
    • 0034687694 scopus 로고    scopus 로고
    • Silent information regulator 2 family of NAD-dependent histone/ protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
    • Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD-dependent histone/ protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. PNAS 2000;97(26):14178
    • (2000) PNAS , vol.97 , Issue.26 , pp. 14178
    • Tanner, K.G.1    Landry, J.2    Sternglanz, R.3    Denu, J.M.4
  • 14
    • 27544434763 scopus 로고    scopus 로고
    • Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
    • Chen WY, Wang DH, Yen RWC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005;123(3):437-48
    • (2005) Cell , vol.123 , Issue.3 , pp. 437-448
    • Chen, W.Y.1    Wang, D.H.2    Yen, R.W.C.3
  • 15
    • 33847035824 scopus 로고    scopus 로고
    • Phosphorylation of HuR by Chk2 regulates SIRT1 expression
    • Abdelmohsen K, PullmannJr R, Lal A, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007;25(4):543-57
    • (2007) Mol. Cell , vol.25 , Issue.4 , pp. 543-557
    • Abdelmohsen, K.1    Pullmann Jr., R.2    Lal, A.3
  • 16
    • 33748200050 scopus 로고    scopus 로고
    • Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage
    • Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006;8(9):1025-31
    • (2006) Nat. Cell Biol. , vol.8 , Issue.9 , pp. 1025-1031
    • Wang, C.1    Chen, L.2    Hou, X.3
  • 17
    • 35349011726 scopus 로고    scopus 로고
    • Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
    • Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 2007;28(2):277-90
    • (2007) Mol. Cell , vol.28 , Issue.2 , pp. 277-290
    • Kim, E.J.1    Kho, J.H.2    Kang, M.R.3    Um, S.J.4
  • 18
    • 38749132992 scopus 로고    scopus 로고
    • Negative regulation of the deacetylase SIRT1 by DBC1
    • Zhao W, Kruse JP, Tang Y, et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 2008;451(7178):587-90
    • (2008) Nature , vol.451 , Issue.7178 , pp. 587-590
    • Zhao, W.1    Kruse, J.P.2    Tang, Y.3
  • 19
    • 35748962613 scopus 로고    scopus 로고
    • SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
    • Yang Y, Fu W, Chen J, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 2007;9(11):1253-62
    • (2007) Nat. Cell Biol. , vol.9 , Issue.11 , pp. 1253-1262
    • Yang, Y.1    Fu, W.2    Chen, J.3
  • 20
    • 79952125287 scopus 로고    scopus 로고
    • Isabel nogueira cano M sirt1 deacetylase activity and the maintenance of protein homeostasis in response to stress: An overview
    • Patricio Monteiro J, Isabel Nogueira Cano M. SIRT1 deacetylase activity and the maintenance of protein homeostasis in response to stress: An overview. Protein Pept Lett 2011;18(2):167-73
    • (2011) Protein Pept. Lett. , vol.18 , Issue.2 , pp. 167-173
    • Patricio Monteiro, J.1
  • 21
    • 58149202185 scopus 로고    scopus 로고
    • Phosphorylation regulates SIRT1 function
    • Sasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function. PLoS One 2008;3(12):e4020
    • (2008) Plos One , vol.3 , Issue.12
    • Sasaki, T.1    Maier, B.2    Koclega, K.D.3
  • 22
    • 0025768055 scopus 로고
    • The role of the liver in metabolic homeostasis: Implications for inborn errors of metabolism
    • Van den Berghe G. The role of the liver in metabolic homeostasis: Implications for inborn errors of metabolism. J Inherit Metab Dis 1991;14(4):407-20
    • (1991) J. Inherit. Metab. Dis , vol.14 , Issue.4 , pp. 407-420
    • Van Den Berghe, G.1
  • 23
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
    • Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001;413(6852):131-8
    • (2001) Nature , vol.413 , Issue.6852 , pp. 131-138
    • Yoon, J.C.1    Puigserver, P.2    Chen, G.3
  • 24
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1a interaction
    • Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1a interaction. Nature 2003;423:550-5
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1    Rhee, J.2    Donovan, J.3
  • 25
    • 0242349197 scopus 로고    scopus 로고
    • Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): Requirement for hepatocyte nuclear factor 4a in gluconeogenesis
    • Rhee J, Inoue Y, Yoon JC, et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): Requirement for hepatocyte nuclear factor 4a in gluconeogenesis. PNAS 2003;100:4012-17
    • (2003) PNAS , vol.100 , pp. 4012-4017
    • Rhee, J.1    Inoue, Y.2    Yoon, J.C.3
  • 27
    • 63449112017 scopus 로고    scopus 로고
    • Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
    • Purushotham A, Schug TT, Xu Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009;9(4):327-38
    • (2009) Cell Metab. , vol.9 , Issue.4 , pp. 327-338
    • Purushotham, A.1    Schug, T.T.2    Xu, Q.3
  • 28
    • 54849425547 scopus 로고    scopus 로고
    • Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
    • Feige JN, Lagouge M, Canto C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008;8:347-58
    • (2008) Cell Metab. , vol.8 , pp. 347-358
    • Feige, J.N.1    Lagouge, M.2    Canto, C.3
  • 29
    • 77953292242 scopus 로고    scopus 로고
    • Nutrient-dependent regulation of PGC-1 [alpha]'s acetylation state and metabolic function through the enzymatic activities of SIRT1/GCN5
    • Dominy JE Jr, Lee Y, Gerhart-Hines Z, Puigserver P. Nutrient-dependent regulation of PGC-1 [alpha]'s acetylation state and metabolic function through the enzymatic activities of SIRT1/GCN5. Biochimicaet Biophysica Acta (BBA) Proteins Proteomic 2010;1804(8):1676-83
    • (2010) Biochimicaet Biophysica Acta (BBA) Proteins Proteomic , vol.1804 , Issue.8 , pp. 1676-1683
    • Dominy Jr., J.E.1    Lee, Y.2    Gerhart-Hines, Z.3    Puigserver, P.4
  • 30
    • 46249100836 scopus 로고    scopus 로고
    • Tissue-specific regulation of SIRT1 by calorie restriction
    • Chen D, Bruno J, Easlon E, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 2008;22(13):1753
    • (2008) Genes Dev. , vol.22 , Issue.13 , pp. 1753
    • Chen, D.1    Bruno, J.2    Easlon, E.3
  • 31
    • 0037283601 scopus 로고    scopus 로고
    • The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes
    • Kahn S. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 2003;46(1):3-19
    • (2003) Diabetologia , vol.46 , Issue.1 , pp. 3-19
    • Kahn, S.1
  • 32
    • 3142559901 scopus 로고    scopus 로고
    • Beta-cell failure in the pathogenesis of type 2 diabetes mellitus
    • Steppel JH, Horton ES. Beta-cell failure in the pathogenesis of type 2 diabetes mellitus. Curr Diab Rep 2004;4(3):169-75
    • (2004) Curr. Diab. Rep. , vol.4 , Issue.3 , pp. 169-175
    • Steppel, J.H.1    Horton, E.S.2
  • 33
    • 27744518040 scopus 로고    scopus 로고
    • FoxO1 protects against pancreatic [beta] cell failure through neurod and MafA induction
    • Kitamura YI, Kitamura T, Kruse JP, et al. FoxO1 protects against pancreatic [beta] cell failure through NeuroD and MafA induction. Cell Metab 2005;2(3):153-63
    • (2005) Cell Metab. , vol.2 , Issue.3 , pp. 153-163
    • Kitamura, Y.I.1    Kitamura, T.2    Kruse, J.P.3
  • 34
    • 33244486764 scopus 로고    scopus 로고
    • SIRT1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
    • Bordone L, Motta MC, Picard F, et al. SIRT1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006;4(2):e31
    • (2006) Plos Biol. , vol.4 , Issue.2
    • Bordone, L.1    Motta, M.C.2    Picard, F.3
  • 35
    • 25144454432 scopus 로고    scopus 로고
    • Increased dosage of mammalian Sir2 in pancreatic [beta] cells enhances glucose-stimulated insulin secretion in mice
    • Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic [beta] cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2(2):105-17
    • (2005) Cell Metab. , vol.2 , Issue.2 , pp. 105-117
    • Moynihan, K.A.1    Grimm, A.A.2    Plueger, M.M.3
  • 36
    • 17144429302 scopus 로고    scopus 로고
    • Calorie restriction SIRT1 and metabolism: Understanding longevity
    • Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nat Rev Mol Cell Biol 2005;6(4):298-305
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , Issue.4 , pp. 298-305
    • Bordone, L.1    Guarente, L.2
  • 37
    • 3843145012 scopus 로고    scopus 로고
    • Role of uncoupling protein-2 upregulation and triglyceride accumulation in impaired glucose-stimulated insulin secretion in a beta-cell lipotoxicity model overexpressing sterol regulatory element-binding protein-1c
    • Yamashita T, Eto K, Okazaki Y, et al. Role of uncoupling protein-2 upregulation and triglyceride accumulation in impaired glucose-stimulated insulin secretion in a beta-cell lipotoxicity model overexpressing sterol regulatory element-binding protein-1c. Endocrinology 2004;145(8):3566
    • (2004) Endocrinology , vol.145 , Issue.8 , pp. 3566
    • Yamashita, T.1    Eto, K.2    Okazaki, Y.3
  • 38
    • 19944433866 scopus 로고    scopus 로고
    • Transgenic mice overexpressing nuclear SREBP-1c in pancreatic beta-cells
    • Takahashi A, Motomura K, Kato T, et al. Transgenic mice overexpressing nuclear SREBP-1c in pancreatic beta-cells. Diabetes 2005; 54(2):492
    • (2005) Diabetes , vol.54 , Issue.2 , pp. 492
    • Takahashi, A.1    Motomura, K.2    Kato, T.3
  • 39
    • 2342483040 scopus 로고    scopus 로고
    • Srebps suppress IRS-2-mediated insulin signalling in the liver
    • Ide T, Shimano H, Yahagi N, et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol 2004;6(4):351-7
    • (2004) Nat. Cell Biol. , vol.6 , Issue.4 , pp. 351-357
    • Ide, T.1    Shimano, H.2    Yahagi, N.3
  • 40
    • 0032567937 scopus 로고    scopus 로고
    • Disruption of IRS-2 causes type 2 diabetes in mice
    • Withers DJ, Gutierrez JS, Towery H, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature-London 1998;391(6670):900-3
    • (1998) Nature-London , vol.391 , Issue.6670 , pp. 900-903
    • Withers, D.J.1    Gutierrez, J.S.2    Towery, H.3
  • 41
    • 26244456414 scopus 로고    scopus 로고
    • ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity
    • Wang H, Kouri G, Wollheim CB. ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 2005;118(17):3905
    • (2005) J. Cell Sci. , vol.118 , Issue.17 , pp. 3905
    • Wang, H.1    Kouri, G.2    Wollheim, C.B.3
  • 42
    • 50549202600 scopus 로고
    • The glucose fatty-acid cycle.its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus
    • Randle P, Garland P, Hales C, Newsholme E. The glucose fatty-acid cycle.its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1(7285):785
    • (1963) Lancet , vol.1 , Issue.7285 , pp. 785
    • Randle, P.1    Garland, P.2    Hales, C.3    Newsholme, E.4
  • 43
    • 0035458922 scopus 로고    scopus 로고
    • Independent influences of central fat and skeletal muscle lipids on insulin sensitivity
    • Furler SM, Poynten AM, Kriketos AD, et al. Independent influences of central fat and skeletal muscle lipids on insulin sensitivity. Obesity 2001;9(9):535-43
    • (2001) Obesity , vol.9 , Issue.9 , pp. 535-543
    • Furler, S.M.1    Poynten, A.M.2    Kriketos, A.D.3
  • 44
    • 25844432311 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency
    • Koves TR, Li P, An J, et al. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 2005;280(39):33588-98
    • (2005) J. Biol. Chem. , vol.280 , Issue.39 , pp. 33588-98
    • Koves, T.R.1    Li, P.2    An, J.3
  • 45
    • 28544438180 scopus 로고    scopus 로고
    • PGC-1 {alpha} coactivates PDK4 gene expression via the orphan nuclear receptor ERR {alpha}: A mechanism for transcriptional control of muscle glucose metabolism
    • Wende AR, Huss JM, Schaeffer PJ, et al. PGC-1 {alpha} coactivates PDK4 gene expression via the orphan nuclear receptor ERR {alpha}: A mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 2005;25(24):10684
    • (2005) Mol. Cell Biol. , vol.25 , Issue.24 , pp. 10684
    • Wende, A.R.1    Huss, J.M.2    Schaeffer, P.J.3
  • 46
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogeniccoactivator PGC-1
    • Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogeniccoactivator PGC-1. Cell 1999;98(1):115-24
    • (1999) Cell , vol.98 , Issue.1 , pp. 115-124
    • Wu, Z.1    Puigserver, P.2    Andersson, U.3
  • 47
    • 10744224439 scopus 로고    scopus 로고
    • Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria
    • Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2003;115(5):629-40
    • (2003) Cell , vol.115 , Issue.5 , pp. 629-640
    • Mootha, V.K.1    Bunkenborg, J.2    Olsen, J.V.3
  • 48
    • 0037477855 scopus 로고    scopus 로고
    • Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
    • Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. PNAS 2003;100(14):8466-71
    • (2003) PNAS , vol.100 , Issue.14 , pp. 8466-8471
    • Patti, M.E.1    Butte, A.J.2    Crunkhorn, S.3
  • 49
    • 2342592545 scopus 로고    scopus 로고
    • The estrogen-related receptor alpha (ERRalpha) functions in PPARgammacoactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis
    • Schreiber SN, Emter R, Hock MB, et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgammacoactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 2004;101(17):6472
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.17 , pp. 6472
    • Schreiber, S.N.1    Emter, R.2    Hock, M.B.3
  • 50
    • 2342477730 scopus 로고    scopus 로고
    • Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle
    • Mootha VK, Handschin C, Arlow D, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 2004;101(17):6570
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.17 , pp. 6570
    • Mootha, V.K.1    Handschin, C.2    Arlow, D.3
  • 51
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000;20(5):1868-76
    • (2000) Mol. Cell Biol. , vol.20 , Issue.5 , pp. 1868-1876
    • Vega, R.B.1    Huss, J.M.2    Kelly, D.P.3
  • 52
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
    • Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007;26(7):1913-23
    • (2007) Embo J. , vol.26 , Issue.7 , pp. 1913-1923
    • Gerhart-Hines, Z.1    Rodgers, J.T.2    Bare, O.3
  • 53
    • 47749128879 scopus 로고    scopus 로고
    • SIRT1 protects against high-fat diet-induced metabolic damage
    • Pfluger PT, Herranz D, Velasco-Miguel S, et al. SIRT1 protects against high-fat diet-induced metabolic damage. PNAS 2008;105(28):9793-8
    • (2008) PNAS , vol.105 , Issue.28 , pp. 9793-9798
    • Pfluger, P.T.1    Herranz, D.2    Velasco-Miguel, S.3
  • 54
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
    • Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. PNAS 2007;104(29):12017-22
    • (2007) PNAS , vol.104 , Issue.29 , pp. 12017-22
    • Jager, S.1    Handschin, C.2    St-Pierre, J.3    Spiegelman, B.M.4
  • 55
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity
    • Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity. Nature 2009;458(7241):1056-60
    • (2009) Nature , vol.458 , Issue.7241 , pp. 1056-1060
    • Canto, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 56
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of nampt
    • Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of nampt. Dev Cell 2008;14(5):661-73
    • (2008) Dev. Cell , vol.14 , Issue.5 , pp. 661-673
    • Fulco, M.1    Cen, Y.2    Zhao, P.3
  • 57
    • 33845411854 scopus 로고    scopus 로고
    • Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo
    • Suwa M, Egashira T, Nakano H, et al. Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 2006;101(6):1685
    • (2006) J. Appl. Physiol. , vol.101 , Issue.6 , pp. 1685
    • Suwa, M.1    Egashira, T.2    Nakano, H.3
  • 58
    • 64549127790 scopus 로고    scopus 로고
    • PGC-1 [alpha] SIRT1 and AMPK, an energy sensing network that controls energy expenditure
    • Canto C, Auwerx J. PGC-1 [alpha], SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009;20(2):98
    • (2009) Curr. Opin. Lipidol. , vol.20 , Issue.2 , pp. 98
    • Canto, C.1    Auwerx, J.2
  • 59
    • 55549096745 scopus 로고    scopus 로고
    • SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1
    • Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. J Biol Chem 2008;283(41):27628
    • (2008) J. Biol. Chem. , vol.283 , Issue.41 , pp. 27628
    • Lan, F.1    Cacicedo, J.M.2    Ruderman, N.3    Ido, Y.4
  • 60
    • 50649112638 scopus 로고    scopus 로고
    • SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
    • Hou X, Xu S, Maitland-Toolan KA, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 2008;283(29):20015-26
    • (2008) J. Biol. Chem. , vol.283 , Issue.29 , pp. 20015-26
    • Hou, X.1    Xu, S.2    Maitland-Toolan, K.A.3
  • 61
    • 0037379283 scopus 로고    scopus 로고
    • Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles
    • Jessen N, Pold R, Buhl ES, et al. Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 2003;94(4):1373
    • (2003) J. Appl. Physiol. , vol.94 , Issue.4 , pp. 1373
    • Jessen, N.1    Pold, R.2    Buhl, E.S.3
  • 62
    • 0036078863 scopus 로고    scopus 로고
    • Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin
    • Fisher JS, Gao J, Han DH, et al. Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 2002;282(1):E18-23
    • (2002) Am. J. Physiol. Endocrinol. Metab. , vol.282 , Issue.1
    • Fisher, J.S.1    Gao, J.2    Han, D.H.3
  • 63
    • 0035957375 scopus 로고    scopus 로고
    • Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1
    • Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. PNAS 2001;98(7):3820
    • (2001) PNAS , vol.98 , Issue.7 , pp. 3820
    • Michael, L.F.1    Wu, Z.2    Cheatham, R.B.3
  • 64
    • 33644695373 scopus 로고    scopus 로고
    • Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase
    • Holmes BF, Sparling DP, Olson AL, et al. Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab 2005;289(6):E1071-6
    • (2005) Am. J. Physiol. Endocrinol. Metab. , vol.289 , Issue.6
    • Holmes, B.F.1    Sparling, D.P.2    Olson, A.L.3
  • 65
    • 0033525870 scopus 로고    scopus 로고
    • Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene
    • Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999;283(5407):1544-8
    • (1999) Science , vol.283 , Issue.5407 , pp. 1544-1548
    • Elchebly, M.1    Payette, P.2    Michaliszyn, E.3
  • 66
    • 0037143754 scopus 로고    scopus 로고
    • PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice
    • Zinker BA, Rondinone CM, Trevillyan JM, et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. PNAS 2002;99(17):11357-62
    • (2002) PNAS , vol.99 , Issue.17 , pp. 11357-62
    • Zinker, B.A.1    Rondinone, C.M.2    Trevillyan, J.M.3
  • 67
    • 4944245398 scopus 로고    scopus 로고
    • Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
    • Vaquero A, Scher M, Lee D, et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004;16(1):93-105
    • (2004) Mol. Cell , vol.16 , Issue.1 , pp. 93-105
    • Vaquero, A.1    Scher, M.2    Lee, D.3
  • 68
    • 0141719702 scopus 로고    scopus 로고
    • Small molecule activators of sirtuinsextend saccharomyces cerevisiae lifespan
    • Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuinsextend saccharomyces cerevisiae lifespan. Nature 2003;425(6954):191-6
    • (2003) Nature , vol.425 , Issue.6954 , pp. 191-196
    • Howitz, K.T.1    Bitterman, K.J.2    Cohen, H.Y.3
  • 69
    • 0000567961 scopus 로고    scopus 로고
    • Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat
    • Barzilai N, Banerjee S, Hawkins M, et al. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest 1998;101(7):1353
    • (1998) J. Clin. Invest. , vol.101 , Issue.7 , pp. 1353
    • Barzilai, N.1    Banerjee, S.2    Hawkins, M.3
  • 70
    • 2342647592 scopus 로고    scopus 로고
    • Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans
    • Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 2004;101(17):6659-63
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.17 , pp. 6659-6663
    • Fontana, L.1    Meyer, T.E.2    Klein, S.3    Holloszy, J.O.4
  • 71
    • 0038584904 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling
    • Gu F, Dube N, Kim JW, et al. Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol Cell Biol 2003;23(11):3753
    • (2003) Mol. Cell Biol. , vol.23 , Issue.11 , pp. 3753
    • Gu, F.1    Dube, N.2    Kim, J.W.3
  • 72
    • 0042330251 scopus 로고    scopus 로고
    • Minireview: The adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis
    • Rajala MW, Scherer PE. Minireview: The adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 2003;144(9):3765
    • (2003) Endocrinology , vol.144 , Issue.9 , pp. 3765
    • Rajala, M.W.1    Scherer, P.E.2
  • 73
    • 19044393872 scopus 로고    scopus 로고
    • Adipose tissue, inflammation, and cardiovascular disease
    • Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005;96(9):939-49
    • (2005) Circ. Res. , vol.96 , Issue.9 , pp. 939-949
    • Berg, A.H.1    Scherer, P.E.2
  • 74
    • 18844432308 scopus 로고    scopus 로고
    • Adiponectin and adiponectin receptors
    • Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 2005;26(3):439-51
    • (2005) Endocr. Rev. , vol.26 , Issue.3 , pp. 439-451
    • Kadowaki, T.1    Yamauchi, T.2
  • 75
    • 33845985335 scopus 로고    scopus 로고
    • SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer- binding protein alpha transcriptional complex
    • Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 2006;281(52):39915
    • (2006) J. Biol. Chem. , vol.281 , Issue.52 , pp. 39915
    • Qiao, L.1    Shao, J.2
  • 76
    • 34948883324 scopus 로고    scopus 로고
    • SIRT1 deacetylates and positively regulates the nuclear receptor LXR
    • Li X, Zhang S, Blander G, et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007;28(1):91-106
    • (2007) Mol. Cell , vol.28 , Issue.1 , pp. 91-106
    • Li, X.1    Zhang, S.2    Blander, G.3
  • 77
    • 36749087548 scopus 로고    scopus 로고
    • Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
    • Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450(7170):712-16
    • (2007) Nature , vol.450 , Issue.7170 , pp. 712-716
    • Milne, J.C.1    Lambert, P.D.2    Schenk, S.3
  • 78
    • 63149150180 scopus 로고    scopus 로고
    • Discovery of oxazolo [4, 5-b] pyridines and related heterocyclic analogs as novel SIRT1 activators
    • Bemis JE, Vu CB, Xie R, et al. Discovery of oxazolo [4, 5-b] pyridines and related heterocyclic analogs as novel SIRT1 activators. Bioorg Med Chem Lett 2009;19(8):2350-3
    • (2009) Bioorg Med Chem Lett , vol.19 , Issue.8 , pp. 2350-2353
    • Bemis, J.E.1    Vu, C.B.2    Xie, R.3
  • 79
    • 64349118889 scopus 로고    scopus 로고
    • Discovery of imidazo [1, 2-b] thiazole derivatives as novel SIRT1 activators
    • Vu CB, Bemis JE, Disch JS, et al. Discovery of imidazo [1, 2-b] thiazole derivatives as novel SIRT1 activators. J Med Chem 2009;52(5):1275-83
    • (2009) J. Med. Chem. , vol.52 , Issue.5 , pp. 1275-1283
    • Vu, C.B.1    Bemis, J.E.2    Disch, J.S.3
  • 80
    • 77958488312 scopus 로고    scopus 로고
    • SIRT1 activation by small molecules
    • Dai H, Kustigian L, Carney D, et al. SIRT1 activation by small molecules. J Biol Chem 2010;285(43):32695-703
    • (2010) J. Biol. Chem. , vol.285 , Issue.43 , pp. 32695-703
    • Dai, H.1    Kustigian, L.2    Carney, D.3
  • 81
    • 77950246109 scopus 로고    scopus 로고
    • SRT1720 SRT2183 SRT1460 and resveratrol are not direct activators of SIRT1
    • Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 2010;285(11):8340
    • (2010) J. Biol. Chem. , vol.285 , Issue.11 , pp. 8340
    • Pacholec, M.1    Bleasdale, J.E.2    Chrunyk, B.3
  • 82
    • 84861852370 scopus 로고    scopus 로고
    • Are sirtuins viable targets for improving healthspan and lifespan
    • Baur JA, Ungvari Z, Minor RK, et al. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 2012;11(6):443-61
    • (2012) Nat. Rev. Drug. Discov. , vol.11 , Issue.6 , pp. 443-461
    • Baur, J.A.1    Ungvari, Z.2    Minor, R.K.3
  • 83
    • 58149105457 scopus 로고    scopus 로고
    • A review of SIRT1 and SIRT1 modulators in cardiovascular and metabolic diseases
    • Pillarisetti S. A review of SIRT1 and SIRT1 modulators in cardiovascular and metabolic diseases. Recent Patents Cardiovasc Drug Discov 2008;3(3):156-64
    • (2008) Recent Patents Cardiovasc. Drug Discov. , vol.3 , Issue.3 , pp. 156-164
    • Pillarisetti, S.1
  • 84
    • 69949096844 scopus 로고    scopus 로고
    • Study of 1, 4-dihydropyridine structural scaffold: Discovery of novel sirtuin activators and inhibitors
    • Mai A, Valente S, Meade S, et al. Study of 1, 4-dihydropyridine structural scaffold: Discovery of novel sirtuin activators and inhibitors. J Med Chem 2009;52(17):5496-504
    • (2009) J. Med. Chem. , vol.52 , Issue.17 , pp. 5496-5504
    • Mai, A.1    Valente, S.2    Meade, S.3
  • 85
    • 78751663378 scopus 로고    scopus 로고
    • SIRT1 modulation as a novel approach to the treatment of diseases of aging
    • Charles AB, James LE, Christine L, et al. SIRT1 modulation as a novel approach to the treatment of diseases of aging. J Med Chem 2011;54:417-32
    • (2011) J. Med. Chem. , vol.54 , pp. 417-432
    • Charles, A.B.1    James, L.E.2    Christine, L.3
  • 91
  • 92
    • 77957655795 scopus 로고    scopus 로고
    • Human Sirt-1: Molecular modeling and structure-f unction relationships of an unordered protein
    • Autiero I, Costantini S, Colonna G. Human sirt-1: Molecular modeling and structure-f unction relationships of an unordered protein. PLoS ONE 2009;4(10):e7350
    • (2009) Plos One , vol.4 , Issue.10
    • Autiero, I.1    Costantini, S.2    Colonna, G.3
  • 93
    • 73449091515 scopus 로고    scopus 로고
    • Rev-erb-alpha: An integrator of circadian rhythms and metabolism
    • Duez H, Staels B. Rev-erb-alpha: An integrator of circadian rhythms and metabolism. J Appl Physiol 2009;107(6):1972-80
    • (2009) J. Appl. Physiol. , vol.107 , Issue.6 , pp. 1972-1980
    • Duez, H.1    Staels, B.2
  • 94
    • 77955152755 scopus 로고    scopus 로고
    • Nuclear receptors linking circadian rhythms and cardiometabolic control
    • Duez H, Staels B. Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler Thromb Vasc Biol 2010;30(8):1529-34
    • (2010) Arterioscler Thromb. Vasc. Biol. , vol.30 , Issue.8 , pp. 1529-1534
    • Duez, H.1    Staels, B.2
  • 95
    • 77957655795 scopus 로고    scopus 로고
    • Human sirt-1: Molecular modeling and structure-function relationships of an unordered protein
    • Autiero I, Costantini S, Colonna G. Human sirt-1: Molecular modeling and structure-function relationships of an unordered protein. PLoS ONE 2009;4(10):e7350
    • (2009) Plos One , vol.4 , Issue.10
    • Autiero, I.1    Costantini, S.2    Colonna, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.