-
1
-
-
84872208484
-
A website provided with the current statistical information about diabetes
-
Brussels, Belgium. Available from
-
Regional overview, International Diabetes Federation. Brussels, Belgium. Available from: Http://www.idf.org/diabetesatlas/regional-overview . A website provided with the current statistical information about diabetes.
-
Regional Overview International Diabetes Federation
-
-
-
2
-
-
79955614502
-
Genetics of type 2 diabetes: Pathophysiologic and clinical relevance
-
Herder C, Roden M. Genetics of type 2 diabetes: Pathophysiologic and clinical relevance. Eur J Clin Invest 2011;41(6):679-92
-
(2011)
Eur. J. Clin. Invest.
, vol.41
, Issue.6
, pp. 679-692
-
-
Herder, C.1
Roden, M.2
-
3
-
-
84885467038
-
Diagnosis and classification of diabetes mellitus
-
American Diabetes Association.
-
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2011;3(1):562-9
-
(2011)
Diabetes Care
, vol.3
, Issue.1
, pp. 562-569
-
-
-
4
-
-
60449118870
-
SIRT1 genetic variation and mortality in type 2 diabetes: Interaction with smoking and dietary niacin
-
Zillikens MC, van Meurs JBJ, Sijbrands EJG, et al. SIRT1 genetic variation and mortality in type 2 diabetes: Interaction with smoking and dietary niacin. Free Radic Biol Med 2009;46(6):836-41
-
(2009)
Free Radic. Biol. Med.
, vol.46
, Issue.6
, pp. 836-841
-
-
Zillikens, M.C.1
Van Meurs, J.B.J.2
Sijbrands, E.J.G.3
-
5
-
-
0035936763
-
New perspectives into the molecular pathogenesis and treatment of type 2 diabetes
-
Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 2001; 104(4):517
-
(2001)
Cell
, vol.104
, Issue.4
, pp. 517
-
-
Saltiel, A.R.1
-
6
-
-
2342466734
-
Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030
-
Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-53
-
(2004)
Diabetes Care
, vol.27
, pp. 1047-1053
-
-
Wild, S.1
Roglic, G.2
Green, A.3
-
7
-
-
0037223174
-
Prevalence of obesity, diabetes, and obesity-related health risk factors 2001
-
Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003;289(1):76
-
(2003)
JAMA
, vol.289
, Issue.1
, pp. 76
-
-
Mokdad, A.H.1
Ford, E.S.2
Bowman, B.A.3
-
8
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434(7029):113-18
-
(2005)
Nature
, vol.434
, Issue.7029
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
-
9
-
-
81555226055
-
SIRTuins: Molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription
-
Ramkumar R, Richa G, Marija KD, Constantinos D. SIRTuins: Molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol 2011;2011:1-17
-
(2011)
J. Biomed. Biotechnol.
, vol.2011
, pp. 1-17
-
-
Ramkumar, R.1
Richa, G.2
Marija, K.D.3
Constantinos, D.4
-
10
-
-
0037160097
-
Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
-
Bitterman KJ, Anderson RM, Cohen HY, et al. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002;277(47):45099
-
(2002)
J. Biol. Chem.
, vol.277
, Issue.47
, pp. 45099
-
-
Bitterman, K.J.1
Anderson, R.M.2
Cohen, H.Y.3
-
11
-
-
0041571570
-
Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry
-
Sauve AA, Schramm VL. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry (N Y) 2003;42(31):9249-56
-
(2003)
Biochemistry (N. Y.)
, vol.42
, Issue.31
, pp. 9249-9256
-
-
Sauve, A.A.1
Schramm, V.L.2
-
12
-
-
0037066738
-
Conserved enzymatic production and biological effect of O-acetyl-ADPribose by silent information regulator 2-like NAD -dependent deacetylases
-
Borra MT, O'Neill FJ, Jackson MD, et al. Conserved enzymatic production and biological effect of O-acetyl-ADPribose by silent information regulator 2-like NAD -dependent deacetylases. J Biol Chem 2002;277(15):12632
-
(2002)
J. Biol. Chem.
, vol.277
, Issue.15
, pp. 12632
-
-
Borra, M.T.1
O'Neill, F.J.2
Jackson, M.D.3
-
13
-
-
0034687694
-
Silent information regulator 2 family of NAD-dependent histone/ protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
-
Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD-dependent histone/ protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. PNAS 2000;97(26):14178
-
(2000)
PNAS
, vol.97
, Issue.26
, pp. 14178
-
-
Tanner, K.G.1
Landry, J.2
Sternglanz, R.3
Denu, J.M.4
-
14
-
-
27544434763
-
Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
-
Chen WY, Wang DH, Yen RWC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005;123(3):437-48
-
(2005)
Cell
, vol.123
, Issue.3
, pp. 437-448
-
-
Chen, W.Y.1
Wang, D.H.2
Yen, R.W.C.3
-
15
-
-
33847035824
-
Phosphorylation of HuR by Chk2 regulates SIRT1 expression
-
Abdelmohsen K, PullmannJr R, Lal A, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007;25(4):543-57
-
(2007)
Mol. Cell
, vol.25
, Issue.4
, pp. 543-557
-
-
Abdelmohsen, K.1
Pullmann Jr., R.2
Lal, A.3
-
16
-
-
33748200050
-
Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage
-
Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006;8(9):1025-31
-
(2006)
Nat. Cell Biol.
, vol.8
, Issue.9
, pp. 1025-1031
-
-
Wang, C.1
Chen, L.2
Hou, X.3
-
17
-
-
35349011726
-
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
-
Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 2007;28(2):277-90
-
(2007)
Mol. Cell
, vol.28
, Issue.2
, pp. 277-290
-
-
Kim, E.J.1
Kho, J.H.2
Kang, M.R.3
Um, S.J.4
-
18
-
-
38749132992
-
Negative regulation of the deacetylase SIRT1 by DBC1
-
Zhao W, Kruse JP, Tang Y, et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 2008;451(7178):587-90
-
(2008)
Nature
, vol.451
, Issue.7178
, pp. 587-590
-
-
Zhao, W.1
Kruse, J.P.2
Tang, Y.3
-
19
-
-
35748962613
-
SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
-
Yang Y, Fu W, Chen J, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 2007;9(11):1253-62
-
(2007)
Nat. Cell Biol.
, vol.9
, Issue.11
, pp. 1253-1262
-
-
Yang, Y.1
Fu, W.2
Chen, J.3
-
20
-
-
79952125287
-
Isabel nogueira cano M sirt1 deacetylase activity and the maintenance of protein homeostasis in response to stress: An overview
-
Patricio Monteiro J, Isabel Nogueira Cano M. SIRT1 deacetylase activity and the maintenance of protein homeostasis in response to stress: An overview. Protein Pept Lett 2011;18(2):167-73
-
(2011)
Protein Pept. Lett.
, vol.18
, Issue.2
, pp. 167-173
-
-
Patricio Monteiro, J.1
-
21
-
-
58149202185
-
Phosphorylation regulates SIRT1 function
-
Sasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function. PLoS One 2008;3(12):e4020
-
(2008)
Plos One
, vol.3
, Issue.12
-
-
Sasaki, T.1
Maier, B.2
Koclega, K.D.3
-
22
-
-
0025768055
-
The role of the liver in metabolic homeostasis: Implications for inborn errors of metabolism
-
Van den Berghe G. The role of the liver in metabolic homeostasis: Implications for inborn errors of metabolism. J Inherit Metab Dis 1991;14(4):407-20
-
(1991)
J. Inherit. Metab. Dis
, vol.14
, Issue.4
, pp. 407-420
-
-
Van Den Berghe, G.1
-
23
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001;413(6852):131-8
-
(2001)
Nature
, vol.413
, Issue.6852
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
-
24
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1a interaction
-
Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1a interaction. Nature 2003;423:550-5
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
Rhee, J.2
Donovan, J.3
-
25
-
-
0242349197
-
Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): Requirement for hepatocyte nuclear factor 4a in gluconeogenesis
-
Rhee J, Inoue Y, Yoon JC, et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): Requirement for hepatocyte nuclear factor 4a in gluconeogenesis. PNAS 2003;100:4012-17
-
(2003)
PNAS
, vol.100
, pp. 4012-4017
-
-
Rhee, J.1
Inoue, Y.2
Yoon, J.C.3
-
27
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A, Schug TT, Xu Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009;9(4):327-38
-
(2009)
Cell Metab.
, vol.9
, Issue.4
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
-
28
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige JN, Lagouge M, Canto C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008;8:347-58
-
(2008)
Cell Metab.
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
Lagouge, M.2
Canto, C.3
-
29
-
-
77953292242
-
Nutrient-dependent regulation of PGC-1 [alpha]'s acetylation state and metabolic function through the enzymatic activities of SIRT1/GCN5
-
Dominy JE Jr, Lee Y, Gerhart-Hines Z, Puigserver P. Nutrient-dependent regulation of PGC-1 [alpha]'s acetylation state and metabolic function through the enzymatic activities of SIRT1/GCN5. Biochimicaet Biophysica Acta (BBA) Proteins Proteomic 2010;1804(8):1676-83
-
(2010)
Biochimicaet Biophysica Acta (BBA) Proteins Proteomic
, vol.1804
, Issue.8
, pp. 1676-1683
-
-
Dominy Jr., J.E.1
Lee, Y.2
Gerhart-Hines, Z.3
Puigserver, P.4
-
30
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen D, Bruno J, Easlon E, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 2008;22(13):1753
-
(2008)
Genes Dev.
, vol.22
, Issue.13
, pp. 1753
-
-
Chen, D.1
Bruno, J.2
Easlon, E.3
-
31
-
-
0037283601
-
The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes
-
Kahn S. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 2003;46(1):3-19
-
(2003)
Diabetologia
, vol.46
, Issue.1
, pp. 3-19
-
-
Kahn, S.1
-
32
-
-
3142559901
-
Beta-cell failure in the pathogenesis of type 2 diabetes mellitus
-
Steppel JH, Horton ES. Beta-cell failure in the pathogenesis of type 2 diabetes mellitus. Curr Diab Rep 2004;4(3):169-75
-
(2004)
Curr. Diab. Rep.
, vol.4
, Issue.3
, pp. 169-175
-
-
Steppel, J.H.1
Horton, E.S.2
-
33
-
-
27744518040
-
FoxO1 protects against pancreatic [beta] cell failure through neurod and MafA induction
-
Kitamura YI, Kitamura T, Kruse JP, et al. FoxO1 protects against pancreatic [beta] cell failure through NeuroD and MafA induction. Cell Metab 2005;2(3):153-63
-
(2005)
Cell Metab.
, vol.2
, Issue.3
, pp. 153-163
-
-
Kitamura, Y.I.1
Kitamura, T.2
Kruse, J.P.3
-
34
-
-
33244486764
-
SIRT1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
-
Bordone L, Motta MC, Picard F, et al. SIRT1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006;4(2):e31
-
(2006)
Plos Biol.
, vol.4
, Issue.2
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
-
35
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic [beta] cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic [beta] cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2(2):105-17
-
(2005)
Cell Metab.
, vol.2
, Issue.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
-
36
-
-
17144429302
-
Calorie restriction SIRT1 and metabolism: Understanding longevity
-
Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nat Rev Mol Cell Biol 2005;6(4):298-305
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, Issue.4
, pp. 298-305
-
-
Bordone, L.1
Guarente, L.2
-
37
-
-
3843145012
-
Role of uncoupling protein-2 upregulation and triglyceride accumulation in impaired glucose-stimulated insulin secretion in a beta-cell lipotoxicity model overexpressing sterol regulatory element-binding protein-1c
-
Yamashita T, Eto K, Okazaki Y, et al. Role of uncoupling protein-2 upregulation and triglyceride accumulation in impaired glucose-stimulated insulin secretion in a beta-cell lipotoxicity model overexpressing sterol regulatory element-binding protein-1c. Endocrinology 2004;145(8):3566
-
(2004)
Endocrinology
, vol.145
, Issue.8
, pp. 3566
-
-
Yamashita, T.1
Eto, K.2
Okazaki, Y.3
-
38
-
-
19944433866
-
Transgenic mice overexpressing nuclear SREBP-1c in pancreatic beta-cells
-
Takahashi A, Motomura K, Kato T, et al. Transgenic mice overexpressing nuclear SREBP-1c in pancreatic beta-cells. Diabetes 2005; 54(2):492
-
(2005)
Diabetes
, vol.54
, Issue.2
, pp. 492
-
-
Takahashi, A.1
Motomura, K.2
Kato, T.3
-
39
-
-
2342483040
-
Srebps suppress IRS-2-mediated insulin signalling in the liver
-
Ide T, Shimano H, Yahagi N, et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol 2004;6(4):351-7
-
(2004)
Nat. Cell Biol.
, vol.6
, Issue.4
, pp. 351-357
-
-
Ide, T.1
Shimano, H.2
Yahagi, N.3
-
40
-
-
0032567937
-
Disruption of IRS-2 causes type 2 diabetes in mice
-
Withers DJ, Gutierrez JS, Towery H, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature-London 1998;391(6670):900-3
-
(1998)
Nature-London
, vol.391
, Issue.6670
, pp. 900-903
-
-
Withers, D.J.1
Gutierrez, J.S.2
Towery, H.3
-
41
-
-
26244456414
-
ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity
-
Wang H, Kouri G, Wollheim CB. ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 2005;118(17):3905
-
(2005)
J. Cell Sci.
, vol.118
, Issue.17
, pp. 3905
-
-
Wang, H.1
Kouri, G.2
Wollheim, C.B.3
-
42
-
-
50549202600
-
The glucose fatty-acid cycle.its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus
-
Randle P, Garland P, Hales C, Newsholme E. The glucose fatty-acid cycle.its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1(7285):785
-
(1963)
Lancet
, vol.1
, Issue.7285
, pp. 785
-
-
Randle, P.1
Garland, P.2
Hales, C.3
Newsholme, E.4
-
43
-
-
0035458922
-
Independent influences of central fat and skeletal muscle lipids on insulin sensitivity
-
Furler SM, Poynten AM, Kriketos AD, et al. Independent influences of central fat and skeletal muscle lipids on insulin sensitivity. Obesity 2001;9(9):535-43
-
(2001)
Obesity
, vol.9
, Issue.9
, pp. 535-543
-
-
Furler, S.M.1
Poynten, A.M.2
Kriketos, A.D.3
-
44
-
-
25844432311
-
Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency
-
Koves TR, Li P, An J, et al. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 2005;280(39):33588-98
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.39
, pp. 33588-98
-
-
Koves, T.R.1
Li, P.2
An, J.3
-
45
-
-
28544438180
-
PGC-1 {alpha} coactivates PDK4 gene expression via the orphan nuclear receptor ERR {alpha}: A mechanism for transcriptional control of muscle glucose metabolism
-
Wende AR, Huss JM, Schaeffer PJ, et al. PGC-1 {alpha} coactivates PDK4 gene expression via the orphan nuclear receptor ERR {alpha}: A mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 2005;25(24):10684
-
(2005)
Mol. Cell Biol.
, vol.25
, Issue.24
, pp. 10684
-
-
Wende, A.R.1
Huss, J.M.2
Schaeffer, P.J.3
-
46
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogeniccoactivator PGC-1
-
Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogeniccoactivator PGC-1. Cell 1999;98(1):115-24
-
(1999)
Cell
, vol.98
, Issue.1
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
-
47
-
-
10744224439
-
Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria
-
Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2003;115(5):629-40
-
(2003)
Cell
, vol.115
, Issue.5
, pp. 629-640
-
-
Mootha, V.K.1
Bunkenborg, J.2
Olsen, J.V.3
-
48
-
-
0037477855
-
Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
-
Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. PNAS 2003;100(14):8466-71
-
(2003)
PNAS
, vol.100
, Issue.14
, pp. 8466-8471
-
-
Patti, M.E.1
Butte, A.J.2
Crunkhorn, S.3
-
49
-
-
2342592545
-
The estrogen-related receptor alpha (ERRalpha) functions in PPARgammacoactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis
-
Schreiber SN, Emter R, Hock MB, et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgammacoactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 2004;101(17):6472
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, Issue.17
, pp. 6472
-
-
Schreiber, S.N.1
Emter, R.2
Hock, M.B.3
-
50
-
-
2342477730
-
Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle
-
Mootha VK, Handschin C, Arlow D, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 2004;101(17):6570
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, Issue.17
, pp. 6570
-
-
Mootha, V.K.1
Handschin, C.2
Arlow, D.3
-
51
-
-
0033977890
-
The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000;20(5):1868-76
-
(2000)
Mol. Cell Biol.
, vol.20
, Issue.5
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
52
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007;26(7):1913-23
-
(2007)
Embo J.
, vol.26
, Issue.7
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
-
53
-
-
47749128879
-
SIRT1 protects against high-fat diet-induced metabolic damage
-
Pfluger PT, Herranz D, Velasco-Miguel S, et al. SIRT1 protects against high-fat diet-induced metabolic damage. PNAS 2008;105(28):9793-8
-
(2008)
PNAS
, vol.105
, Issue.28
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
-
54
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. PNAS 2007;104(29):12017-22
-
(2007)
PNAS
, vol.104
, Issue.29
, pp. 12017-22
-
-
Jager, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
55
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity
-
Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity. Nature 2009;458(7241):1056-60
-
(2009)
Nature
, vol.458
, Issue.7241
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
-
56
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of nampt
-
Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of nampt. Dev Cell 2008;14(5):661-73
-
(2008)
Dev. Cell
, vol.14
, Issue.5
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
-
57
-
-
33845411854
-
Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo
-
Suwa M, Egashira T, Nakano H, et al. Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 2006;101(6):1685
-
(2006)
J. Appl. Physiol.
, vol.101
, Issue.6
, pp. 1685
-
-
Suwa, M.1
Egashira, T.2
Nakano, H.3
-
58
-
-
64549127790
-
PGC-1 [alpha] SIRT1 and AMPK, an energy sensing network that controls energy expenditure
-
Canto C, Auwerx J. PGC-1 [alpha], SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009;20(2):98
-
(2009)
Curr. Opin. Lipidol.
, vol.20
, Issue.2
, pp. 98
-
-
Canto, C.1
Auwerx, J.2
-
59
-
-
55549096745
-
SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1
-
Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. J Biol Chem 2008;283(41):27628
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.41
, pp. 27628
-
-
Lan, F.1
Cacicedo, J.M.2
Ruderman, N.3
Ido, Y.4
-
60
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
-
Hou X, Xu S, Maitland-Toolan KA, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 2008;283(29):20015-26
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.29
, pp. 20015-26
-
-
Hou, X.1
Xu, S.2
Maitland-Toolan, K.A.3
-
61
-
-
0037379283
-
Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles
-
Jessen N, Pold R, Buhl ES, et al. Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 2003;94(4):1373
-
(2003)
J. Appl. Physiol.
, vol.94
, Issue.4
, pp. 1373
-
-
Jessen, N.1
Pold, R.2
Buhl, E.S.3
-
62
-
-
0036078863
-
Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin
-
Fisher JS, Gao J, Han DH, et al. Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 2002;282(1):E18-23
-
(2002)
Am. J. Physiol. Endocrinol. Metab.
, vol.282
, Issue.1
-
-
Fisher, J.S.1
Gao, J.2
Han, D.H.3
-
63
-
-
0035957375
-
Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1
-
Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. PNAS 2001;98(7):3820
-
(2001)
PNAS
, vol.98
, Issue.7
, pp. 3820
-
-
Michael, L.F.1
Wu, Z.2
Cheatham, R.B.3
-
64
-
-
33644695373
-
Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase
-
Holmes BF, Sparling DP, Olson AL, et al. Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab 2005;289(6):E1071-6
-
(2005)
Am. J. Physiol. Endocrinol. Metab.
, vol.289
, Issue.6
-
-
Holmes, B.F.1
Sparling, D.P.2
Olson, A.L.3
-
65
-
-
0033525870
-
Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene
-
Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999;283(5407):1544-8
-
(1999)
Science
, vol.283
, Issue.5407
, pp. 1544-1548
-
-
Elchebly, M.1
Payette, P.2
Michaliszyn, E.3
-
66
-
-
0037143754
-
PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice
-
Zinker BA, Rondinone CM, Trevillyan JM, et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. PNAS 2002;99(17):11357-62
-
(2002)
PNAS
, vol.99
, Issue.17
, pp. 11357-62
-
-
Zinker, B.A.1
Rondinone, C.M.2
Trevillyan, J.M.3
-
67
-
-
4944245398
-
Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
-
Vaquero A, Scher M, Lee D, et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004;16(1):93-105
-
(2004)
Mol. Cell
, vol.16
, Issue.1
, pp. 93-105
-
-
Vaquero, A.1
Scher, M.2
Lee, D.3
-
68
-
-
0141719702
-
Small molecule activators of sirtuinsextend saccharomyces cerevisiae lifespan
-
Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuinsextend saccharomyces cerevisiae lifespan. Nature 2003;425(6954):191-6
-
(2003)
Nature
, vol.425
, Issue.6954
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
-
69
-
-
0000567961
-
Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat
-
Barzilai N, Banerjee S, Hawkins M, et al. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest 1998;101(7):1353
-
(1998)
J. Clin. Invest.
, vol.101
, Issue.7
, pp. 1353
-
-
Barzilai, N.1
Banerjee, S.2
Hawkins, M.3
-
70
-
-
2342647592
-
Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans
-
Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 2004;101(17):6659-63
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, Issue.17
, pp. 6659-6663
-
-
Fontana, L.1
Meyer, T.E.2
Klein, S.3
Holloszy, J.O.4
-
71
-
-
0038584904
-
Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling
-
Gu F, Dube N, Kim JW, et al. Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol Cell Biol 2003;23(11):3753
-
(2003)
Mol. Cell Biol.
, vol.23
, Issue.11
, pp. 3753
-
-
Gu, F.1
Dube, N.2
Kim, J.W.3
-
72
-
-
0042330251
-
Minireview: The adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis
-
Rajala MW, Scherer PE. Minireview: The adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 2003;144(9):3765
-
(2003)
Endocrinology
, vol.144
, Issue.9
, pp. 3765
-
-
Rajala, M.W.1
Scherer, P.E.2
-
73
-
-
19044393872
-
Adipose tissue, inflammation, and cardiovascular disease
-
Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005;96(9):939-49
-
(2005)
Circ. Res.
, vol.96
, Issue.9
, pp. 939-949
-
-
Berg, A.H.1
Scherer, P.E.2
-
74
-
-
18844432308
-
Adiponectin and adiponectin receptors
-
Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 2005;26(3):439-51
-
(2005)
Endocr. Rev.
, vol.26
, Issue.3
, pp. 439-451
-
-
Kadowaki, T.1
Yamauchi, T.2
-
75
-
-
33845985335
-
SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer- binding protein alpha transcriptional complex
-
Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 2006;281(52):39915
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.52
, pp. 39915
-
-
Qiao, L.1
Shao, J.2
-
76
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
Li X, Zhang S, Blander G, et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007;28(1):91-106
-
(2007)
Mol. Cell
, vol.28
, Issue.1
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
-
77
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450(7170):712-16
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
-
78
-
-
63149150180
-
Discovery of oxazolo [4, 5-b] pyridines and related heterocyclic analogs as novel SIRT1 activators
-
Bemis JE, Vu CB, Xie R, et al. Discovery of oxazolo [4, 5-b] pyridines and related heterocyclic analogs as novel SIRT1 activators. Bioorg Med Chem Lett 2009;19(8):2350-3
-
(2009)
Bioorg Med Chem Lett
, vol.19
, Issue.8
, pp. 2350-2353
-
-
Bemis, J.E.1
Vu, C.B.2
Xie, R.3
-
79
-
-
64349118889
-
Discovery of imidazo [1, 2-b] thiazole derivatives as novel SIRT1 activators
-
Vu CB, Bemis JE, Disch JS, et al. Discovery of imidazo [1, 2-b] thiazole derivatives as novel SIRT1 activators. J Med Chem 2009;52(5):1275-83
-
(2009)
J. Med. Chem.
, vol.52
, Issue.5
, pp. 1275-1283
-
-
Vu, C.B.1
Bemis, J.E.2
Disch, J.S.3
-
80
-
-
77958488312
-
SIRT1 activation by small molecules
-
Dai H, Kustigian L, Carney D, et al. SIRT1 activation by small molecules. J Biol Chem 2010;285(43):32695-703
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.43
, pp. 32695-703
-
-
Dai, H.1
Kustigian, L.2
Carney, D.3
-
81
-
-
77950246109
-
SRT1720 SRT2183 SRT1460 and resveratrol are not direct activators of SIRT1
-
Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 2010;285(11):8340
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.11
, pp. 8340
-
-
Pacholec, M.1
Bleasdale, J.E.2
Chrunyk, B.3
-
82
-
-
84861852370
-
Are sirtuins viable targets for improving healthspan and lifespan
-
Baur JA, Ungvari Z, Minor RK, et al. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 2012;11(6):443-61
-
(2012)
Nat. Rev. Drug. Discov.
, vol.11
, Issue.6
, pp. 443-461
-
-
Baur, J.A.1
Ungvari, Z.2
Minor, R.K.3
-
83
-
-
58149105457
-
A review of SIRT1 and SIRT1 modulators in cardiovascular and metabolic diseases
-
Pillarisetti S. A review of SIRT1 and SIRT1 modulators in cardiovascular and metabolic diseases. Recent Patents Cardiovasc Drug Discov 2008;3(3):156-64
-
(2008)
Recent Patents Cardiovasc. Drug Discov.
, vol.3
, Issue.3
, pp. 156-164
-
-
Pillarisetti, S.1
-
84
-
-
69949096844
-
Study of 1, 4-dihydropyridine structural scaffold: Discovery of novel sirtuin activators and inhibitors
-
Mai A, Valente S, Meade S, et al. Study of 1, 4-dihydropyridine structural scaffold: Discovery of novel sirtuin activators and inhibitors. J Med Chem 2009;52(17):5496-504
-
(2009)
J. Med. Chem.
, vol.52
, Issue.17
, pp. 5496-5504
-
-
Mai, A.1
Valente, S.2
Meade, S.3
-
85
-
-
78751663378
-
SIRT1 modulation as a novel approach to the treatment of diseases of aging
-
Charles AB, James LE, Christine L, et al. SIRT1 modulation as a novel approach to the treatment of diseases of aging. J Med Chem 2011;54:417-32
-
(2011)
J. Med. Chem.
, vol.54
, pp. 417-432
-
-
Charles, A.B.1
James, L.E.2
Christine, L.3
-
92
-
-
77957655795
-
Human Sirt-1: Molecular modeling and structure-f unction relationships of an unordered protein
-
Autiero I, Costantini S, Colonna G. Human sirt-1: Molecular modeling and structure-f unction relationships of an unordered protein. PLoS ONE 2009;4(10):e7350
-
(2009)
Plos One
, vol.4
, Issue.10
-
-
Autiero, I.1
Costantini, S.2
Colonna, G.3
-
93
-
-
73449091515
-
Rev-erb-alpha: An integrator of circadian rhythms and metabolism
-
Duez H, Staels B. Rev-erb-alpha: An integrator of circadian rhythms and metabolism. J Appl Physiol 2009;107(6):1972-80
-
(2009)
J. Appl. Physiol.
, vol.107
, Issue.6
, pp. 1972-1980
-
-
Duez, H.1
Staels, B.2
-
94
-
-
77955152755
-
Nuclear receptors linking circadian rhythms and cardiometabolic control
-
Duez H, Staels B. Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler Thromb Vasc Biol 2010;30(8):1529-34
-
(2010)
Arterioscler Thromb. Vasc. Biol.
, vol.30
, Issue.8
, pp. 1529-1534
-
-
Duez, H.1
Staels, B.2
-
95
-
-
77957655795
-
Human sirt-1: Molecular modeling and structure-function relationships of an unordered protein
-
Autiero I, Costantini S, Colonna G. Human sirt-1: Molecular modeling and structure-function relationships of an unordered protein. PLoS ONE 2009;4(10):e7350
-
(2009)
Plos One
, vol.4
, Issue.10
-
-
Autiero, I.1
Costantini, S.2
Colonna, G.3
|