메뉴 건너뛰기




Volumn 28, Issue 6, 2012, Pages 295-302

The complex basis underlying common fragile site instability in cancer

Author keywords

Cancer; DNA damage; Dormant origins; Fragile sites; Genomic instability; Replication

Indexed keywords

CARCINOGENESIS; CHROMOSOME FRAGILE SITE; COMMON FRAGILE SITE; DNA REPLICATION; DNA SEQUENCE; FRA16C GENE; FRA3B GENE; FRA6E GENE; GENE; GENOMIC INSTABILITY; HUMAN; NONHUMAN; PRIORITY JOURNAL; REVIEW;

EID: 84861531415     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2012.02.006     Document Type: Review
Times cited : (68)

References (102)
  • 1
    • 0021278143 scopus 로고
    • DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes
    • Glover T.W., et al. DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet. 1984, 67:136-142.
    • (1984) Hum Genet. , vol.67 , pp. 136-142
    • Glover, T.W.1
  • 2
    • 0032146786 scopus 로고    scopus 로고
    • The murine Fhit gene is highly similar to its human orthologue and maps to a common fragile site region
    • Glover T.W., et al. The murine Fhit gene is highly similar to its human orthologue and maps to a common fragile site region. Cancer Res. 1998, 58:3409-3414.
    • (1998) Cancer Res. , vol.58 , pp. 3409-3414
    • Glover, T.W.1
  • 3
    • 0035826908 scopus 로고    scopus 로고
    • Sequence conservation at human and mouse orthologous common fragile regions, FRA3B/FHIT and Fra14A2/Fhit
    • Shiraishi T., et al. Sequence conservation at human and mouse orthologous common fragile regions, FRA3B/FHIT and Fra14A2/Fhit. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:5722-5727.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 5722-5727
    • Shiraishi, T.1
  • 4
    • 0036266065 scopus 로고    scopus 로고
    • The common fragile site FRA16D and its associated gene WWOX are highly conserved in the mouse at Fra8E1
    • Krummel K.A., et al. The common fragile site FRA16D and its associated gene WWOX are highly conserved in the mouse at Fra8E1. Genes Chromosomes Cancer 2002, 34:154-167.
    • (2002) Genes Chromosomes Cancer , vol.34 , pp. 154-167
    • Krummel, K.A.1
  • 5
    • 4644319208 scopus 로고    scopus 로고
    • Characterization of a conserved aphidicolin-sensitive common fragile site at human 4q22 and mouse 6C1: possible association with an inherited disease and cancer
    • Rozier L., et al. Characterization of a conserved aphidicolin-sensitive common fragile site at human 4q22 and mouse 6C1: possible association with an inherited disease and cancer. Oncogene 2004, 23:6872-6880.
    • (2004) Oncogene , vol.23 , pp. 6872-6880
    • Rozier, L.1
  • 6
    • 21644477348 scopus 로고    scopus 로고
    • Conservation of aphidicolin-induced fragile sites in Papionini (Primates) species and humans
    • Ruiz-Herrera A., et al. Conservation of aphidicolin-induced fragile sites in Papionini (Primates) species and humans. Chromosome Res. 2004, 12:683-690.
    • (2004) Chromosome Res. , vol.12 , pp. 683-690
    • Ruiz-Herrera, A.1
  • 7
    • 0037178723 scopus 로고    scopus 로고
    • ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones
    • Cha R.S., Kleckner N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 2002, 297:602-606.
    • (2002) Science , vol.297 , pp. 602-606
    • Cha, R.S.1    Kleckner, N.2
  • 8
    • 14844286404 scopus 로고    scopus 로고
    • Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites
    • Lemoine F.J., et al. Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 2005, 120:587-598.
    • (2005) Cell , vol.120 , pp. 587-598
    • Lemoine, F.J.1
  • 9
    • 30944462801 scopus 로고    scopus 로고
    • Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast
    • Admire A., et al. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev. 2006, 20:159-173.
    • (2006) Genes Dev. , vol.20 , pp. 159-173
    • Admire, A.1
  • 10
    • 77749331751 scopus 로고    scopus 로고
    • Global screening and extended nomenclature for 230 aphidicolin-inducible fragile sites, including 61 yet unreported ones
    • Mrasek K., et al. Global screening and extended nomenclature for 230 aphidicolin-inducible fragile sites, including 61 yet unreported ones. Int. J. Oncol. 2010, 36:929-940.
    • (2010) Int. J. Oncol. , vol.36 , pp. 929-940
    • Mrasek, K.1
  • 11
    • 0027337930 scopus 로고
    • DNA polymerase epsilon: aphidicolin inhibition and the relationship between polymerase and exonuclease activity
    • Cheng C.H., Kuchta R.D. DNA polymerase epsilon: aphidicolin inhibition and the relationship between polymerase and exonuclease activity. Biochemistry 1993, 32:8568-8574.
    • (1993) Biochemistry , vol.32 , pp. 8568-8574
    • Cheng, C.H.1    Kuchta, R.D.2
  • 12
    • 0018118897 scopus 로고
    • Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha
    • Ikegami S., et al. Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha. Nature 1978, 275:458-460.
    • (1978) Nature , vol.275 , pp. 458-460
    • Ikegami, S.1
  • 13
    • 33748623634 scopus 로고    scopus 로고
    • Common fragile sites as targets for chromosome rearrangements
    • Arlt M.F., et al. Common fragile sites as targets for chromosome rearrangements. DNA Repair 2006, 5:1126-1135.
    • (2006) DNA Repair , vol.5 , pp. 1126-1135
    • Arlt, M.F.1
  • 14
    • 0021241402 scopus 로고
    • Fragile sites and chromosome breakpoints in constitutional rearrangements I. Amniocentesis
    • Hecht F., Hecht B.K. Fragile sites and chromosome breakpoints in constitutional rearrangements I. Amniocentesis. Clin. Genet. 1984, 26:169-173.
    • (1984) Clin. Genet. , vol.26 , pp. 169-173
    • Hecht, F.1    Hecht, B.K.2
  • 15
    • 0021275292 scopus 로고
    • Fragile sites and predisposition to leukemia and lymphoma
    • Yunis J.J. Fragile sites and predisposition to leukemia and lymphoma. Cancer Genet. Cytogenet. 1984, 12:85-88.
    • (1984) Cancer Genet. Cytogenet. , vol.12 , pp. 85-88
    • Yunis, J.J.1
  • 16
    • 0036463767 scopus 로고    scopus 로고
    • A role for common fragile site induction in amplification of human oncogenes
    • Hellman A., et al. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 2002, 1:89-97.
    • (2002) Cancer Cell , vol.1 , pp. 89-97
    • Hellman, A.1
  • 17
    • 0034012083 scopus 로고    scopus 로고
    • Parental origin and mechanisms of formation of cytogenetically recognisable de novo direct and inverted duplications
    • Kotzot D., et al. Parental origin and mechanisms of formation of cytogenetically recognisable de novo direct and inverted duplications. J. Med. Genet. 2000, 37:281-286.
    • (2000) J. Med. Genet. , vol.37 , pp. 281-286
    • Kotzot, D.1
  • 18
    • 30944452172 scopus 로고    scopus 로고
    • Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma
    • Miller C.T., et al. Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene 2006, 25:409-418.
    • (2006) Oncogene , vol.25 , pp. 409-418
    • Miller, C.T.1
  • 19
    • 0037468256 scopus 로고    scopus 로고
    • Common fragile sites are preferential targets for HPV16 integrations in cervical tumors
    • Thorland E.C., et al. Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene 2003, 22:1225-1237.
    • (2003) Oncogene , vol.22 , pp. 1225-1237
    • Thorland, E.C.1
  • 20
    • 0034326237 scopus 로고    scopus 로고
    • Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites
    • Thorland E.C., et al. Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites. Cancer Res. 2000, 60:5916-5921.
    • (2000) Cancer Res. , vol.60 , pp. 5916-5921
    • Thorland, E.C.1
  • 21
    • 14844347289 scopus 로고    scopus 로고
    • The role of viral integration in the development of cervical cancer
    • Yu T., et al. The role of viral integration in the development of cervical cancer. Cancer Genet. Cytogenet. 2005, 158:27-34.
    • (2005) Cancer Genet. Cytogenet. , vol.158 , pp. 27-34
    • Yu, T.1
  • 22
    • 62549166628 scopus 로고    scopus 로고
    • Identification of human papillomavirus type 16 integration sites in high-grade precancerous cervical lesions
    • Matovina M., et al. Identification of human papillomavirus type 16 integration sites in high-grade precancerous cervical lesions. Gynecol. Oncol. 2009, 113:120-127.
    • (2009) Gynecol. Oncol. , vol.113 , pp. 120-127
    • Matovina, M.1
  • 23
    • 79955525482 scopus 로고    scopus 로고
    • Nucleotide deficiency promotes genomic instability in early stages of cancer development
    • Bester A.C., et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011, 145:435-446.
    • (2011) Cell , vol.145 , pp. 435-446
    • Bester, A.C.1
  • 24
    • 33845269825 scopus 로고    scopus 로고
    • Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication
    • Di Micco R., et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006, 444:638-642.
    • (2006) Nature , vol.444 , pp. 638-642
    • Di Micco, R.1
  • 25
    • 17244367849 scopus 로고    scopus 로고
    • DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis
    • Bartkova J., et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005, 434:864-870.
    • (2005) Nature , vol.434 , pp. 864-870
    • Bartkova, J.1
  • 26
    • 17244366865 scopus 로고    scopus 로고
    • Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions
    • Gorgoulis V.G., et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005, 434:907-913.
    • (2005) Nature , vol.434 , pp. 907-913
    • Gorgoulis, V.G.1
  • 28
    • 13144283613 scopus 로고    scopus 로고
    • Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site
    • Mishmar D., et al. Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:8141-8146.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 8141-8146
    • Mishmar, D.1
  • 29
    • 0141864371 scopus 로고    scopus 로고
    • Molecular basis for expression of common and rare fragile sites
    • Zlotorynski E., et al. Molecular basis for expression of common and rare fragile sites. Mol. Cell. Biol. 2003, 23:7143-7151.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 7143-7151
    • Zlotorynski, E.1
  • 30
    • 77950355795 scopus 로고    scopus 로고
    • DNA structure and the Werner protein modulate human DNA polymerase delta-dependent replication dynamics within the common fragile site FRA16D
    • Shah S.N., et al. DNA structure and the Werner protein modulate human DNA polymerase delta-dependent replication dynamics within the common fragile site FRA16D. Nucleic Acids Res. 2010, 38:1149-1162.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 1149-1162
    • Shah, S.N.1
  • 31
    • 34547205070 scopus 로고    scopus 로고
    • An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae
    • Zhang H., Freudenreich C.H. An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol. Cell 2007, 27:367-379.
    • (2007) Mol. Cell , vol.27 , pp. 367-379
    • Zhang, H.1    Freudenreich, C.H.2
  • 32
    • 17444440946 scopus 로고    scopus 로고
    • Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells
    • Ried K., et al. Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum. Mol. Genet. 2000, 9:1651-1663.
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 1651-1663
    • Ried, K.1
  • 33
    • 77955084425 scopus 로고    scopus 로고
    • Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines
    • Mitsui J., et al. Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines. Am. J. Hum. Genet. 2010, 87:75-89.
    • (2010) Am. J. Hum. Genet. , vol.87 , pp. 75-89
    • Mitsui, J.1
  • 34
    • 34248381720 scopus 로고    scopus 로고
    • FRA18C: a new aphidicolin-inducible fragile site on chromosome 18q22, possibly associated with in vivo chromosome breakage
    • Debacker K., et al. FRA18C: a new aphidicolin-inducible fragile site on chromosome 18q22, possibly associated with in vivo chromosome breakage. J. Med. Genet. 2007, 44:347-352.
    • (2007) J. Med. Genet. , vol.44 , pp. 347-352
    • Debacker, K.1
  • 35
    • 79959885574 scopus 로고    scopus 로고
    • Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites
    • Ozeri-Galai E., et al. Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol. Cell 2011, 43:122-131.
    • (2011) Mol. Cell , vol.43 , pp. 122-131
    • Ozeri-Galai, E.1
  • 36
    • 0031924605 scopus 로고    scopus 로고
    • Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction
    • Le Beau M.M., et al. Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction. Hum. Mol. Genet. 1998, 7:755-761.
    • (1998) Hum. Mol. Genet. , vol.7 , pp. 755-761
    • Le Beau, M.M.1
  • 37
    • 0033051760 scopus 로고    scopus 로고
    • Allele-specific late replication and fragility of the most active common fragile site, FRA3B
    • Wang L., et al. Allele-specific late replication and fragility of the most active common fragile site, FRA3B. Hum. Mol. Genet. 1999, 8:431-437.
    • (1999) Hum. Mol. Genet. , vol.8 , pp. 431-437
    • Wang, L.1
  • 38
    • 0345283196 scopus 로고    scopus 로고
    • The role of late/slow replication of the FRA16D in common fragile site induction
    • Palakodeti A., et al. The role of late/slow replication of the FRA16D in common fragile site induction. Genes Chromosomes Cancer 2004, 39:71-76.
    • (2004) Genes Chromosomes Cancer , vol.39 , pp. 71-76
    • Palakodeti, A.1
  • 39
    • 0032485047 scopus 로고    scopus 로고
    • Frequent homozygous deletions in the FRA3B region in tumor cell lines still leave the FHIT exons intact
    • Wang L., et al. Frequent homozygous deletions in the FRA3B region in tumor cell lines still leave the FHIT exons intact. Oncogene 1998, 16:635-642.
    • (1998) Oncogene , vol.16 , pp. 635-642
    • Wang, L.1
  • 40
    • 0034117095 scopus 로고    scopus 로고
    • Replication delay along FRA7H, a common fragile site on human chromosome 7, leads to chromosomal instability
    • Hellman A., et al. Replication delay along FRA7H, a common fragile site on human chromosome 7, leads to chromosomal instability. Mol. Cell. Biol. 2000, 20:4420-4427.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 4420-4427
    • Hellman, A.1
  • 41
    • 50849097570 scopus 로고    scopus 로고
    • Replication timing of two human common fragile sites: FRA1H and FRA2G
    • Pelliccia F., et al. Replication timing of two human common fragile sites: FRA1H and FRA2G. Cytogenet. Genome Res. 2008, 121:196-200.
    • (2008) Cytogenet. Genome Res. , vol.121 , pp. 196-200
    • Pelliccia, F.1
  • 42
    • 13144275264 scopus 로고    scopus 로고
    • Very late DNA replication in the human cell cycle
    • Widrow R.J., et al. Very late DNA replication in the human cell cycle. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:11246-11250.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 11246-11250
    • Widrow, R.J.1
  • 43
    • 0028032302 scopus 로고
    • Alignment and sensitive detection of DNA by a moving interface
    • Bensimon A., et al. Alignment and sensitive detection of DNA by a moving interface. Science 1994, 265:2096-2098.
    • (1994) Science , vol.265 , pp. 2096-2098
    • Bensimon, A.1
  • 44
    • 0031279857 scopus 로고    scopus 로고
    • Mapping replication origins by quantifying relative abundance of nascent DNA strands using competitive polymerase chain reaction
    • Giacca M., et al. Mapping replication origins by quantifying relative abundance of nascent DNA strands using competitive polymerase chain reaction. Methods 1997, 13:301-312.
    • (1997) Methods , vol.13 , pp. 301-312
    • Giacca, M.1
  • 45
    • 79551661935 scopus 로고    scopus 로고
    • Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site
    • Letessier A., et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 2011, 470:120-123.
    • (2011) Nature , vol.470 , pp. 120-123
    • Letessier, A.1
  • 46
    • 76349123622 scopus 로고    scopus 로고
    • Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
    • Hansen R.S., et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:139-144.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 139-144
    • Hansen, R.S.1
  • 47
    • 82955195401 scopus 로고    scopus 로고
    • Molecular profiling of common fragile sites in human fibroblasts
    • Le Tallec B., et al. Molecular profiling of common fragile sites in human fibroblasts. Nat. Struct. Mol. Biol. 2011, 18:1421-1423.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1421-1423
    • Le Tallec, B.1
  • 48
    • 77649290673 scopus 로고    scopus 로고
    • Impaired replication dynamics at the FRA3B common fragile site
    • Palakodeti A., et al. Impaired replication dynamics at the FRA3B common fragile site. Hum. Mol. Genet. 2010, 19:99-110.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 99-110
    • Palakodeti, A.1
  • 49
    • 78649333884 scopus 로고    scopus 로고
    • Replication dynamics at common fragile site FRA6E
    • Palumbo E., et al. Replication dynamics at common fragile site FRA6E. Chromosoma 2010, 119:575-587.
    • (2010) Chromosoma , vol.119 , pp. 575-587
    • Palumbo, E.1
  • 50
    • 84255198334 scopus 로고    scopus 로고
    • Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes
    • Helmrich A., et al. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 2011, 44:966-977.
    • (2011) Mol. Cell , vol.44 , pp. 966-977
    • Helmrich, A.1
  • 51
    • 36248991908 scopus 로고    scopus 로고
    • Non-random inactivation of large common fragile site genes in different cancers
    • McAvoy S., et al. Non-random inactivation of large common fragile site genes in different cancers. Cytogenet. Genome Res. 2007, 118:260-269.
    • (2007) Cytogenet. Genome Res. , vol.118 , pp. 260-269
    • McAvoy, S.1
  • 52
    • 0030890750 scopus 로고    scopus 로고
    • Positions of chromosome 3p14.2 fragile sites (FRA3B) within the FHIT gene
    • Zimonjic D.B.B., et al. Positions of chromosome 3p14.2 fragile sites (FRA3B) within the FHIT gene. Cancer Res. 1997, 57:1166-1170.
    • (1997) Cancer Res. , vol.57 , pp. 1166-1170
    • Zimonjic, D.B.B.1
  • 53
    • 50249162487 scopus 로고    scopus 로고
    • Molecular parameters of genome instability: roles of fragile genes at common fragile sites
    • Pichiorri F., et al. Molecular parameters of genome instability: roles of fragile genes at common fragile sites. J. Cell. Biochem. 2008, 104:1525-1533.
    • (2008) J. Cell. Biochem. , vol.104 , pp. 1525-1533
    • Pichiorri, F.1
  • 54
    • 0030060945 scopus 로고    scopus 로고
    • FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites
    • Wilke C.M., et al. FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum. Mol. Genet. 1996, 5:187-195.
    • (1996) Hum. Mol. Genet. , vol.5 , pp. 187-195
    • Wilke, C.M.1
  • 55
    • 0035890419 scopus 로고    scopus 로고
    • WWOX, the FRA16D gene, behaves as a suppressor of tumor growth
    • Bednarek A.K., et al. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res. 2001, 61:8068-8073.
    • (2001) Cancer Res. , vol.61 , pp. 8068-8073
    • Bednarek, A.K.1
  • 56
    • 30144436775 scopus 로고    scopus 로고
    • Common chromosomal fragile sites and cancer: focus on FRA16D
    • O'Keefe L.V., Richards R.I. Common chromosomal fragile sites and cancer: focus on FRA16D. Cancer Lett. 2006, 232:37-47.
    • (2006) Cancer Lett. , vol.232 , pp. 37-47
    • O'Keefe, L.V.1    Richards, R.I.2
  • 57
    • 0042522482 scopus 로고    scopus 로고
    • Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer
    • Denison S.R., et al. Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer. Genes Chromosomes Cancer 2003, 38:40-52.
    • (2003) Genes Chromosomes Cancer , vol.38 , pp. 40-52
    • Denison, S.R.1
  • 58
    • 0037473048 scopus 로고    scopus 로고
    • Characterization of the common fragile site FRA9E and its potential role in ovarian cancer
    • Callahan G., et al. Characterization of the common fragile site FRA9E and its potential role in ovarian cancer. Oncogene 2003, 22:590-601.
    • (2003) Oncogene , vol.22 , pp. 590-601
    • Callahan, G.1
  • 59
    • 77955764987 scopus 로고    scopus 로고
    • Deletion at fragile sites is a common and early event in Barrett's esophagus
    • Lai L.A., et al. Deletion at fragile sites is a common and early event in Barrett's esophagus. Mol. Cancer Res. 2010, 8:1084-1094.
    • (2010) Mol. Cancer Res. , vol.8 , pp. 1084-1094
    • Lai, L.A.1
  • 60
    • 33746255899 scopus 로고    scopus 로고
    • Gene amplification in cancer
    • Albertson D.G. Gene amplification in cancer. Trends Genet. 2006, 22:447-455.
    • (2006) Trends Genet. , vol.22 , pp. 447-455
    • Albertson, D.G.1
  • 61
    • 33845499454 scopus 로고    scopus 로고
    • Relationship between FRA11F and 11q13 gene amplification in oral cancer
    • Reshmi S.C., et al. Relationship between FRA11F and 11q13 gene amplification in oral cancer. Genes Chromosomes Cancer 2007, 46:143-154.
    • (2007) Genes Chromosomes Cancer , vol.46 , pp. 143-154
    • Reshmi, S.C.1
  • 62
    • 77957904128 scopus 로고    scopus 로고
    • Breakages at common fragile sites set boundaries of amplified regions in two leukemia cell lines K562 - molecular characterization of FRA2H and localization of a new CFS FRA2S
    • Pelliccia F., et al. Breakages at common fragile sites set boundaries of amplified regions in two leukemia cell lines K562 - molecular characterization of FRA2H and localization of a new CFS FRA2S. Cancer Lett. 2010, 299:37-44.
    • (2010) Cancer Lett. , vol.299 , pp. 37-44
    • Pelliccia, F.1
  • 63
    • 0036849512 scopus 로고    scopus 로고
    • Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I
    • Ciullo M., et al. Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I. Hum. Mol. Genet. 2002, 11:2887-2894.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 2887-2894
    • Ciullo, M.1
  • 64
    • 79953071205 scopus 로고    scopus 로고
    • The FRA2C common fragile site maps to the borders of MYCN amplicons in neuroblastoma and is associated with gross chromosomal rearrangements in different cancers
    • Blumrich A., et al. The FRA2C common fragile site maps to the borders of MYCN amplicons in neuroblastoma and is associated with gross chromosomal rearrangements in different cancers. Hum. Mol. Genet. 2011, 20:1488-1501.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1488-1501
    • Blumrich, A.1
  • 65
    • 0018736628 scopus 로고
    • Hereditary renal-cell carcinoma associated with a chromosomal translocation
    • Cohen A.J., et al. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N. Engl. J. Med. 1979, 301:592-595.
    • (1979) N. Engl. J. Med. , vol.301 , pp. 592-595
    • Cohen, A.J.1
  • 66
    • 0030201105 scopus 로고    scopus 로고
    • A 350-kb cosmid contig in 3p14.2 that crosses the t(3;8) hereditary renal cell carcinoma translocation breakpoint and 17 aphidicolin-induced FRA3B breakpoints
    • Paradee W., et al. A 350-kb cosmid contig in 3p14.2 that crosses the t(3;8) hereditary renal cell carcinoma translocation breakpoint and 17 aphidicolin-induced FRA3B breakpoints. Genomics 1996, 35:87-93.
    • (1996) Genomics , vol.35 , pp. 87-93
    • Paradee, W.1
  • 67
    • 13344279424 scopus 로고    scopus 로고
    • The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers
    • Ohta M., et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 1996, 84:587-597.
    • (1996) Cell , vol.84 , pp. 587-597
    • Ohta, M.1
  • 68
    • 77951060421 scopus 로고    scopus 로고
    • DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells
    • Gandhi M., et al. DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells. Oncogene 2010, 29:2272-2280.
    • (2010) Oncogene , vol.29 , pp. 2272-2280
    • Gandhi, M.1
  • 69
    • 0030904279 scopus 로고    scopus 로고
    • Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons
    • Coquelle A., et al. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 1997, 89:215-225.
    • (1997) Cell , vol.89 , pp. 215-225
    • Coquelle, A.1
  • 70
    • 0022643476 scopus 로고
    • Comparison of seven cell lines derived from human gastric carcinomas
    • Motoyama T., et al. Comparison of seven cell lines derived from human gastric carcinomas. Acta Pathol. Jpn 1986, 36:65-83.
    • (1986) Acta Pathol. Jpn , vol.36 , pp. 65-83
    • Motoyama, T.1
  • 71
    • 77249123407 scopus 로고    scopus 로고
    • Signatures of mutation and selection in the cancer genome
    • Bignell G.R., et al. Signatures of mutation and selection in the cancer genome. Nature 2010, 463:893-898.
    • (2010) Nature , vol.463 , pp. 893-898
    • Bignell, G.R.1
  • 72
    • 69249128732 scopus 로고    scopus 로고
    • Molecular mechanisms of human papillomavirus-induced carcinogenesis
    • Lehoux M., et al. Molecular mechanisms of human papillomavirus-induced carcinogenesis. Public Health Genomics 2009, 12:268-280.
    • (2009) Public Health Genomics , vol.12 , pp. 268-280
    • Lehoux, M.1
  • 73
    • 0142084745 scopus 로고    scopus 로고
    • LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1
    • Hacein-Bey-Abina S., et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003, 302:415-419.
    • (2003) Science , vol.302 , pp. 415-419
    • Hacein-Bey-Abina, S.1
  • 74
    • 33745225238 scopus 로고    scopus 로고
    • Fragile sites are preferential targets for integrations of MLV vectors in gene therapy
    • Bester A.C., et al. Fragile sites are preferential targets for integrations of MLV vectors in gene therapy. Gene Therapy 2006, 13:1057-1059.
    • (2006) Gene Therapy , vol.13 , pp. 1057-1059
    • Bester, A.C.1
  • 75
    • 44349119351 scopus 로고    scopus 로고
    • Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study
    • Tsantoulis P.K., et al. Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene 2008, 27:3256-3264.
    • (2008) Oncogene , vol.27 , pp. 3256-3264
    • Tsantoulis, P.K.1
  • 76
    • 82955203422 scopus 로고    scopus 로고
    • Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors
    • Murga M., et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat. Struct. Mol. Biol. 2011, 18:1331-1335.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1331-1335
    • Murga, M.1
  • 77
    • 34547232986 scopus 로고    scopus 로고
    • Non-transcriptional control of DNA replication by c-Myc
    • Dominguez-Sola D., et al. Non-transcriptional control of DNA replication by c-Myc. Nature 2007, 448:445-451.
    • (2007) Nature , vol.448 , pp. 445-451
    • Dominguez-Sola, D.1
  • 78
    • 33845235459 scopus 로고    scopus 로고
    • Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints
    • Bartkova J., et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006, 444:633-637.
    • (2006) Nature , vol.444 , pp. 633-637
    • Bartkova, J.1
  • 79
    • 0037074013 scopus 로고    scopus 로고
    • ATR regulates fragile site stability
    • Casper A.M., et al. ATR regulates fragile site stability. Cell 2002, 111:779-789.
    • (2002) Cell , vol.111 , pp. 779-789
    • Casper, A.M.1
  • 80
    • 4544333154 scopus 로고    scopus 로고
    • Chromosomal instability at common fragile sites in Seckel syndrome
    • Casper A.M., et al. Chromosomal instability at common fragile sites in Seckel syndrome. Am. J. Hum. Genet. 2004, 75:654-660.
    • (2004) Am. J. Hum. Genet. , vol.75 , pp. 654-660
    • Casper, A.M.1
  • 81
    • 33746495515 scopus 로고    scopus 로고
    • Depletion of CHK1, but not CHK2, induces chromosomal instability and breaks at common fragile sites
    • Durkin S.G., et al. Depletion of CHK1, but not CHK2, induces chromosomal instability and breaks at common fragile sites. Oncogene 2006, 25:4381-4388.
    • (2006) Oncogene , vol.25 , pp. 4381-4388
    • Durkin, S.G.1
  • 82
    • 41649120947 scopus 로고    scopus 로고
    • Interplay between ATM and ATR in the regulation of common fragile site stability
    • Ozeri-Galai E., et al. Interplay between ATM and ATR in the regulation of common fragile site stability. Oncogene 2008, 27:2109-2117.
    • (2008) Oncogene , vol.27 , pp. 2109-2117
    • Ozeri-Galai, E.1
  • 83
    • 3242712112 scopus 로고    scopus 로고
    • BRCA1 is required for common-fragile-site stability via its G2/M checkpoint function
    • Arlt M.F., et al. BRCA1 is required for common-fragile-site stability via its G2/M checkpoint function. Mol. Cell. Biol. 2004, 24:6701-6709.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 6701-6709
    • Arlt, M.F.1
  • 84
    • 14644391577 scopus 로고    scopus 로고
    • The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability
    • Howlett N.G., et al. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum. Mol. Genet. 2005, 14:693-701.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 693-701
    • Howlett, N.G.1
  • 85
    • 84887212606 scopus 로고    scopus 로고
    • Impaired replication stress response in cells from immunodeficiency patients carrying Cernunnos/XLF mutations
    • Schwartz M., et al. Impaired replication stress response in cells from immunodeficiency patients carrying Cernunnos/XLF mutations. PLoS ONE 2009, 4:e4516.
    • (2009) PLoS ONE , vol.4
    • Schwartz, M.1
  • 86
    • 27744496209 scopus 로고    scopus 로고
    • Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability
    • Schwartz M., et al. Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev. 2005, 19:2715-2726.
    • (2005) Genes Dev. , vol.19 , pp. 2715-2726
    • Schwartz, M.1
  • 87
    • 14044258550 scopus 로고    scopus 로고
    • SMC1 involvement in fragile site expression
    • Musio A., et al. SMC1 involvement in fragile site expression. Hum. Mol. Genet. 2005, 14:525-533.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 525-533
    • Musio, A.1
  • 88
    • 70350234776 scopus 로고    scopus 로고
    • Claspin inhibition leads to fragile site expression
    • Focarelli M.L., et al. Claspin inhibition leads to fragile site expression. Genes Chromosomes Cancer 2009, 48:1083-1090.
    • (2009) Genes Chromosomes Cancer , vol.48 , pp. 1083-1090
    • Focarelli, M.L.1
  • 89
    • 33947145194 scopus 로고    scopus 로고
    • Increased common fragile site expression, cell proliferation defects, and apoptosis following conditional inactivation of mouse Hus1 in primary cultured cells
    • Zhu M., Weiss R.S. Increased common fragile site expression, cell proliferation defects, and apoptosis following conditional inactivation of mouse Hus1 in primary cultured cells. Mol. Biol. Cell 2007, 18:1044-1055.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 1044-1055
    • Zhu, M.1    Weiss, R.S.2
  • 90
    • 38749136967 scopus 로고    scopus 로고
    • Werner syndrome helicase activity is essential in maintaining fragile site stability
    • Pirzio L.M., et al. Werner syndrome helicase activity is essential in maintaining fragile site stability. J. Cell Biol. 2008, 180:305-314.
    • (2008) J. Cell Biol. , vol.180 , pp. 305-314
    • Pirzio, L.M.1
  • 91
    • 0028802240 scopus 로고
    • Non-random distribution of spontaneous chromosome aberrations in two Bloom Syndrome patients
    • Fundia A., et al. Non-random distribution of spontaneous chromosome aberrations in two Bloom Syndrome patients. Hereditas 1995, 122:239-243.
    • (1995) Hereditas , vol.122 , pp. 239-243
    • Fundia, A.1
  • 92
    • 77952581077 scopus 로고    scopus 로고
    • Inhibition of topoisomerase I prevents chromosome breakage at common fragile sites
    • Arlt M.F., Glover T.W. Inhibition of topoisomerase I prevents chromosome breakage at common fragile sites. DNA Repair 2010, 9:678-689.
    • (2010) DNA Repair , vol.9 , pp. 678-689
    • Arlt, M.F.1    Glover, T.W.2
  • 93
    • 70449522304 scopus 로고    scopus 로고
    • Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription
    • Tuduri S., et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 2009, 11:1315-1324.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1315-1324
    • Tuduri, S.1
  • 94
    • 15844384990 scopus 로고    scopus 로고
    • The FHIT gene 3p14.2 is abnormal in lung cancer
    • Sozzi G., et al. The FHIT gene 3p14.2 is abnormal in lung cancer. Cell 1996, 85:17-26.
    • (1996) Cell , vol.85 , pp. 17-26
    • Sozzi, G.1
  • 95
    • 59949101230 scopus 로고    scopus 로고
    • Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans
    • Inagaki H., et al. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans. Genome Res. 2009, 19:191-198.
    • (2009) Genome Res. , vol.19 , pp. 191-198
    • Inagaki, H.1
  • 96
    • 0042865938 scopus 로고    scopus 로고
    • S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
    • Katou Y., et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 2003, 424:1078-1083.
    • (2003) Nature , vol.424 , pp. 1078-1083
    • Katou, Y.1
  • 97
    • 13444253858 scopus 로고    scopus 로고
    • Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases
    • Freudenreich C.H., Lahiri M. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 2004, 3:1370-1374.
    • (2004) Cell Cycle , vol.3 , pp. 1370-1374
    • Freudenreich, C.H.1    Lahiri, M.2
  • 98
    • 30144440129 scopus 로고    scopus 로고
    • Chromatin structure of human chromosomal fragile sites
    • Wang Y.-H. Chromatin structure of human chromosomal fragile sites. Cancer Lett. 2006, 232:70-78.
    • (2006) Cancer Lett. , vol.232 , pp. 70-78
    • Wang, Y.-H.1
  • 99
    • 3543139536 scopus 로고    scopus 로고
    • Two breakpoint clusters at fragile site FRA3B form phased nucleosomes
    • Mulvihill D.J., Wang Y.-H. Two breakpoint clusters at fragile site FRA3B form phased nucleosomes. Genome Res. 2004, 14:1350-1357.
    • (2004) Genome Res. , vol.14 , pp. 1350-1357
    • Mulvihill, D.J.1    Wang, Y.-H.2
  • 100
    • 70449388892 scopus 로고    scopus 로고
    • Common fragile sites are characterized by histone hypoacetylation
    • Jiang Y., et al. Common fragile sites are characterized by histone hypoacetylation. Hum. Mol. Genet. 2009, 18:4501-4512.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 4501-4512
    • Jiang, Y.1
  • 101
    • 31344462362 scopus 로고    scopus 로고
    • Regulation of replication licensing by acetyltransferase Hbo1
    • Iizuka M., et al. Regulation of replication licensing by acetyltransferase Hbo1. Mol. Cell. Biol. 2006, 26:1098-1108.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 1098-1108
    • Iizuka, M.1
  • 102
    • 79955034796 scopus 로고    scopus 로고
    • Heterochromatin and the DNA damage response: the need to relax
    • Cann K.L, Dellaire G. Heterochromatin and the DNA damage response: the need to relax. Biochem. Cell Biol. 2011, 89:45-60.
    • (2011) Biochem. Cell Biol. , vol.89 , pp. 45-60
    • Cann, K.L.1    Dellaire, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.