-
1
-
-
0033214237
-
The Sir2/3/4 complex and Sir2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M, McVey M, Guarente L: The Sir2/3/4 complex and Sir2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev (1999) 13(19):2570-2580.
-
(1999)
Genes Dev
, vol.13
, Issue.19
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
2
-
-
0035826271
-
Increased dosage of a Sir-2 gene extends lifespan in Caenorhabditis elegans
-
Tissenbaum HA, Guarente L: Increased dosage of a Sir-2 gene extends lifespan in Caenorhabditis elegans. Nature (2001) 410(6825):227-230.
-
(2001)
Nature
, vol.410
, Issue.6825
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
3
-
-
33746245679
-
C elegans 14-3-3 proteins regulate life span and interact with Sir-2.1 and DAF-16/FOXO
-
Wang Y, Oh SW, Deplancke B, Luo J, Walhout AJ, Tissenbaum HA: C elegans 14-3-3 proteins regulate life span and interact with Sir-2.1 and DAF-16/FOXO. Mech Ageing Dev (2006) 127(9):741-747.
-
(2006)
Mech Ageing Dev
, vol.127
, Issue.9
, pp. 741-747
-
-
Wang, Y.1
Oh, S.W.2
Deplancke, B.3
Luo, J.4
Walhout, A.J.5
Tissenbaum, H.A.6
-
4
-
-
0034703217
-
Requirement of NAD and Sir2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
Lin SJ, Defossez PA, Guarente L: Requirement of NAD and Sir2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science (2000) 289(5487):2126-2128.
-
(2000)
Science
, vol.289
, Issue.5487
, pp. 2126-2128
-
-
Lin, S.J.1
Defossez, P.A.2
Guarente, L.3
-
5
-
-
0347128279
-
Calorie restriction extends yeast life span by lowering the level of NADH
-
Lin SJ, Ford E, Haigis M, Liszt G, Guarente L: Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev (2004) 18(1):12-16.
-
(2004)
Genes Dev
, vol.18
, Issue.1
, pp. 12-16
-
-
Lin, S.J.1
Ford, E.2
Haigis, M.3
Liszt, G.4
Guarente, L.5
-
6
-
-
3943054839
-
The Sir2 family of protein deacetylases
-
Blander G, Guarente L: The Sir2 family of protein deacetylases. Annu Rev Biochem (2004) 73:417-435.
-
(2004)
Annu Rev Biochem
, vol.73
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
7
-
-
0037221445
-
+-dependent deacetylases
-
+-dependent deacetylases. Trends Biochem Sci (2003) 28(1):41-48.
-
(2003)
Trends Biochem Sci
, vol.28
, Issue.1
, pp. 41-48
-
-
Denu, J.M.1
-
8
-
-
30044440497
-
Sirt1: A metabolic master switch that modulates lifespan
-
Leibiger IB, Berggren PO: Sirt1: A metabolic master switch that modulates lifespan. Nat Med (2006) 12(1):34-36.
-
(2006)
Nat Med
, vol.12
, Issue.1
, pp. 34-36
-
-
Leibiger, I.B.1
Berggren, P.O.2
-
9
-
-
10944270187
-
The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells
-
Revollo JR, Grimm AA, Imai S: The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem (2004) 279(49):50754-50763.
-
(2004)
J Biol Chem
, vol.279
, Issue.49
, pp. 50754-50763
-
-
Revollo, J.R.1
Grimm, A.A.2
Imai, S.3
-
10
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B, Helfand SL: Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci (2004) 101(45):15998-16003.
-
(2004)
Proc Natl Acad Sci
, vol.101
, Issue.45
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
11
-
-
3142740860
-
Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
-
Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science (2004) 305(5682):390-392.
-
(2004)
Science
, vol.305
, Issue.5682
, pp. 390-392
-
-
Cohen, H.Y.1
Miller, C.2
Bitterman, K.J.3
Wall, N.R.4
Hekking, B.5
Kessler, B.6
Howitz, K.T.7
Gorospe, M.8
de Cabo, R.9
Sinclair, D.A.10
-
12
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature (2005) 434(7029):113-118.
-
(2005)
Nature
, vol.434
, Issue.7029
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
13
-
-
3042681042
-
SIRT1 promotes fat mobilization in white adipocytes by repressing PPARγ
-
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L: SIRT1 promotes fat mobilization in white adipocytes by repressing PPARγ. Nature (2004) 429(6993):771-776.
-
(2004)
Nature
, vol.429
, Issue.6993
, pp. 771-776
-
-
Picard, F.1
Kurtev, M.2
Chung, N.3
Topark-Ngarm, A.4
Senawong, T.5
Machado De Oliveira, R.6
Leid, M.7
McBurney, M.W.8
Guarente, L.9
-
14
-
-
10844236451
-
Nutrient availability regulates SIRT1 through a forkhead-dependent pathway
-
Nemoto S, Fergusson MM, Finkel T: Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science (2004) 306(5704):2105-2108.
-
(2004)
Science
, vol.306
, Issue.5704
, pp. 2105-2108
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
15
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
The tissue-specific impact of SIRT1 function in animals (mouse) was demonstrated for the first time. This is highly relevant for the therapeutic use of SIRT1 modulators. The results suggest that non-tissue-specific targeting of SIRT1 modulators can cause severe side effects, ••
-
Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, Guarente L: Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev (2008) 22(13):1753-1757. •• The tissue-specific impact of SIRT1 function in animals (mouse) was demonstrated for the first time. This is highly relevant for the therapeutic use of SIRT1 modulators. The results suggest that non-tissue-specific targeting of SIRT1 modulators can cause severe side effects.
-
(2008)
Genes Dev
, vol.22
, Issue.13
, pp. 1753-1757
-
-
Chen, D.1
Bruno, J.2
Easlon, E.3
Lin, S.J.4
Cheng, H.L.5
Alt, F.W.6
Guarente, L.7
-
16
-
-
0043244921
-
Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
-
Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL, Sartorelli V: Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell (2003) 12(1):51-62.
-
(2003)
Mol Cell
, vol.12
, Issue.1
, pp. 51-62
-
-
Fulco, M.1
Schiltz, R.L.2
Iezzi, S.3
King, M.T.4
Zhao, P.5
Kashiwaya, Y.6
Hoffman, E.7
Veech, R.L.8
Sartorelli, V.9
-
17
-
-
41649102028
-
Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3a in C2C12 myocytes
-
Nedachi T, Kadotani A, Ariga M, Katagiri H, Kanzaki M: Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3a in C2C12 myocytes. Am J Physiol Endocrinol Metab (2008) 294(4):E668-E678.
-
(2008)
Am J Physiol Endocrinol Metab
, vol.294
, Issue.4
-
-
Nedachi, T.1
Kadotani, A.2
Ariga, M.3
Katagiri, H.4
Kanzaki, M.5
-
18
-
-
33846505019
-
Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex
-
Zhang Q, Wang SY, Fleuriel C, Leprince D, Rocheleau JV, Piston DW, Goodman RH: Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci USA (2007) 104(3):829-833.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, Issue.3
, pp. 829-833
-
-
Zhang, Q.1
Wang, S.Y.2
Fleuriel, C.3
Leprince, D.4
Rocheleau, J.V.5
Piston, D.W.6
Goodman, R.H.7
-
19
-
-
41649094992
-
SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity
-
Narala SR, Allsopp RC, Wells TB, Zhang G, Prasad P, Coussens MJ, Rossi DJ, Weissman IL, Vaziri H: SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. Mol Biol Cell (2008) 19(3):210-1219.
-
(2008)
Mol Biol Cell
, vol.19
, Issue.3
, pp. 210-1219
-
-
Narala, S.R.1
Allsopp, R.C.2
Wells, T.B.3
Zhang, G.4
Prasad, P.5
Coussens, M.J.6
Rossi, D.J.7
Weissman, I.L.8
Vaziri, H.9
-
20
-
-
41549138483
-
A role for the NAD-dependent deacetylase SIRT1 in the regulation of autophagy
-
Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T: A role for the NAD-dependent deacetylase SIRT1 in the regulation of autophagy. Proc Natl Acad Sci (2008) 105(9):3374-3379.
-
(2008)
Proc Natl Acad Sci
, vol.105
, Issue.9
, pp. 3374-3379
-
-
Lee, I.H.1
Cao, L.2
Mostoslavsky, R.3
Lombard, D.B.4
Liu, J.5
Bruns, N.E.6
Tsokos, M.7
Alt, F.W.8
Finkel, T.9
-
21
-
-
34547906123
-
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
-
The central role of SIRT1 in glucose, fat and cholesterol metabolism was demonstrated in animals, •
-
Rodgers JT, Puigserver P: Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci (2007) 104(31):12861-12866. • The central role of SIRT1 in glucose, fat and cholesterol metabolism was demonstrated in animals.
-
(2007)
Proc Natl Acad Sci
, vol.104
, Issue.31
, pp. 12861-12866
-
-
Rodgers, J.T.1
Puigserver, P.2
-
22
-
-
20144365700
-
Nuclear trapping of the forkhead transcription factor FoxO1 via SIRT-dependent deacetylation promotes expression of glucogenetic genes
-
Frescas D, Valenti L, Accili D: Nuclear trapping of the forkhead transcription factor FoxO1 via SIRT-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem (2005) 280(21):20589-20595.
-
(2005)
J Biol Chem
, vol.280
, Issue.21
, pp. 20589-20595
-
-
Frescas, D.1
Valenti, L.2
Accili, D.3
-
23
-
-
47749128879
-
SIRT1 protects against high-fat diet-induced metabolic damage
-
Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH: SIRT1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA (2008) 105(28):9793-9798.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, Issue.28
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschop, M.H.5
-
24
-
-
0034650763
-
The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP
-
Ricquier D, Bouillaud F: The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J (2000) 345:161-179.
-
(2000)
Biochem J
, vol.345
, pp. 161-179
-
-
Ricquier, D.1
Bouillaud, F.2
-
25
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells
-
Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ et al: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol (2006) 4(2):e31.
-
(2006)
PLoS Biol
, vol.4
, Issue.2
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
Robinson, A.4
Jhala, U.S.5
Apfeld, J.6
McDonagh, T.7
Lemieux, M.8
McBurney, M.9
Szilvasi, A.10
Easlon, E.J.11
-
26
-
-
36248975293
-
SIRT1 transgenic mice show phenotypes resembling calorie restriction
-
Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo J, Gu W, Guarente L: SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell (2007) 6(6):759-767.
-
(2007)
Aging Cell
, vol.6
, Issue.6
, pp. 759-767
-
-
Bordone, L.1
Cohen, D.2
Robinson, A.3
Motta, M.C.4
van Veen, E.5
Czopik, A.6
Steele, A.D.7
Crowe, H.8
Marmor, S.9
Luo, J.10
Gu, W.11
Guarente, L.12
-
27
-
-
1342264308
-
Mammalian SIRT1 represses forkhead transcription factors
-
Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L: Mammalian SIRT1 represses forkhead transcription factors. Cell (2004) 116(4):551-563.
-
(2004)
Cell
, vol.116
, Issue.4
, pp. 551-563
-
-
Motta, M.C.1
Divecha, N.2
Lemieux, M.3
Kamel, C.4
Chen, D.5
Gu, W.6
Bultsma, Y.7
McBurney, M.8
Guarente, L.9
-
28
-
-
0033525870
-
Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene
-
Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C et al: Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science (1999) 283(5407):1544-1548.
-
(1999)
Science
, vol.283
, Issue.5407
, pp. 1544-1548
-
-
Elchebly, M.1
Payette, P.2
Michaliszyn, E.3
Cromlish, W.4
Collins, S.5
Loy, A.L.6
Normandin, D.7
Cheng, A.8
Himms-Hagen, J.9
Chan, C.C.10
Ramachandran, C.11
-
29
-
-
0035857020
-
New drug targets for type 2 diabetes and the metabolic syndrome
-
Moller DE: New drug targets for type 2 diabetes and the metabolic syndrome. Nature (2001) 414(6865):821-827.
-
(2001)
Nature
, vol.414
, Issue.6865
, pp. 821-827
-
-
Moller, D.E.1
-
30
-
-
34548857700
-
SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B
-
Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q: SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab (2007) 6(4):307-319.
-
(2007)
Cell Metab
, vol.6
, Issue.4
, pp. 307-319
-
-
Sun, C.1
Zhang, F.2
Ge, X.3
Yan, T.4
Chen, X.5
Shi, X.6
Zhai, Q.7
-
31
-
-
33746810001
-
Neuronal PTP1B regulates body weight, adiposity and leptin action
-
Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB: Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med (2006) 12(8):917-924.
-
(2006)
Nat Med
, vol.12
, Issue.8
, pp. 917-924
-
-
Bence, K.K.1
Delibegovic, M.2
Xue, B.3
Gorgun, C.Z.4
Hotamisligil, G.S.5
Neel, B.G.6
Kahn, B.B.7
-
32
-
-
37349110355
-
Metabolic adaptations through the PGC-1 α and SIRT1 pathways
-
Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P: Metabolic adaptations through the PGC-1 α and SIRT1 pathways. FEBS Lett (2008) 582(1):46-53.
-
(2008)
FEBS Lett
, vol.582
, Issue.1
, pp. 46-53
-
-
Rodgers, J.T.1
Lerin, C.2
Gerhart-Hines, Z.3
Puigserver, P.4
-
33
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
-
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B et al: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell (2006) 127(6):1109- 1122.
-
(2006)
Cell
, vol.127
, Issue.6
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
Daussin, F.6
Messadeq, N.7
Milne, J.8
Lambert, P.9
Elliott, P.10
Geny, B.11
-
34
-
-
22744444561
-
Calorie restriction and SIR2 genes - towards a mechanism
-
Guarente L: Calorie restriction and SIR2 genes - towards a mechanism. Mech Ageing Dev (2005) 126(9):923-928.
-
(2005)
Mech Ageing Dev
, vol.126
, Issue.9
, pp. 923-928
-
-
Guarente, L.1
-
35
-
-
33845985335
-
SIRT1 regulates adiponectin gene expression through FoxO1-C/enhancer-binding protein α transcriptional complex
-
Qiao L, Shao J: SIRT1 regulates adiponectin gene expression through FoxO1-C/enhancer-binding protein α transcriptional complex. J Biol Chem (2006) 281(52):39915-39924.
-
(2006)
J Biol Chem
, vol.281
, Issue.52
, pp. 39915-39924
-
-
Qiao, L.1
Shao, J.2
-
36
-
-
0034881391
-
The adipocyte-secreted protein ACRP30 enhances hepatic insulin action
-
Berg AH, Combs TP, Du X, Brownlee M, Scherer PE: The adipocyte-secreted protein ACRP30 enhances hepatic insulin action. Nat Med (2001) 7(8):947-953.
-
(2001)
Nat Med
, vol.7
, Issue.8
, pp. 947-953
-
-
Berg, A.H.1
Combs, T.P.2
Du, X.3
Brownlee, M.4
Scherer, P.E.5
-
37
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
-
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O et al: The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med (2001) 7(8):941-946.
-
(2001)
Nat Med
, vol.7
, Issue.8
, pp. 941-946
-
-
Yamauchi, T.1
Kamon, J.2
Waki, H.3
Terauchi, Y.4
Kubota, N.5
Hara, K.6
Mori, Y.7
Ide, T.8
Murakami, K.9
Tsuboyama-Kasaoka, N.10
Ezaki, O.11
-
38
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty acid oxidation by activating AMP-activated protein kinase
-
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K et al: Adiponectin stimulates glucose utilization and fatty acid oxidation by activating AMP-activated protein kinase. Nat Med (2002) 8(11):1288-1295.
-
(2002)
Nat Med
, vol.8
, Issue.11
, pp. 1288-1295
-
-
Yamauchi, T.1
Kamon, J.2
Minokoshi, Y.3
Ito, Y.4
Waki, H.5
Uchida, S.6
Yamashita, S.7
Noda, M.8
Kita, S.9
Ueki, K.10
Eto, K.11
-
39
-
-
18844432308
-
Adiponectin and adiponectin receptors
-
Kadowaki T, Yamauchi T: Adiponectin and adiponectin receptors. Endocr Rev (2005) 26(3):439-451.
-
(2005)
Endocr Rev
, vol.26
, Issue.3
, pp. 439-451
-
-
Kadowaki, T.1
Yamauchi, T.2
-
40
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
-
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P: Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J (2007) 26(7):1913-1923.
-
(2007)
EMBO J
, vol.26
, Issue.7
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.H.5
Mostoslavsky, R.6
Alt, F.W.7
Wu, Z.8
Puigserver, P.9
-
41
-
-
42449100009
-
Isoflavones promote mitochondrial biogenesis
-
Rasbach KA, Schnellmann RG: Isoflavones promote mitochondrial biogenesis. J Pharmacol Exp Ther (2008) 325(2): 536-543.
-
(2008)
J Pharmacol Exp Ther
, vol.325
, Issue.2
, pp. 536-543
-
-
Rasbach, K.A.1
Schnellmann, R.G.2
-
42
-
-
26844558334
-
Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
-
Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO: Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science (2005) 310(5746):314-317.
-
(2005)
Science
, vol.310
, Issue.5746
, pp. 314-317
-
-
Nisoli, E.1
Tonello, C.2
Cardile, A.3
Cozzi, V.4
Bracale, R.5
Tedesco, L.6
Falcone, S.7
Valerio, A.8
Cantoni, O.9
Clementi, E.10
Moncada, S.11
Carruba, M.O.12
-
43
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ et al: Resveratrol improves health and survival of mice on a high-calorie diet. Nature (2006) 444(7117):337-342.
-
(2006)
Nature
, vol.444
, Issue.7117
, pp. 337-342
-
-
Baur, J.A.1
Pearson, K.J.2
Price, N.L.3
Jamieson, H.A.4
Lerin, C.5
Kalra, A.6
Prabhu, V.V.7
Allard, J.S.8
Lopez-Lluch, G.9
Lewis, K.10
Pistell, P.J.11
-
44
-
-
45549098657
-
-
Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J et al: SIRT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE (2008) 3(3):e1759. •• The importance of SIRT1 in response to CR in mammals was demonstrated by using SIRT1 null mice. The study also examined several direct and relevant parameters of energy balance, such as hyperphagia, metabolic rate and substrate utilization, respiration rate, and overall hormone profile.
-
Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J et al: SIRT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE (2008) 3(3):e1759. •• The importance of SIRT1 in response to CR in mammals was demonstrated by using SIRT1 null mice. The study also examined several direct and relevant parameters of energy balance, such as hyperphagia, metabolic rate and substrate utilization, respiration rate, and overall hormone profile.
-
-
-
-
45
-
-
21844467979
-
New insights into the regulation of HDL metabolism and reverse cholesterol transport
-
Lewis GF, Rader DJ: New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res (2005) 96(12):1221-1232.
-
(2005)
Circ Res
, vol.96
, Issue.12
, pp. 1221-1232
-
-
Lewis, G.F.1
Rader, D.J.2
-
46
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
An important transcriptional regulator of cholesterol metabolism was identified, thereby providing insight into SIRT1's regulation of cholesterol metabolism for the first time, •
-
Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L: SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell (2007) 28(1):91-106. • An important transcriptional regulator of cholesterol metabolism was identified, thereby providing insight into SIRT1's regulation of cholesterol metabolism for the first time.
-
(2007)
Mol Cell
, vol.28
, Issue.1
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
Guarente, L.6
-
47
-
-
2342647592
-
Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans
-
Fontana L, Meyer TE, Klein S, Holloszy JO: Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA (2004) 101(17):6659-6663.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, Issue.17
, pp. 6659-6663
-
-
Fontana, L.1
Meyer, T.E.2
Klein, S.3
Holloszy, J.O.4
-
48
-
-
40449093056
-
Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice
-
It was demonstrated that ethanol can alter SIRT1 activity, thus providing insight into SIRT1's potentially protective role in chronic liver steatosis, •
-
You M, Cao Q, Liang X, Ajmo JM, Ness GC: Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice. J Nutr (2008) 138(3): 497-501. • It was demonstrated that ethanol can alter SIRT1 activity, thus providing insight into SIRT1's potentially protective role in chronic liver steatosis.
-
(2008)
J Nutr
, vol.138
, Issue.3
, pp. 497-501
-
-
You, M.1
Cao, Q.2
Liang, X.3
Ajmo, J.M.4
Ness, G.C.5
-
49
-
-
0035826271
-
Increased dosage of a Sir-2 gene extends lifespan in Caenorhabditis elegans
-
Tissenbaum HA, Guarente L: Increased dosage of a Sir-2 gene extends lifespan in Caenorhabditis elegans. Nature (2001) 410(6825):227-230.
-
(2001)
Nature
, vol.410
, Issue.6825
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
50
-
-
33846423520
-
Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans
-
Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C: Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell (2007) 6(1):95-110.
-
(2007)
Aging Cell
, vol.6
, Issue.1
, pp. 95-110
-
-
Hansen, M.1
Taubert, S.2
Crawford, D.3
Libina, N.4
Lee, S.J.5
Kenyon, C.6
-
51
-
-
19344374925
-
Sir2-independent life span extension by calorie restriction in yeast
-
Kaeberlein M, Kirkland KT, Fields S, Kennedy BK: Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol (2004) 2(9):E296.
-
(2004)
PLoS Biol
, vol.2
, Issue.9
-
-
Kaeberlein, M.1
Kirkland, K.T.2
Fields, S.3
Kennedy, B.K.4
-
52
-
-
33751250243
-
Lifespan extension in Caenorhabditis elegans by complete removal of food
-
Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, Kennedy BK, Kaeberlein M: Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell (2006) 5(6):487-494.
-
(2006)
Aging Cell
, vol.5
, Issue.6
, pp. 487-494
-
-
Kaeberlein, T.L.1
Smith, E.D.2
Tsuchiya, M.3
Welton, K.L.4
Thomas, J.H.5
Fields, S.6
Kennedy, B.K.7
Kaeberlein, M.8
-
53
-
-
27744596999
-
Sir2 blocks extreme life-span extension
-
Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD: Sir2 blocks extreme life-span extension. Cell (2005) 123(4):655-667.
-
(2005)
Cell
, vol.123
, Issue.4
, pp. 655-667
-
-
Fabrizio, P.1
Gattazzo, C.2
Battistella, L.3
Wei, M.4
Cheng, C.5
McGrew, K.6
Longo, V.D.7
-
54
-
-
45549096918
-
SIRT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons
-
The anti- or pro-survival role for SIRT1, depending on dietary conditions and signaling through the ERK1/2, was demonstrated in the mouse, •
-
Li Y, Xu W, McBurney MW, Longo VD: SIRT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab (2008) 8(1):38-48. • The anti- or pro-survival role for SIRT1, depending on dietary conditions and signaling through the ERK1/2, was demonstrated in the mouse.
-
(2008)
Cell Metab
, vol.8
, Issue.1
, pp. 38-48
-
-
Li, Y.1
Xu, W.2
McBurney, M.W.3
Longo, V.D.4
-
55
-
-
34249669270
-
SIRT1 regulates aging and resistance to oxidative stress in the heart
-
Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J: SIRT1 regulates aging and resistance to oxidative stress in the heart. Circ Res (2007) 100(10):1512-1521.
-
(2007)
Circ Res
, vol.100
, Issue.10
, pp. 1512-1521
-
-
Alcendor, R.R.1
Gao, S.2
Zhai, P.3
Zablocki, D.4
Holle, E.5
Yu, X.6
Tian, B.7
Wagner, T.8
Vatner, S.F.9
Sadoshima, J.10
-
56
-
-
38349112898
-
Age-associated loss of SIRT1-mediated enhancement of glucose-stimulated insulin secretion in β cell-specific SIRT1-overexpressing (BESTO) mice
-
The activity of SIRT1 diminishes with advancing age. This is highly relevant for SIRT1's role in age-related diseases, and the complex nature of its regulation of a number of cellular processes, ••
-
Ramsey KM, Mills KF, Satoh A, Imai S: Age-associated loss of SIRT1-mediated enhancement of glucose-stimulated insulin secretion in β cell-specific SIRT1-overexpressing (BESTO) mice. Aging Cell (2008) 7(1):78-88. •• The activity of SIRT1 diminishes with advancing age. This is highly relevant for SIRT1's role in age-related diseases, and the complex nature of its regulation of a number of cellular processes.
-
(2008)
Aging Cell
, vol.7
, Issue.1
, pp. 78-88
-
-
Ramsey, K.M.1
Mills, K.F.2
Satoh, A.3
Imai, S.4
-
57
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S: Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab (2005) 2(2):105-117.
-
(2005)
Cell Metab
, vol.2
, Issue.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
Bernal-Mizrachi, E.4
Ford, E.5
Cras-Meneur, C.6
Permutt, M.A.7
Imai, S.8
-
58
-
-
0141719702
-
Small-molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA: Small-molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature (2003) 425(6954): 191-196.
-
(2003)
Nature
, vol.425
, Issue.6954
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
Lamming, D.W.4
Lavu, S.5
Wood, J.G.6
Zipkin, R.E.7
Chung, P.8
Kisielewski, A.9
Zhang, L.L.10
Scherer, B.11
Sinclair, D.A.12
-
59
-
-
3943071801
-
Sirtuin activators mimic caloric restriction and delay aging in metazoans
-
Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D: Sirtuin activators mimic caloric restriction and delay aging in metazoans. Nature (2004) 430(7000):686-689.
-
(2004)
Nature
, vol.430
, Issue.7000
, pp. 686-689
-
-
Wood, J.G.1
Rogina, B.2
Lavu, S.3
Howitz, K.4
Helfand, S.L.5
Tatar, M.6
Sinclair, D.7
-
60
-
-
33746862126
-
Resveratrol inhibits insulin responses in a SIRT1-independent pathway
-
Zhang J: Resveratrol inhibits insulin responses in a SIRT1-independent pathway. Biochem J (2006) 397(3):519-527.
-
(2006)
Biochem J
, vol.397
, Issue.3
, pp. 519-527
-
-
Zhang, J.1
-
61
-
-
34249846128
-
Resveratrol stimulates AMP kinase activity in neurons
-
Dasgupta B, Milbrandt J: Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci (2007) 104(17): 7217-7222.
-
(2007)
Proc Natl Acad Sci
, vol.104
, Issue.17
, pp. 7217-7222
-
-
Dasgupta, B.1
Milbrandt, J.2
-
62
-
-
36749087548
-
Small-molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE et al: Small-molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature (2007) 450(7170):712-716.
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
Bemis, J.E.11
-
63
-
-
41549134383
-
Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the α-myosin heavy chain expression
-
Pillai JB, Chen M, Rajamohan SB, Samant S, Pillai VB, Gupta M, Gupta MP: Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the α-myosin heavy chain expression. Am J Physiol Heart Circ Physiol (2008) 294(3):H1388-H1397.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.294
, Issue.3
-
-
Pillai, J.B.1
Chen, M.2
Rajamohan, S.B.3
Samant, S.4
Pillai, V.B.5
Gupta, M.6
Gupta, M.P.7
-
64
-
-
33947127395
-
Resveratrol ameliorates experimental autoimmune myocarditis
-
Yoshida Y, Shioi T, Izumi T: Resveratrol ameliorates experimental autoimmune myocarditis. Circ J (2007) 71(3): 397-404.
-
(2007)
Circ J
, vol.71
, Issue.3
, pp. 397-404
-
-
Yoshida, Y.1
Shioi, T.2
Izumi, T.3
-
65
-
-
45849121349
-
Modulation of SIRT1 expression in different neurodegenerative models and human pathologies
-
Pallas M, Pizarro JG, Gutierrez-Cuesta J, Crespo-Biel N, Alvira D, Tajes M, Yeste-Velasco M, Folch J, Canudas AM, Sureda FX, Ferrer I, Camins A: Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience (2008) 154(4):1388-1397.
-
(2008)
Neuroscience
, vol.154
, Issue.4
, pp. 1388-1397
-
-
Pallas, M.1
Pizarro, J.G.2
Gutierrez-Cuesta, J.3
Crespo-Biel, N.4
Alvira, D.5
Tajes, M.6
Yeste-Velasco, M.7
Folch, J.8
Canudas, A.M.9
Sureda, F.X.10
Ferrer, I.11
Camins, A.12
-
66
-
-
47349099404
-
Resveratrol and ischemic preconditioning in the brain
-
Raval AP, Lin HW, Dave KR, Defazio RA, Morte DD, Kim EJ, Perez-Pinzon MA: Resveratrol and ischemic preconditioning in the brain. Curr Med Chem (2008) 15(15):1545-1551.
-
(2008)
Curr Med Chem
, vol.15
, Issue.15
, pp. 1545-1551
-
-
Raval, A.P.1
Lin, H.W.2
Dave, K.R.3
Defazio, R.A.4
Morte, D.D.5
Kim, E.J.6
Perez-Pinzon, M.A.7
-
67
-
-
42449142360
-
Interaction of aging-associated signaling cascades: Inhibition of NFκB signaling by longevity factors FoxOs and SIRT1
-
Salminen A, Ojala J, Huuskonen J, Kauppinen A, Suuronen T, Kaarniranta K: Interaction of aging-associated signaling cascades: Inhibition of NFκB signaling by longevity factors FoxOs and SIRT1. Cell Mol Life Sci (2008) 65(7-8):1049-1058.
-
(2008)
Cell Mol Life Sci
, vol.65
, Issue.7-8
, pp. 1049-1058
-
-
Salminen, A.1
Ojala, J.2
Huuskonen, J.3
Kauppinen, A.4
Suuronen, T.5
Kaarniranta, K.6
-
68
-
-
42349085704
-
SIRT1 contributes critically to the edox-dependent fate of neural progenitors
-
Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schroter F, Ninnemann O, Siegert E, Bendix I, Brustle O, Nitsch R, Zipp F, Aktas O: SIRT1 contributes critically to the edox-dependent fate of neural progenitors. Nat Cell Biol (2008) 10(4):385-394.
-
(2008)
Nat Cell Biol
, vol.10
, Issue.4
, pp. 385-394
-
-
Prozorovski, T.1
Schulze-Topphoff, U.2
Glumm, R.3
Baumgart, J.4
Schroter, F.5
Ninnemann, O.6
Siegert, E.7
Bendix, I.8
Brustle, O.9
Nitsch, R.10
Zipp, F.11
Aktas, O.12
-
69
-
-
0037474507
-
Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression
-
Takata T, Ishikawa F: Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun (2003) 301(1):250-257.
-
(2003)
Biochem Biophys Res Commun
, vol.301
, Issue.1
, pp. 250-257
-
-
Takata, T.1
Ishikawa, F.2
|