-
1
-
-
45849137877
-
Regulation of hepatic lipogenesis by the transcription factor XBP1
-
Lee, A.-H., E.F. Scapa, D.E. Cohen & L.H. Glimcher. 2008. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320: 1492-1496.
-
(2008)
Science
, vol.320
, pp. 1492-1496
-
-
Lee, A.-H.1
Scapa, E.F.2
Cohen, D.E.3
Glimcher, L.H.4
-
2
-
-
6344228286
-
Obesity metabolic syndrome and type 2 diabetes: Emerging epidemics and their cardiovascular implications
-
Mensah, G.A., A.H. Mokdad, E. Ford, et al. 2004. Obesity, metabolic syndrome, and type 2 diabetes: emerging epidemics and their cardiovascular implications. Cardiol. Clin. 22: 485-504.
-
(2004)
Cardiol. Clin.
, vol.22
, pp. 485-504
-
-
Mensah, G.A.1
Mokdad, A.H.2
Ford, E.3
-
3
-
-
33748203658
-
Metabolic syndrome: Focus on dyslipidemia
-
Silver Spring
-
Ginsberg, H.N., Y.L. Zhang & A. Hernandez-Ono. 2006. Metabolic syndrome: focus on dyslipidemia. Obesity (Silver Spring) 14(Suppl 1): 41S-49S.
-
(2006)
Obesity
, vol.14
, Issue.1
-
-
Ginsberg, H.N.1
Zhang, Y.L.2
Hernandez-Ono, A.3
-
4
-
-
0033860359
-
Insulin resistance and cardiovascular disease
-
Ginsberg, H.N. 2000. Insulin resistance and cardiovascular disease. J. Clin. Invest. 106: 453-458.
-
(2000)
J. Clin. Invest.
, vol.106
, pp. 453-458
-
-
Ginsberg, H.N.1
-
5
-
-
34347406521
-
SREBP-1c transcription factor and lipid homeostasis: Clinical perspective
-
Ferre, P. & F. Foufelle. 2007. SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm. Res. 68: 72-82.
-
(2007)
Horm. Res.
, vol.68
, pp. 72-82
-
-
Ferre, P.1
Foufelle, F.2
-
6
-
-
0036251153
-
SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton, J.D., J.L. Goldstein & M.S. Brown. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109: 1125-1131.
-
(2002)
J. Clin. Invest.
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
Goldstein, J.L.2
Brown, M.S.3
-
7
-
-
0033636780
-
Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice
-
Shimomura, I., M. Matsuda, R.E. Hammer, et al. 2000. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol. Cell. 6: 77-86.
-
(2000)
Mol. Cell.
, vol.6
, pp. 77-86
-
-
Shimomura, I.1
Matsuda, M.2
Hammer, R.E.3
-
8
-
-
34548433987
-
Clinical practice hypertriglyceridemia
-
Brunzell, J.D. 2007. Clinical practice. Hypertriglyceridemia. N. Engl. J. Med. 357: 1009-1017.
-
(2007)
N. Engl. J. Med.
, vol.357
, pp. 1009-1017
-
-
Brunzell, J.D.1
-
9
-
-
34250899722
-
Signal integration in the endoplasmic reticulum unfolded protein response
-
Ron, D. & P. Walter. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8: 519-529.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 519-529
-
-
Ron, D.1
Walter, P.2
-
10
-
-
18244405070
-
Complementary signaling pathways regulate the unfolded protein response and are required for C elegans development
-
Shen, X., R.E. Ellis, K. Lee, et al. 2001. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107: 893-903.
-
(2001)
Cell.
, vol.107
, pp. 893-903
-
-
Shen, X.1
Ellis, R.E.2
Lee, K.3
-
11
-
-
0037011917
-
IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA
-
Calfon, M., H. Zeng, F. Urano, et al. 2002. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415: 92-96.
-
(2002)
Nature
, vol.415
, pp. 92-96
-
-
Calfon, M.1
Zeng, H.2
Urano, F.3
-
12
-
-
0035966269
-
XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor
-
Yoshida, H., T. Matsui, A. Yamamoto, et al. 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107: 881-891.
-
(2001)
Cell.
, vol.107
, pp. 881-891
-
-
Yoshida, H.1
Matsui, T.2
Yamamoto, A.3
-
13
-
-
0027324844
-
Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase
-
Cox, J.S., C.E. Shamu & P. Walter. 1993. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73: 1197-1206.
-
(1993)
Cell.
, vol.73
, pp. 1197-1206
-
-
Cox, J.S.1
Shamu, C.E.2
Walter, P.3
-
14
-
-
0037083755
-
IRE1-mediated unconventional mRNA splicing and S2Pmediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response
-
Lee, K., W. Tirasophon, X. Shen, et al. 2002. IRE1- mediated unconventional mRNA splicing and S2Pmediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16: 452-466.
-
(2002)
Genes Dev.
, vol.16
, pp. 452-466
-
-
Lee, K.1
Tirasophon, W.2
Shen, X.3
-
15
-
-
3142658576
-
XBP1 downstream of blimp-1 expands the secretory apparatus and other organelles and increases protein synthesis in plasma cell differentiation
-
Shaffer,A.L., M. Shapiro-Shelef,N.N. Iwakoshi, et al. 2004. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21: 81-93.
-
(2004)
Immunity
, vol.21
, pp. 81-93
-
-
Shaffer, A.L.1
Shapiro-Shelef, M.2
Iwakoshi, N.N.3
-
16
-
-
0142059951
-
XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response
-
Lee, A.H., N.N. Iwakoshi & L.H. Glimcher. 2003. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23: 7448-7459.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7448-7459
-
-
Lee, A.H.1
Iwakoshi, N.N.2
Glimcher, L.H.3
-
18
-
-
23644433913
-
Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease
-
Niwa, M., C.K. Patil, J. DeRisi & P. Walter. 2005. Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease. Genome Biol. 6: R3.
-
(2005)
Genome Biol.
, vol.6
-
-
Niwa, M.1
Patil, C.K.2
DeRisi, J.3
Walter, P.4
-
19
-
-
14944371187
-
The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis
-
Zhang, K., H.N. Wong, B. Song, et al. 2005. The unfolded protein response sensor IRE1alpha is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Invest. 115: 268-281.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 268-281
-
-
Zhang, K.1
Wong, H.N.2
Song, B.3
-
20
-
-
33745893809
-
Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response
-
Hollien, J.&J.S.Weissman. 2006. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313: 104-107.
-
(2006)
Science
, vol.313
, pp. 104-107
-
-
Hollien, J.1
Weissman, J.S.2
-
22
-
-
32644432826
-
PXBP1 U encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1 S in mammalian ER stress response
-
Yoshida, H., M. Oku, M. Suzuki & K. Mori. 2006. pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J. Cell. Biol. 172: 565-575.
-
(2006)
J. Cell. Biol.
, vol.172
, pp. 565-575
-
-
Yoshida, H.1
Oku, M.2
Suzuki, M.3
Mori, K.4
-
23
-
-
0037320265
-
A time-dependent phase shift in the mammalian unfolded protein response
-
Yoshida, H., T. Matsui, N. Hosokawa, et al. 2003. A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell. 4: 265-271.
-
(2003)
Dev. Cell.
, vol.4
, pp. 265-271
-
-
Yoshida, H.1
Matsui, T.2
Hosokawa, N.3
-
24
-
-
29244448729
-
XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands
-
Lee, A.H., G.C. Chu, N.N. Iwakoshi & L.H. Glimcher. 2005. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. Embo J. 24: 4368-4380.
-
(2005)
Embo J.
, vol.24
, pp. 4368-4380
-
-
Lee, A.H.1
Chu, G.C.2
Iwakoshi, N.N.3
Glimcher, L.H.4
-
25
-
-
0037385313
-
Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1
-
Iwakoshi, N.N., A.H. Lee, P. Vallabhajosyula, et al. 2003. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat. Immunol. 4: 321-329.
-
(2003)
Nat. Immunol.
, vol.4
, pp. 321-329
-
-
Iwakoshi, N.N.1
Lee, A.H.2
Vallabhajosyula, P.3
-
26
-
-
0034650851
-
An essential role in liver development for transcription factor XBP-1
-
Reimold, A.M., A. Etkin, I. Clauss, et al. 2000. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14: 152-157.
-
(2000)
Genes Dev.
, vol.14
, pp. 152-157
-
-
Reimold, A.M.1
Etkin, A.2
Clauss, I.3
-
27
-
-
0030753971
-
Regulation of the expression of lipogenic enzyme genes by carbohydrate
-
Towle, H.C., E.N. Kaytor & H.M. Shih. 1997. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu. Rev. Nutr. 17: 405-433.
-
(1997)
Annu. Rev. Nutr.
, vol.17
, pp. 405-433
-
-
Towle, H.C.1
Kaytor, E.N.2
Shih, H.M.3
-
28
-
-
0033827087
-
APOLIPOPROTEIN B: MRNA editing lipoprotein assembly and presecretory degradation
-
Davidson, N.O. & G.S. Shelness. 2000. APOLIPOPROTEIN B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu. Rev. Nutr. 20: 169-193.
-
(2000)
Annu. Rev. Nutr.
, vol.20
, pp. 169-193
-
-
Davidson, N.O.1
Shelness, G.S.2
-
29
-
-
33746536677
-
Carbohydrate response element binding protein ChREBP a transcription factor coupling hepatic glucose utilization and lipid synthesis
-
Uyeda, K. & J.J. Repa. 2006. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4: 107-110.
-
(2006)
Cell. Metab.
, vol.4
, pp. 107-110
-
-
Uyeda, K.1
Repa, J.J.2
-
30
-
-
0031963963
-
Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression throughADD1/SREBP1
-
Kim, J.B., P. Sarraf, M. Wright, et al. 1998. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression throughADD1/SREBP1. J. Clin. Invest. 101: 1-9.
-
(1998)
J. Clin. Invest.
, vol.101
, pp. 1-9
-
-
Kim, J.B.1
Sarraf, P.2
Wright, M.3
-
31
-
-
0035923516
-
Glucose and camp regulate the L-type pyruvate kinase gene by phosphorylation/ dephosphorylation of the carbohydrate response element binding protein
-
Kawaguchi, T., M. Takenoshita, T. Kabashima & K. Uyeda. 2001. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/ dephosphorylation of the carbohydrate response element binding protein. Proc. Natl. Acad. Sci. USA 98: 13710-13715.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 13710-13715
-
-
Kawaguchi, T.1
Takenoshita, M.2
Kabashima, T.3
Uyeda, K.4
-
32
-
-
33846208252
-
The nuclear receptor LXR is a glucose sensor
-
Mitro, N., P.A. Mak, L. Vargas, et al. 2007. The nuclear receptor LXR is a glucose sensor. Nature 445: 219-223.
-
(2007)
Nature
, vol.445
, pp. 219-223
-
-
Mitro, N.1
Mak, P.A.2
Vargas, L.3
-
33
-
-
0030941803
-
The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
-
Brown, M.S. & J.L. Goldstein. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331-340.
-
(1997)
Cell.
, vol.89
, pp. 331-340
-
-
Brown, M.S.1
Goldstein, J.L.2
-
34
-
-
0037082099
-
Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis
-
Goldstein, J.L., R.B. Rawson & M.S. Brown. 2002. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch. Biochem. Biophys. 397: 139-148.
-
(2002)
Arch. Biochem. Biophys.
, vol.397
, pp. 139-148
-
-
Goldstein, J.L.1
Rawson, R.B.2
Brown, M.S.3
-
35
-
-
0036671360
-
Cholesterol addition to ER membranes alters conformation of SCAP the SREBP escort protein that regulates cholesterol metabolism
-
Brown, A.J., L. Sun, J.D. Feramisco, et al. 2002. Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol. Cell. 10: 237-245.
-
(2002)
Mol. Cell.
, vol.10
, pp. 237-245
-
-
Brown, A.J.1
Sun, L.2
Feramisco, J.D.3
-
36
-
-
0035873619
-
SREBP cleavage-activating protein SCAP is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation
-
Matsuda, M., B.S. Korn, R.E. Hammer, et al. 2001. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev. 15: 1206-1216.
-
(2001)
Genes Dev.
, vol.15
, pp. 1206-1216
-
-
Matsuda, M.1
Korn, B.S.2
Hammer, R.E.3
-
37
-
-
0033607176
-
Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes
-
Foretz,M., C. Guichard, P. Ferre & F. Foufelle. 1999. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. USA 96: 12737-12742.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 12737-12742
-
-
Foretz, M.1
Guichard, C.2
Ferre, P.3
Foufelle, F.4
-
38
-
-
0032568557
-
Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice
-
Horton, J.D., Y. Bashmakov, I. Shimomura & H. Shimano. 1998. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl. Acad. Sci. USA 95: 5987-5992.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 5987-5992
-
-
Horton, J.D.1
Bashmakov, Y.2
Shimomura, I.3
Shimano, H.4
-
39
-
-
0035976936
-
The hypocholesterolemic agent LY295427 reverses suppression of sterol regulatory element-binding protein processing mediated by oxysterols
-
Janowski, B.A., B. Shan & D.W. Russell. 2001. The hypocholesterolemic agent LY295427 reverses suppression of sterol regulatory element-binding protein processing mediated by oxysterols. J. Biol. Chem. 276: 45408-45416.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 45408-45416
-
-
Janowski, B.A.1
Shan, B.2
Russell, D.W.3
-
40
-
-
0034283596
-
Insulin effects on sterol regulatory-elementbinding protein-1c SREBP-1c transcriptional activity in rat hepatocytes
-
Pt 2
-
Azzout-Marniche, D., D. Becard, C. Guichard, et al. 2000. Insulin effects on sterol regulatory-elementbinding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochem. J. 350(Pt 2): 389-393.
-
(2000)
Biochem. J.
, vol.350
, pp. 389-393
-
-
Azzout-Marniche, D.1
Becard, D.2
Guichard, C.3
-
41
-
-
0034235363
-
Regulation of sterol regulatory-element binding protein 1 gene expression in liver: Role of insulin and protein kinase B/cAkt
-
Fleischmann, M. & P.B. Iynedjian. 2000. Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt. Biochem. J. 349: 13-17.
-
(2000)
Biochem. J.
, vol.349
, pp. 13-17
-
-
Fleischmann, M.1
Iynedjian, P.B.2
-
42
-
-
14444285707
-
Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway
-
Lehmann, J.M., S.A. Kliewer, L.B. Moore, et al. 1997. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem. 272: 3137-3140.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 3137-3140
-
-
Lehmann, J.M.1
Kliewer, S.A.2
Moore, L.B.3
-
43
-
-
0035923514
-
Decreased lipid synthesis in livers of mice with disrupted Site-1 protease gene
-
Yang, J., J.L. Goldstein, R.E. Hammer, et al. 2001. Decreased lipid synthesis in livers of mice with disrupted Site-1 protease gene. Proc. Natl. Acad. Sci. USA 98: 13607-13612.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 13607-13612
-
-
Yang, J.1
Goldstein, J.L.2
Hammer, R.E.3
-
44
-
-
0037088683
-
Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c
-
Liang, G., J. Yang, J.D. Horton, et al. 2002. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J. Biol. Chem. 277: 9520-9528.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 9520-9528
-
-
Liang, G.1
Yang, J.2
Horton, J.D.3
-
45
-
-
0034931033
-
Functional analysis of secreted and transmembrane proteins critical to mouse development
-
Mitchell, K.J., K.I. Pinson, O.G. Kelly, et al. 2001. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat. Genet. 28: 241-249.
-
(2001)
Nat. Genet.
, vol.28
, pp. 241-249
-
-
Mitchell, K.J.1
Pinson, K.I.2
Kelly, O.G.3
-
46
-
-
0029797604
-
Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenicmice expressing truncated SREBP-1a
-
Shimano,H., J.D. Horton, R.E.Hammer, et al. 1996. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenicmice expressing truncated SREBP-1a. J. Clin. Invest. 98: 1575-1584.
-
(1996)
J. Clin. Invest.
, vol.98
, pp. 1575-1584
-
-
Shimano, H.1
Horton, J.D.2
Hammer, R.E.3
-
47
-
-
0030907175
-
Isoform 1c of sterol regulatory element binding protein is less active than isoform1a in livers of transgenic mice and in cultured cells
-
Shimano,H., J.D. Horton, I. Shimomura, et al. 1997. Isoform 1c of sterol regulatory element binding protein is less active than isoform1a in livers of transgenic mice and in cultured cells. J. Clin. Invest. 99: 846-854.
-
(1997)
J. Clin. Invest.
, vol.99
, pp. 846-854
-
-
Shimano, H.1
Horton, J.D.2
Shimomura, I.3
-
48
-
-
0032104180
-
Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory elementbinding protein-2
-
Horton, J.D., I. Shimomura,M.S. Brown, et al. 1998. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory elementbinding protein-2. J. Clin. Invest. 101: 2331-2339.
-
(1998)
J. Clin. Invest.
, vol.101
, pp. 2331-2339
-
-
Horton, J.D.1
Shimomura, I.2
Brown, M.S.3
-
49
-
-
0035979214
-
A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver
-
Yamashita, H., M. Takenoshita, M. Sakurai, et al. 2001. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc. Natl. Acad. Sci. USA 98: 9116-9121.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 9116-9121
-
-
Yamashita, H.1
Takenoshita, M.2
Sakurai, M.3
-
50
-
-
0035937750
-
Glucose and insulin function through two distinct transcription factors to stimulate expression of lipogenic enzyme genes in liver
-
Koo, S.H., A.K. Dutcher & H.C. Towle. 2001. Glucose and insulin function through two distinct transcription factors to stimulate expression of lipogenic enzyme genes in liver. J. Biol. Chem. 276: 9437-9445.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 9437-9445
-
-
Koo, S.H.1
Dutcher, A.K.2
Towle, H.C.3
-
51
-
-
0035877604
-
Involvement of a unique carbohydrateresponsive factor in the glucose regulation of rat liver fatty-acid synthase gene transcription
-
Rufo, C., M. Teran-Garcia, M.T. Nakamura, et al. 2001. Involvement of a unique carbohydrateresponsive factor in the glucose regulation of rat liver fatty-acid synthase gene transcription. J. Biol. Chem. 276: 21969-21975.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 21969-21975
-
-
Rufo, C.1
Teran-Garcia, M.2
Nakamura, M.T.3
-
52
-
-
33749370739
-
Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice
-
Dentin, R., F. Benhamed, I. Hainault, et al. 2006. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55: 2159-2170.
-
(2006)
Diabetes
, vol.55
, pp. 2159-2170
-
-
Dentin, R.1
Benhamed, F.2
Hainault, I.3
-
53
-
-
8144229872
-
Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription
-
Ishii, S., K. Iizuka, B.C. Miller & K. Uyeda. 2004. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc. Natl. Acad. Sci. USA 101: 15597-15602.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 15597-15602
-
-
Ishii, S.1
Iizuka, K.2
Miller, B.C.3
Uyeda, K.4
-
54
-
-
2442435802
-
Deficiency of carbohydrate response element-binding protein chrebp reduces lipogenesis as well as glycolysis
-
Iizuka, K., R.K. Bruick, G. Liang, et al. 2004. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl. Acad. Sci. USA 101: 7281-7286.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 7281-7286
-
-
Iizuka, K.1
Bruick, R.K.2
Liang, G.3
-
55
-
-
0038561165
-
Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphateactivated protein phosphatase in rat liver
-
Kabashima, T., T. Kawaguchi, B.E. Wadzinski & K. Uyeda. 2003. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphateactivated protein phosphatase in rat liver. Proc. Natl. Acad. Sci. USA 100: 5107-5112.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 5107-5112
-
-
Kabashima, T.1
Kawaguchi, T.2
Wadzinski, B.E.3
Uyeda, K.4
-
56
-
-
0030879870
-
The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane
-
Cox, J.S., R.E. Chapman & P.Walter. 1997. The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell. 8: 1805-1814.
-
(1997)
Mol. Biol. Cell.
, vol.8
, pp. 1805-1814
-
-
Cox, J.S.1
Chapman, R.E.2
Walter, P.3
-
57
-
-
5444222234
-
XBP1: A link between the unfolded protein response lipid biosynthesis and biogenesis of the endoplasmic reticulum
-
Sriburi, R., S. Jackowski, K. Mori & J.W. Brewer. 2004. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell. Biol. 167: 35-41.
-
(2004)
J. Cell. Biol.
, vol.167
, pp. 35-41
-
-
Sriburi, R.1
Jackowski, S.2
Mori, K.3
Brewer, J.W.4
-
58
-
-
5644231992
-
Endoplasmic reticulum stress links obesity insulin action and type 2 diabetes
-
Ozcan, U., Q. Cao, E. Yilmaz, et al. 2004. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457-461.
-
(2004)
Science
, vol.306
, pp. 457-461
-
-
Ozcan, U.1
Cao, Q.2
Yilmaz, E.3
-
59
-
-
30944451788
-
Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis
-
Wang, D., Y.Wei & M.J. Pagliassotti. 2006. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147: 943-951.
-
(2006)
Endocrinology
, vol.147
, pp. 943-951
-
-
Wang, D.1
Wei, Y.2
Pagliassotti, M.J.3
-
60
-
-
38149136598
-
Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents
-
Ota T, Gayet C, Ginsberg HN. 2008. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J. Clin. Invest. 118: 316-332.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 316-332
-
-
Ota, T.1
Gayet, C.2
Ginsberg, H.N.3
-
61
-
-
33644750396
-
Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes
-
Hotamisligil, G.S. 2005. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 54(Suppl 2): S73-S78.
-
(2005)
Diabetes
, vol.54
, Issue.2
-
-
Hotamisligil, G.S.1
-
62
-
-
0033525712
-
Liver-specific inactivation of the abetalipoproteinemia gene completely abrogates very low density lipoprotein/low density lipoprotein production in a viable conditional knockout mouse
-
Chang, B.H.,W. Liao, L. Li, et al. 1999. Liver-specific inactivation of the abetalipoproteinemia gene completely abrogates very low density lipoprotein/low density lipoprotein production in a viable conditional knockout mouse. J. Biol. Chem. 274: 6051-6055.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 6051-6055
-
-
Chang, B.H.1
Liao, W.2
Li, L.3
-
63
-
-
0142042348
-
Blocking microsomal triglyceride transfer protein interferes with apo B secretion without causing retention or stress in the ER
-
Liao, W., T.Y. Hui, S.G. Young & R.A. Davis. 2003. Blocking microsomal triglyceride transfer protein interferes with apoB secretion without causing retention or stress in the ER. J. Lipid Res. 44: 978-985.
-
(2003)
J. Lipid Res.
, vol.44
, pp. 978-985
-
-
Liao, W.1
Hui, T.Y.2
Young, S.G.3
Davis, R.A.4
-
64
-
-
0344349000
-
Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice
-
Raabe, M.,M.M. Veniant,M.A. Sullivan, et al. 1999. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J. Clin. Invest. 103: 1287-1298.
-
(1999)
J. Clin. Invest.
, vol.103
, pp. 1287-1298
-
-
Raabe, M.1
Veniant, M.M.2
Sullivan, M.A.3
-
65
-
-
0027478167
-
Targeted modification of the apolipoprotein B gene results in hypobetalipoproteinemia and developmental abnormalities in mice
-
Homanics, G.E., T.J. Smith, S.H. Zhang, et al. 1993. Targeted modification of the apolipoprotein B gene results in hypobetalipoproteinemia and developmental abnormalities in mice. Proc. Natl. Acad. Sci. USA 90: 2389-2393.
-
(1993)
Proc. Natl. Acad. Sci. USA
, vol.90
, pp. 2389-2393
-
-
Homanics, G.E.1
Smith, T.J.2
Zhang, S.H.3
|