-
1
-
-
0035970899
-
-
M. A. Lanz, H. J. Hug, R. Hoffman, P. J. A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, and H.-J. Güntherodt, Science 291, 2580 (2001).
-
(2001)
Science
, vol.291
, pp. 2580
-
-
Lanz, M.A.1
Hug, H.J.2
Hoffman, R.3
Van Schendel, P.J.A.4
Kappenberger, P.5
Martin, S.6
Baratoff, A.7
Güntherodt, H.-J.8
-
2
-
-
32644472261
-
-
M. Ono, Y. Nishigata, T. Nishio, T. Eguchi, and Y. Hasegawa, Phys. Rev. Lett. 96, 016801 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 016801
-
-
Ono, M.1
Nishigata, Y.2
Nishio, T.3
Eguchi, T.4
Hasegawa, Y.5
-
5
-
-
25844497018
-
-
J. Lee, J. Chae, C. K. K. Kim, H. Kim, S. Oh, and Y. Kuk, Rev. Sci. Instrum. 76, 093701 (2005).
-
(2005)
Rev. Sci. Instrum.
, vol.76
, pp. 093701
-
-
Lee, J.1
Chae, J.2
Kim, C.K.K.3
Kim, H.4
Oh, S.5
Kuk, Y.6
-
6
-
-
0002231718
-
-
W. Allers, A. Schwarz, U. D. Schwarz, and R. Wiesendanger, Rev. Sci. Instrum. 69, 221 (1998).
-
(1998)
Rev. Sci. Instrum.
, vol.69
, pp. 221
-
-
Allers, W.1
Schwarz, A.2
Schwarz, U.D.3
Wiesendanger, R.4
-
7
-
-
0032613936
-
-
H. J. Hug, B. Stiefel, P. J. A. van Schendel, A. Moser, and S. Martin, Rev. Sci. Instrum. 70, 3625 (1999).
-
(1999)
Rev. Sci. Instrum.
, vol.70
, pp. 3625
-
-
Hug, H.J.1
Stiefel, B.2
Van Schendel, P.J.A.3
Moser, A.4
Martin, S.5
-
11
-
-
28344450205
-
-
T. An, T. Eguchi, K. Akiyama, and Y. Hasegawa, Appl. Phys. Lett. 87, 133114 (2005).
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 133114
-
-
An, T.1
Eguchi, T.2
Akiyama, K.3
Hasegawa, Y.4
-
12
-
-
0035202491
-
-
F. J. Giessibl, H. Bielefeldet, S. Hembacher, and J. Mannhart, Ann. Phys. 10, 887 (2001).
-
(2001)
Ann. Phys.
, vol.10
, pp. 887
-
-
Giessibl, F.J.1
Bielefeldet, H.2
Hembacher, S.3
Mannhart, J.4
-
14
-
-
0042377551
-
-
A. Oral, R. A. Grimble, H. Ö. Özer, and J. B. Petica, Rev. Sci. Instrum. 74, 3656 (2003).
-
(2003)
Rev. Sci. Instrum.
, vol.74
, pp. 3656
-
-
Oral, A.1
Grimble, R.A.2
Özer, H.Ö.3
Petica, J.B.4
-
17
-
-
4043106281
-
-
M. Heyde, M. Kulwik, H.-P. Rust, and H.-J. Freund, Rev. Sci. Instrum. 75, 2446 (2004).
-
(2004)
Rev. Sci. Instrum.
, vol.75
, pp. 2446
-
-
Heyde, M.1
Kulwik, M.2
Rust, H.-P.3
Freund, H.-J.4
-
18
-
-
17044412892
-
-
For an AFM tip, a 10 μm diameter W wire was fabricated so that its length becomes less than 50 μm.
-
K. Akiyama, T. Eguchi, T. An, Y. Fujikawa, Y. Yamada-Takamura, T. Sakurai, and Y. Hasegawa, Rev. Sci. Instrum. 76, 033705 (2005). For an AFM tip, a 10 μm diameter W wire was fabricated so that its length becomes less than 50 μm.
-
(2005)
Rev. Sci. Instrum.
, vol.76
, pp. 033705
-
-
Akiyama, K.1
Eguchi, T.2
An, T.3
Fujikawa, Y.4
Yamada-Takamura, Y.5
Sakurai, T.6
Hasegawa, Y.7
-
19
-
-
33645156712
-
-
We recently replaced electrical wires for the tiand sample into superconducting NbTi coaxial cables to avoid thermal influx into the STM head.
-
T. Nishio, M. Ono, T. Eguchi, H. Sakata, and Y. Hasegawa, Appl. Phys. Lett. 88, 113115 (2006). We recently replaced electrical wires for the tip and sample into superconducting NbTi coaxial cables to avoid thermal influx into the STM head.
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 113115
-
-
Nishio, T.1
Ono, M.2
Eguchi, T.3
Sakata, H.4
Hasegawa, Y.5
-
21
-
-
41549140562
-
-
Eigth International conference on non-contact Atomic Force Microscopy, (unpublished), P59.
-
M. Breitschaft, F. J. Giessibl, and J. Mannhart, Eigth International conference on non-contact Atomic Force Microscopy, 2005 (unpublished), P59.
-
(2005)
-
-
Breitschaft, M.1
Giessibl, F.J.2
Mannhart, J.3
-
22
-
-
41549102059
-
-
Ph. D. thesis, ETH, Cha 4.
-
J. Rychen, Ph. D. thesis, ETH, 2001, Chap. 4.
-
(2001)
-
-
Rychen, J.1
-
23
-
-
41549116397
-
-
From a data sheet of the length-extension-type quartz resonator (Microcrystal: http://www.microcrystal.com/), c is 1.1-1.4 fF. From an experimental result of f1 - f0 =270 Hz at RT, c0 is calculated at 2.0-2.8 pF.
-
From a data sheet of the length-extension-type quartz resonator (Microcrystal: http://www.microcrystal.com/), c is 1.1-1.4 fF. From an experimental result of f1 - f0 =270 Hz at RT, c0 is calculated at 2.0-2.8 pF.
-
-
-
-
24
-
-
0000664807
-
-
R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, and A. S. Manus, Rev. Sci. Instrum. 71, 2776 (2000).
-
(2000)
Rev. Sci. Instrum.
, vol.71
, pp. 2776
-
-
Grober, R.D.1
Acimovic, J.2
Schuck, J.3
Hessman, D.4
Kindlemann, P.J.5
Hespanha, J.6
Manus, A.S.7
-
25
-
-
0037187206
-
-
M. Kageshima, H. Jensenius, M. Dienwiebel, Y. Nakayama, H. Tokumoto, S. P. Jarvis, and T. H. Oosterkamp, Appl. Surf. Sci. 188, 440 (2002).
-
(2002)
Appl. Surf. Sci.
, vol.188
, pp. 440
-
-
Kageshima, M.1
Jensenius, H.2
Dienwiebel, M.3
Nakayama, Y.4
Tokumoto, H.5
Jarvis, S.P.6
Oosterkamp, T.H.7
-
26
-
-
0141937017
-
-
in Noncontact Atomic Force Microscopy, edited by S. Morita (Springer, Berlin) Cha, When the gadistance oscillates with the amplitude of A, averaged tunneling current changes as I0 2π κA under the condition of κA1, where I0 is tunneling current at the closest distance and κ is the decay constant of the current. By decreasing the oscillation amplitude to its half value, the averaged tunneling current increases by a factor of 2. The feedback increases the gadistance to keethe averaged current constant. The amount of the distance change is estimated from the exponential dependence of the tunneling current variation on the gadistance: ex(-κz) and is found to be 18 pm. The decay constant was measured as 20 nm-1 experimentally.
-
F. J. Giessibl, in Noncontact Atomic Force Microscopy, edited by, S. Morita, (Springer, Berlin, 2002) Chap., pp. 11-46. When the gap distance oscillates with the amplitude of A, averaged tunneling current changes as I0 2π κA under the condition of κA1, where I0 is tunneling current at the closest distance and κ is the decay constant of the current. By decreasing the oscillation amplitude to its half value, the averaged tunneling current increases by a factor of 2. The feedback increases the gap distance to keep the averaged current constant. The amount of the distance change is estimated from the exponential dependence of the tunneling current variation on the gap distance: exp (-κz) and is found to be 18 pm. The decay constant was measured as 20 nm-1 experimentally.
-
(2002)
, pp. 11-46
-
-
Giessibl, F.J.1
-
29
-
-
2142822926
-
-
Y. Hasegawa, T. Eguchi, T. An, M. Ono, K. Akiyama, and T. Sakurai, Jpn. J. Appl. Phys., Part 2 43, L303 (2004).
-
(2004)
Jpn. J. Appl. Phys., Part 2
, vol.43
, pp. 303
-
-
Hasegawa, Y.1
Eguchi, T.2
An, T.3
Ono, M.4
Akiyama, K.5
Sakurai, T.6
-
30
-
-
18744405727
-
-
T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada, Rev. Sci. Instrum. 76, 053704 (2005).
-
(2005)
Rev. Sci. Instrum.
, vol.76
, pp. 053704
-
-
Fukuma, T.1
Kimura, M.2
Kobayashi, K.3
Matsushige, K.4
Yamada, H.5
-
31
-
-
0344307480
-
-
M. A. Lanz, H. J. Hug, R. Hoffman, S. Martin, A. Baratoff, and H.-J. Güntherodt, Phys. Rev. B 68, 035324 (2003).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 035324
-
-
Lanz, M.A.1
Hug, H.J.2
Hoffman, R.3
Martin, S.4
Baratoff, A.5
Güntherodt, H.-J.6
-
32
-
-
0000636413
-
-
I. Štich, M. C. Payne, R. D. King-Smith, and J.-S. Lin, Phys. Rev. Lett. 68, 1351 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1351
-
-
Štich, I.1
Payne, M.C.2
King-Smith, R.D.3
Lin, J.-S.4
|