-
1
-
-
68249114452
-
Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
-
Sterne JJC, White IRI, Carlin JJB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338(July):b2393. doi:10.1136/bmj.b2393.
-
(2009)
BMJ
, vol.338
-
-
Sterne, J.J.C.1
White, I.R.I.2
Carlin, J.J.B.3
-
2
-
-
84958599888
-
Strategies for handling missing data in electronic health record derived data
-
Wells BJ, Chagin KM, Nowacki AS, Kattan MW. Strategies for handling missing data in electronic health record derived data. EGEMS (Washington, DC). 2013;1(3):1035. doi:10.13063/2327-9214.1035.
-
(2013)
EGEMS (Washington, DC)
, vol.1
, Issue.3
, pp. 1035
-
-
Wells, B.J.1
Chagin, K.M.2
Nowacki, A.S.3
Kattan, M.W.4
-
6
-
-
84861628361
-
-
Gelman A, Hill J. Data Analysis Using Regression and Multilevel/hierarchical Models.; 2006. https://books.google.com/books?hl=en&lr=&id=c9xLKzZWoZ4C&oi=fnd&pg=PR17&dq=data+analysis+usi ng+regression+and+multilevel/hierarchical+models&ots=baT3R3Mnng&sig=KpLzVOFtUseaK8_IhUfPLM2 Y7fU. Accessed August 10, 2016.
-
(2006)
Data Analysis Using Regression and Multilevel/Hierarchical Models
, vol.2016
-
-
Gelman, A.1
Hill, J.2
-
7
-
-
0034960264
-
Missing value estimation methods for DNA microarrays
-
Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17(6):520-525. doi:10.1093/bioinformatics/17.6.520.
-
(2001)
Bioinformatics
, vol.17
, Issue.6
, pp. 520-525
-
-
Troyanskaya, O.1
Cantor, M.2
Sherlock, G.3
-
8
-
-
69349090197
-
Learning Deep Architectures for AI
-
Bengio Y. Learning Deep Architectures for AI. Found Trends® Mach Learn. 2009;2(1):1-127. doi:10.1561/2200000006.
-
(2009)
Found Trends® Mach Learn
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
9
-
-
79551480483
-
Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
-
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J Mach Learn Res. 2010;11(3):3371-3408. doi:10.1111/1467-8535.00290.
-
(2010)
J Mach Learn Res
, vol.11
, Issue.3
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
11
-
-
84904163933
-
Dropout: A Simple Way to Prevent Neural Networks from Overfitting
-
Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J Mach Learn Res. 2014;15:1929-1958. doi:10.1214/12-AOS1000.
-
(2014)
J Mach Learn Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
13
-
-
84968813824
-
Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records
-
Miotto R, Li L, Kidd BA, et al. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep. 2016;6:26094. doi:10.1038/srep26094.
-
(2016)
Sci Rep
, vol.6
-
-
Miotto, R.1
Li, L.2
Kidd, B.A.3
-
14
-
-
84963940835
-
Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression
-
Küffner R, Zach N, Norel R, et al. Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression. Nat Biotechnol. 2015;33(1):51-57. doi:10.1038/nbt.3051.
-
(2015)
Nat Biotechnol
, vol.33
, Issue.1
, pp. 51-57
-
-
Küffner, R.1
Zach, N.2
Norel, R.3
-
15
-
-
55749095191
-
ALSFRS-R score and its ratio: A useful predictor for ALS-progression
-
Kollewe K, Mauss U, Krampfl K, Petri S, Dengler R, Mohammadi B. ALSFRS-R score and its ratio: A useful predictor for ALS-progression. J Neurol Sci. 2008;275(1-2):69-73. doi:10.1016/j.jns.2008.07.016.
-
(2008)
J Neurol Sci
, vol.275
, Issue.1-2
, pp. 69-73
-
-
Kollewe, K.1
Mauss, U.2
Krampfl, K.3
Petri, S.4
Dengler, R.5
Mohammadi, B.6
-
16
-
-
37549000493
-
The heterogeneity of amyotrophic lateral sclerosis: A possible explanation of treatment failure
-
Accessed August 7, 2016
-
Beghi E, Mennini T, Bendotti C, et al. The heterogeneity of amyotrophic lateral sclerosis: a possible explanation of treatment failure. Curr Med Chem. 2007;14(30):3185-3200. http://www.ncbi.nlm.nih.gov/pubmed/18220753. Accessed August 7, 2016.
-
(2007)
Curr Med Chem
, vol.14
, Issue.30
, pp. 3185-3200
-
-
Beghi, E.1
Mennini, T.2
Bendotti, C.3
-
17
-
-
84875896727
-
Clinical and genetic heterogeneity of amyotrophic lateral sclerosis
-
Sabatelli M, Conte A, Zollino M. Clinical and genetic heterogeneity of amyotrophic lateral sclerosis. Clin Genet. 2013;83(5):408-416. doi:10.1111/cge.12117.
-
(2013)
Clin Genet
, vol.83
, Issue.5
, pp. 408-416
-
-
Sabatelli, M.1
Conte, A.2
Zollino, M.3
-
18
-
-
70349581626
-
ALS motor phenotype heterogeneity, focality, and spread: Deconstructing motor neuron degeneration
-
Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology. 2009;73(10):805-811. doi:10.1212/WNL.0b013e3181b6bbbd.
-
(2009)
Neurology
, vol.73
, Issue.10
, pp. 805-811
-
-
Ravits, J.M.1
la Spada, A.R.2
-
19
-
-
0030678474
-
Performance of the amyotrophic lateral sclerosis functional rating scale (ALSFRS) in multicenter clinical trials
-
Cedarbaum JM, Stambler N. Performance of the amyotrophic lateral sclerosis functional rating scale (ALSFRS) in multicenter clinical trials. In: Journal of the Neurological Sciences. Vol 152.; 1997. doi:10.1016/S0022-510X(97)00237-2.
-
(1997)
Journal of the Neurological Sciences
, vol.152
-
-
Cedarbaum, J.M.1
Stambler, N.2
-
20
-
-
0032692481
-
The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function
-
Cedarbaum JM, Stambler N, Malta E, et al. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci. 1999;169(1-2):13-21. doi:10.1016/S0022-510X(99)00210-5.
-
(1999)
J Neurol Sci
, vol.169
, Issue.1-2
, pp. 13-21
-
-
Cedarbaum, J.M.1
Stambler, N.2
Malta, E.3
-
22
-
-
85048380739
-
-
Chollet F. Keras. GitHub Repos
-
Chollet F. Keras. GitHub Repos. 2015.
-
(2015)
-
-
-
23
-
-
80555140075
-
Scikit-learn: Machine Learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. … Mach Learn …. 2012;12:2825-2830. http://dl.acm.org/citation.cfm?id=2078195\nhttp://arxiv.org/abs/1201.0490.
-
(2012)
Mach Learn …
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
-
25
-
-
84856673205
-
Theano: A CPU and GPU math compiler in Python
-
Bergstra J, Breuleux O, Bastien F, et al. Theano: a CPU and GPU math compiler in Python. In: 9th Python in Science Conference.; 2010:1-7. http://www-etud.iro.umontreal.ca/~wardefar/publications/theano_scipy2010.pdf.
-
9Th Python in Science Conference
, vol.2010
, pp. 1-7
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
-
26
-
-
84878208836
-
Semi-supervised recursive autoencoders for predicting sentiment distributions
-
Socher R, Pennington J, Huang E, Ng A. Semi-supervised recursive autoencoders for predicting sentiment distributions. Proc. 2011. http://dl.acm.org/citation.cfm?id=2145450
-
(2011)
Proc
-
-
Socher, R.1
Pennington, J.2
Huang, E.3
Ng, A.4
-
28
-
-
77956944781
-
Spectral Regularization Algorithms for Learning Large Incomplete Matrices
-
Mazumder R, Hastie T, Edu H, Tibshirani R, Edu T. Spectral Regularization Algorithms for Learning Large Incomplete Matrices. J Mach Learn Res. 2010;11:2287-2322.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 2287-2322
-
-
Mazumder, R.1
Hastie, T.2
Edu, H.3
Tibshirani, R.4
Edu, T.5
-
30
-
-
33646501982
-
Royston P. Multiple imputation of missing values: Update of ice
-
Royston P. Multiple imputation of missing values: update of ice. Stata J. 2005. https://www.researchgate.net/profile/James_Cui2/publication/23780230_Buckley-James_method_for_analyzing_censored_data_with_an_application_to_a_cardiovascular_disease_and_an_HI VAIDS_study/links/53d5866d0cf228d363ea0b7a.pdf#page=59. Accessed August 10, 2016.
-
(2005)
Stata J
, vol.2016
-
-
-
36
-
-
33847721847
-
Riluzole and amyotrophic lateral sclerosis survival: A population-based study in southern Italy
-
Zoccolella S, Beghi E, Palagano G, et al. Riluzole and amyotrophic lateral sclerosis survival: a population-based study in southern Italy. Eur J Neurol. 2007;14(3):262-268. doi:10.1111/j.1468-1331.2006.01575.x.
-
(2007)
Eur J Neurol
, vol.14
, Issue.3
, pp. 262-268
-
-
Zoccolella, S.1
Beghi, E.2
Palagano, G.3
-
37
-
-
0037393176
-
An outcome study of riluzole in amyotrophic lateral sclerosis
-
Traynor BJ, Alexander M, Corr B, Frost E, Hardiman O. An outcome study of riluzole in amyotrophic lateral sclerosis. J Neurol. 2003;250(4):473-479. doi:10.1007/s00415-003-1026-z.
-
(2003)
J Neurol
, vol.250
, Issue.4
, pp. 473-479
-
-
Traynor, B.J.1
Alexander, M.2
Corr, B.3
Frost, E.4
Hardiman, O.5
-
38
-
-
33644546709
-
Forced vital capacity (FVC) as an indicator of survival and disease progression in an ALS clinic population
-
Czaplinski A, Yen AA, Appel SH. Forced vital capacity (FVC) as an indicator of survival and disease progression in an ALS clinic population. J Neurol Neurosurg Psychiatry. 2006;77(3):390-392. doi:10.1136/jnnp.2005.072660.
-
(2006)
J Neurol Neurosurg Psychiatry
, vol.77
, Issue.3
, pp. 390-392
-
-
Czaplinski, A.1
Yen, A.A.2
Appel, S.H.3
|