메뉴 건너뛰기




Volumn 0, Issue 212679, 2017, Pages 207-218

Missing data imputation in the electronic health record using deeply learned autoencoders

Author keywords

[No Author keywords available]

Indexed keywords

EHEALTH; LEARNING SYSTEMS; RECORDS MANAGEMENT;

EID: 85021860204     PISSN: 23356928     EISSN: 23356936     Source Type: Journal    
DOI: 10.1142/9789813207813_0021     Document Type: Conference Paper
Times cited : (163)

References (38)
  • 1
    • 68249114452 scopus 로고    scopus 로고
    • Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
    • Sterne JJC, White IRI, Carlin JJB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338(July):b2393. doi:10.1136/bmj.b2393.
    • (2009) BMJ , vol.338
    • Sterne, J.J.C.1    White, I.R.I.2    Carlin, J.J.B.3
  • 2
    • 84958599888 scopus 로고    scopus 로고
    • Strategies for handling missing data in electronic health record derived data
    • Wells BJ, Chagin KM, Nowacki AS, Kattan MW. Strategies for handling missing data in electronic health record derived data. EGEMS (Washington, DC). 2013;1(3):1035. doi:10.13063/2327-9214.1035.
    • (2013) EGEMS (Washington, DC) , vol.1 , Issue.3 , pp. 1035
    • Wells, B.J.1    Chagin, K.M.2    Nowacki, A.S.3    Kattan, M.W.4
  • 6
    • 84861628361 scopus 로고    scopus 로고
    • Gelman A, Hill J. Data Analysis Using Regression and Multilevel/hierarchical Models.; 2006. https://books.google.com/books?hl=en&lr=&id=c9xLKzZWoZ4C&oi=fnd&pg=PR17&dq=data+analysis+usi ng+regression+and+multilevel/hierarchical+models&ots=baT3R3Mnng&sig=KpLzVOFtUseaK8_IhUfPLM2 Y7fU. Accessed August 10, 2016.
    • (2006) Data Analysis Using Regression and Multilevel/Hierarchical Models , vol.2016
    • Gelman, A.1    Hill, J.2
  • 7
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17(6):520-525. doi:10.1093/bioinformatics/17.6.520.
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 520-525
    • Troyanskaya, O.1    Cantor, M.2    Sherlock, G.3
  • 8
    • 69349090197 scopus 로고    scopus 로고
    • Learning Deep Architectures for AI
    • Bengio Y. Learning Deep Architectures for AI. Found Trends® Mach Learn. 2009;2(1):1-127. doi:10.1561/2200000006.
    • (2009) Found Trends® Mach Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 9
    • 79551480483 scopus 로고    scopus 로고
    • Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J Mach Learn Res. 2010;11(3):3371-3408. doi:10.1111/1467-8535.00290.
    • (2010) J Mach Learn Res , vol.11 , Issue.3 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 13
    • 84968813824 scopus 로고    scopus 로고
    • Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records
    • Miotto R, Li L, Kidd BA, et al. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep. 2016;6:26094. doi:10.1038/srep26094.
    • (2016) Sci Rep , vol.6
    • Miotto, R.1    Li, L.2    Kidd, B.A.3
  • 14
    • 84963940835 scopus 로고    scopus 로고
    • Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression
    • Küffner R, Zach N, Norel R, et al. Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression. Nat Biotechnol. 2015;33(1):51-57. doi:10.1038/nbt.3051.
    • (2015) Nat Biotechnol , vol.33 , Issue.1 , pp. 51-57
    • Küffner, R.1    Zach, N.2    Norel, R.3
  • 15
    • 55749095191 scopus 로고    scopus 로고
    • ALSFRS-R score and its ratio: A useful predictor for ALS-progression
    • Kollewe K, Mauss U, Krampfl K, Petri S, Dengler R, Mohammadi B. ALSFRS-R score and its ratio: A useful predictor for ALS-progression. J Neurol Sci. 2008;275(1-2):69-73. doi:10.1016/j.jns.2008.07.016.
    • (2008) J Neurol Sci , vol.275 , Issue.1-2 , pp. 69-73
    • Kollewe, K.1    Mauss, U.2    Krampfl, K.3    Petri, S.4    Dengler, R.5    Mohammadi, B.6
  • 16
    • 37549000493 scopus 로고    scopus 로고
    • The heterogeneity of amyotrophic lateral sclerosis: A possible explanation of treatment failure
    • Accessed August 7, 2016
    • Beghi E, Mennini T, Bendotti C, et al. The heterogeneity of amyotrophic lateral sclerosis: a possible explanation of treatment failure. Curr Med Chem. 2007;14(30):3185-3200. http://www.ncbi.nlm.nih.gov/pubmed/18220753. Accessed August 7, 2016.
    • (2007) Curr Med Chem , vol.14 , Issue.30 , pp. 3185-3200
    • Beghi, E.1    Mennini, T.2    Bendotti, C.3
  • 17
    • 84875896727 scopus 로고    scopus 로고
    • Clinical and genetic heterogeneity of amyotrophic lateral sclerosis
    • Sabatelli M, Conte A, Zollino M. Clinical and genetic heterogeneity of amyotrophic lateral sclerosis. Clin Genet. 2013;83(5):408-416. doi:10.1111/cge.12117.
    • (2013) Clin Genet , vol.83 , Issue.5 , pp. 408-416
    • Sabatelli, M.1    Conte, A.2    Zollino, M.3
  • 18
    • 70349581626 scopus 로고    scopus 로고
    • ALS motor phenotype heterogeneity, focality, and spread: Deconstructing motor neuron degeneration
    • Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology. 2009;73(10):805-811. doi:10.1212/WNL.0b013e3181b6bbbd.
    • (2009) Neurology , vol.73 , Issue.10 , pp. 805-811
    • Ravits, J.M.1    la Spada, A.R.2
  • 19
    • 0030678474 scopus 로고    scopus 로고
    • Performance of the amyotrophic lateral sclerosis functional rating scale (ALSFRS) in multicenter clinical trials
    • Cedarbaum JM, Stambler N. Performance of the amyotrophic lateral sclerosis functional rating scale (ALSFRS) in multicenter clinical trials. In: Journal of the Neurological Sciences. Vol 152.; 1997. doi:10.1016/S0022-510X(97)00237-2.
    • (1997) Journal of the Neurological Sciences , vol.152
    • Cedarbaum, J.M.1    Stambler, N.2
  • 20
    • 0032692481 scopus 로고    scopus 로고
    • The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function
    • Cedarbaum JM, Stambler N, Malta E, et al. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci. 1999;169(1-2):13-21. doi:10.1016/S0022-510X(99)00210-5.
    • (1999) J Neurol Sci , vol.169 , Issue.1-2 , pp. 13-21
    • Cedarbaum, J.M.1    Stambler, N.2    Malta, E.3
  • 22
    • 85048380739 scopus 로고    scopus 로고
    • Chollet F. Keras. GitHub Repos
    • Chollet F. Keras. GitHub Repos. 2015.
    • (2015)
  • 23
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine Learning in Python
    • Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. … Mach Learn …. 2012;12:2825-2830. http://dl.acm.org/citation.cfm?id=2078195\nhttp://arxiv.org/abs/1201.0490.
    • (2012) Mach Learn … , vol.12 , pp. 2825-2830
    • Pedregosa, F.1    Varoquaux, G.2    Gramfort, A.3
  • 25
    • 84856673205 scopus 로고    scopus 로고
    • Theano: A CPU and GPU math compiler in Python
    • Bergstra J, Breuleux O, Bastien F, et al. Theano: a CPU and GPU math compiler in Python. In: 9th Python in Science Conference.; 2010:1-7. http://www-etud.iro.umontreal.ca/~wardefar/publications/theano_scipy2010.pdf.
    • 9Th Python in Science Conference , vol.2010 , pp. 1-7
    • Bergstra, J.1    Breuleux, O.2    Bastien, F.3
  • 26
    • 84878208836 scopus 로고    scopus 로고
    • Semi-supervised recursive autoencoders for predicting sentiment distributions
    • Socher R, Pennington J, Huang E, Ng A. Semi-supervised recursive autoencoders for predicting sentiment distributions. Proc. 2011. http://dl.acm.org/citation.cfm?id=2145450
    • (2011) Proc
    • Socher, R.1    Pennington, J.2    Huang, E.3    Ng, A.4
  • 28
    • 77956944781 scopus 로고    scopus 로고
    • Spectral Regularization Algorithms for Learning Large Incomplete Matrices
    • Mazumder R, Hastie T, Edu H, Tibshirani R, Edu T. Spectral Regularization Algorithms for Learning Large Incomplete Matrices. J Mach Learn Res. 2010;11:2287-2322.
    • (2010) J Mach Learn Res , vol.11 , pp. 2287-2322
    • Mazumder, R.1    Hastie, T.2    Edu, H.3    Tibshirani, R.4    Edu, T.5
  • 30
    • 33646501982 scopus 로고    scopus 로고
    • Royston P. Multiple imputation of missing values: Update of ice
    • Royston P. Multiple imputation of missing values: update of ice. Stata J. 2005. https://www.researchgate.net/profile/James_Cui2/publication/23780230_Buckley-James_method_for_analyzing_censored_data_with_an_application_to_a_cardiovascular_disease_and_an_HI VAIDS_study/links/53d5866d0cf228d363ea0b7a.pdf#page=59. Accessed August 10, 2016.
    • (2005) Stata J , vol.2016
  • 36
    • 33847721847 scopus 로고    scopus 로고
    • Riluzole and amyotrophic lateral sclerosis survival: A population-based study in southern Italy
    • Zoccolella S, Beghi E, Palagano G, et al. Riluzole and amyotrophic lateral sclerosis survival: a population-based study in southern Italy. Eur J Neurol. 2007;14(3):262-268. doi:10.1111/j.1468-1331.2006.01575.x.
    • (2007) Eur J Neurol , vol.14 , Issue.3 , pp. 262-268
    • Zoccolella, S.1    Beghi, E.2    Palagano, G.3
  • 37
    • 0037393176 scopus 로고    scopus 로고
    • An outcome study of riluzole in amyotrophic lateral sclerosis
    • Traynor BJ, Alexander M, Corr B, Frost E, Hardiman O. An outcome study of riluzole in amyotrophic lateral sclerosis. J Neurol. 2003;250(4):473-479. doi:10.1007/s00415-003-1026-z.
    • (2003) J Neurol , vol.250 , Issue.4 , pp. 473-479
    • Traynor, B.J.1    Alexander, M.2    Corr, B.3    Frost, E.4    Hardiman, O.5
  • 38
    • 33644546709 scopus 로고    scopus 로고
    • Forced vital capacity (FVC) as an indicator of survival and disease progression in an ALS clinic population
    • Czaplinski A, Yen AA, Appel SH. Forced vital capacity (FVC) as an indicator of survival and disease progression in an ALS clinic population. J Neurol Neurosurg Psychiatry. 2006;77(3):390-392. doi:10.1136/jnnp.2005.072660.
    • (2006) J Neurol Neurosurg Psychiatry , vol.77 , Issue.3 , pp. 390-392
    • Czaplinski, A.1    Yen, A.A.2    Appel, S.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.