메뉴 건너뛰기




Volumn 38, Issue 3, 2016, Pages 714-723

Methods to control for unmeasured confounding in pharmacoepidemiology: an overview

Author keywords

Observational studies; Pharmacoepidemiology; Residual confounding; Review; Statistical methods; Unmeasured confounding; Unobserved confounding

Indexed keywords

ARTICLE; CASE CROSSOVER DESIGN; CASE STUDY; CASE TIME CONTROL DESIGN; CONFOUNDING VARIABLE; DATA ANALYSIS; ECOLOGICAL ANALYSIS; INFORMATION PROCESSING; INSTRUMENTAL VARIABLE METHOD; METHODOLOGY; NEGATIVE CONTROL METHOD; PERTURBATION VARIABLE METHOD; PHARMACOEPIDEMIOLOGY; PRIOR EVENT RATE RATIO ADJUSTMENT METHOD; PRIORITY JOURNAL; PROPENSITY SCORE; SELF CONTROLLED CASE SERIES DESIGN; SENSITIVITY ANALYSIS; STUDY DESIGN; UNMEASURED CONFOUNDING; HUMAN; PROCEDURES; STATISTICS;

EID: 84964325837     PISSN: 22107703     EISSN: 22107711     Source Type: Journal    
DOI: 10.1007/s11096-016-0299-0     Document Type: Article
Times cited : (63)

References (82)
  • 1
    • 84975807046 scopus 로고    scopus 로고
    • Clinical epidemiology: principles, methods, and applications for clinical research. Jones & Bartlett Learning
    • Grobbee DE, Hoes AW. Clinical epidemiology: principles, methods, and applications for clinical research. Jones & Bartlett Learning, ISBN: 1449674321; 2009.
    • (2009) ISBN: 1449674321
    • Grobbee, D.E.1    Hoes, A.W.2
  • 2
    • 2442649987 scopus 로고    scopus 로고
    • When are observational studies as credible as randomised trials?
    • PID: 15158638
    • Vandenbroucke JP. When are observational studies as credible as randomised trials? Lancet. 2004;363(9422):1728–31.
    • (2004) Lancet , vol.363 , Issue.9422 , pp. 1728-1731
    • Vandenbroucke, J.P.1
  • 3
    • 84896367143 scopus 로고    scopus 로고
    • A questionnaire to assess the relevance and credibility of observational studies to inform health care decision making: an ISPOR-AMCP-NPC good practice task force report
    • PID: 24636373
    • Berger ML, Martin BC, Husereau D, Worley K, Allen JD, Yang W, et al. A questionnaire to assess the relevance and credibility of observational studies to inform health care decision making: an ISPOR-AMCP-NPC good practice task force report. Value Health. 2014;17(2):143–56.
    • (2014) Value Health , vol.17 , Issue.2 , pp. 143-156
    • Berger, M.L.1    Martin, B.C.2    Husereau, D.3    Worley, K.4    Allen, J.D.5    Yang, W.6
  • 4
    • 0021687696 scopus 로고
    • Current problems and future challenges in randomized clinical trials
    • COI: 1:STN:280:DyaL2M%2FisFensA%3D%3D, PID: 6488491
    • Feinstein AR. Current problems and future challenges in randomized clinical trials. Circulation. 1984;70(5):767–74.
    • (1984) Circulation , vol.70 , Issue.5 , pp. 767-774
    • Feinstein, A.R.1
  • 5
    • 0029912547 scopus 로고    scopus 로고
    • Why we need observational studies to evaluate the effectiveness of health care
    • COI: 1:STN:280:DyaK283hsVGluw%3D%3D
    • Black N. Why we need observational studies to evaluate the effectiveness of health care. Br Med J. 1996;312(7040):1215–8.
    • (1996) Br Med J , vol.312 , Issue.7040 , pp. 1215-1218
    • Black, N.1
  • 6
    • 77953632279 scopus 로고    scopus 로고
    • Confounding control in healthcare database research: challenges and potential approaches
    • PID: 20473199
    • Brookhart MA, Stürmer T, Glynn RJ, Rassen J, Schneeweiss S. Confounding control in healthcare database research: challenges and potential approaches. Med Care. 2010;48(6 SUPPL.):S114–20.
    • (2010) Med Care , vol.48 , pp. S114-S120
    • Brookhart, M.A.1    Stürmer, T.2    Glynn, R.J.3    Rassen, J.4    Schneeweiss, S.5
  • 7
    • 84899953597 scopus 로고    scopus 로고
    • Instrumental variable methods for causal inference
    • PID: 24599889
    • Baiocchi M, Cheng J, Small DS. Instrumental variable methods for causal inference. Stat Med. 2014;33(13):2297–340.
    • (2014) Stat Med , vol.33 , Issue.13 , pp. 2297-2340
    • Baiocchi, M.1    Cheng, J.2    Small, D.S.3
  • 8
    • 0141729308 scopus 로고    scopus 로고
    • Approaches to combat with confounding by indication in observational studies of intended drug effects
    • PID: 14558178
    • McMahon AD. Approaches to combat with confounding by indication in observational studies of intended drug effects. Pharmacoepidemiol Drug Saf. 2003;12(7):551–8.
    • (2003) Pharmacoepidemiol Drug Saf , vol.12 , Issue.7 , pp. 551-558
    • McMahon, A.D.1
  • 10
    • 70649113093 scopus 로고    scopus 로고
    • A most stubborn bias: no adjustment method fully resolves confounding by indication in observational studies
    • PID: 19457638
    • Bosco JLF, Silliman RA, Thwin SS, Geiger AM, Buist DSM, Prout MN, et al. A most stubborn bias: no adjustment method fully resolves confounding by indication in observational studies. J Clin Epidemiol. 2010;63(1):64–74.
    • (2010) J Clin Epidemiol , vol.63 , Issue.1 , pp. 64-74
    • Bosco, J.L.F.1    Silliman, R.A.2    Thwin, S.S.3    Geiger, A.M.4    Buist, D.S.M.5    Prout, M.N.6
  • 11
    • 57449091934 scopus 로고    scopus 로고
    • Quantitative assessment of unobserved confounding is mandatory in nonrandomized intervention studies
    • COI: 1:STN:280:DC%2BD1M%2FhsFahtQ%3D%3D, PID: 18619797
    • Groenwold RHH, Hak E, Hoes AW. Quantitative assessment of unobserved confounding is mandatory in nonrandomized intervention studies. J Clin Epidemiol. 2009;62(1):22–8.
    • (2009) J Clin Epidemiol , vol.62 , Issue.1 , pp. 22-28
    • Groenwold, R.H.H.1    Hak, E.2    Hoes, A.W.3
  • 13
    • 84879205757 scopus 로고    scopus 로고
    • On the definition of a confounder
    • PID: 25544784
    • VanderWeele TJ, Shpitser I. On the definition of a confounder. Ann Stat. 2013;41(1):196–220.
    • (2013) Ann Stat , vol.41 , Issue.1 , pp. 196-220
    • VanderWeele, T.J.1    Shpitser, I.2
  • 14
    • 84858167578 scopus 로고    scopus 로고
    • Statistical issues with the analysis of nonrandomized studies in comparative effectiveness research
    • PID: 22074671
    • Alemayehu D, Alvir JM, Jones B, Willke RJ. Statistical issues with the analysis of nonrandomized studies in comparative effectiveness research. J Manag Care Pharm. 2011;17(9 Suppl A):S22–6.
    • (2011) J Manag Care Pharm , vol.17 , pp. S22-S26
    • Alemayehu, D.1    Alvir, J.M.2    Jones, B.3    Willke, R.J.4
  • 15
    • 84860555761 scopus 로고    scopus 로고
    • Methods for developing and analyzing clinically rich data for patient-centered outcomes research: an overview
    • Schneeweiss S, Seeger JD, Smith SR. Methods for developing and analyzing clinically rich data for patient-centered outcomes research: an overview. Pharmacoepidemiol Drug Saf. 2012;21(Suppl. 2):1–5.
    • (2012) Pharmacoepidemiol Drug Saf , vol.21 , pp. 1-5
    • Schneeweiss, S.1    Seeger, J.D.2    Smith, S.R.3
  • 16
    • 57349146580 scopus 로고    scopus 로고
    • Quantifying the potential role of unmeasured confounders: the example of influenza vaccination
    • COI: 1:STN:280:DC%2BD1cjnsFCruw%3D%3D, PID: 18725358
    • Groenwold RHH, Hoes A, Nichol KL, Hak E. Quantifying the potential role of unmeasured confounders: the example of influenza vaccination. Int J Epidemiol. 2008;37(6):1422–9.
    • (2008) Int J Epidemiol , vol.37 , Issue.6 , pp. 1422-1429
    • Groenwold, R.H.H.1    Hoes, A.2    Nichol, K.L.3    Hak, E.4
  • 17
    • 33744495314 scopus 로고    scopus 로고
    • Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics
    • PID: 16447304
    • Schneeweiss S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol Drug Saf. 2006;15(5):291–303.
    • (2006) Pharmacoepidemiol Drug Saf , vol.15 , Issue.5 , pp. 291-303
    • Schneeweiss, S.1
  • 18
    • 33646802964 scopus 로고    scopus 로고
    • Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable
    • PID: 16617275
    • Brookhart MA, Wang PS, Solomon DH, Schneeweiss S. Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable. Epidemiology. 2006;17(3):268–75.
    • (2006) Epidemiology , vol.17 , Issue.3 , pp. 268-275
    • Brookhart, M.A.1    Wang, P.S.2    Solomon, D.H.3    Schneeweiss, S.4
  • 19
    • 64149091320 scopus 로고    scopus 로고
    • Observational studies: a review of study designs, challenges and strategies to reduce confounding
    • COI: 1:STN:280:DC%2BD1Mzgt1KntA%3D%3D, PID: 19392919
    • Lu CY. Observational studies: a review of study designs, challenges and strategies to reduce confounding. Int J Clin Pract. 2009;63(5):691–7.
    • (2009) Int J Clin Pract , vol.63 , Issue.5 , pp. 691-697
    • Lu, C.Y.1
  • 20
    • 84857417353 scopus 로고    scopus 로고
    • Confounding and control of confounding in nonexperimental studies of medications in patients with CKD
    • PID: 22364797
    • Bradbury BD, Gilbertson DT, Brookhart MA, Kilpatrick RD. Confounding and control of confounding in nonexperimental studies of medications in patients with CKD. Adv Chronic Kidney Dis. 2012;19(1):19–26.
    • (2012) Adv Chronic Kidney Dis , vol.19 , Issue.1 , pp. 19-26
    • Bradbury, B.D.1    Gilbertson, D.T.2    Brookhart, M.A.3    Kilpatrick, R.D.4
  • 21
    • 33646491483 scopus 로고    scopus 로고
    • Methods to adjust for bias and confounding in critical care health services research involving observational data
    • PID: 16616616
    • Wunsch H, Linde-Zwirble WT, Angus DC. Methods to adjust for bias and confounding in critical care health services research involving observational data. J Crit Care. 2006;21(1):1–7.
    • (2006) J Crit Care , vol.21 , Issue.1 , pp. 1-7
    • Wunsch, H.1    Linde-Zwirble, W.T.2    Angus, D.C.3
  • 22
    • 34848882248 scopus 로고    scopus 로고
    • Adjustments for unmeasured confounders in pharmacoepidemiologic database studies using external information
    • PID: 17909375
    • Stürmer T, Glynn RJ, Rothman KJ, Avorn J, Schneeweiss S. Adjustments for unmeasured confounders in pharmacoepidemiologic database studies using external information. Med Care. 2007;45(10 SUPPL. 2):S158–65.
    • (2007) Med Care , vol.45 , pp. S158-S165
    • Stürmer, T.1    Glynn, R.J.2    Rothman, K.J.3    Avorn, J.4    Schneeweiss, S.5
  • 23
    • 0025975160 scopus 로고
    • The case-crossover design: a method for studying transient effects on the risk of acute events
    • COI: 1:STN:280:DyaK3M%2FptVSrtw%3D%3D, PID: 1985444
    • Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol. 1991;133(2):144–53.
    • (1991) Am J Epidemiol , vol.133 , Issue.2 , pp. 144-153
    • Maclure, M.1
  • 24
    • 84869217884 scopus 로고    scopus 로고
    • Case-only designs in pharmacoepidemiology: a systematic review
    • COI: 1:CAS:528:DC%2BC38XhvVShsrnF, PID: 23166668
    • Nordmann S, Biard L, Ravaud P, Esposito-Farèse M, Tubach F. Case-only designs in pharmacoepidemiology: a systematic review. PLoS One. 2012;7(11):e49444.
    • (2012) PLoS One , vol.7 , Issue.11 , pp. e49444
    • Nordmann, S.1    Biard, L.2    Ravaud, P.3    Esposito-Farèse, M.4    Tubach, F.5
  • 25
    • 0030831605 scopus 로고    scopus 로고
    • Case-crossover and case-time-control designs as alternatives in pharmacoepidemiologic research
    • PID: 15073755
    • Schneeweiss S, Stürmer T, Maclure M. Case-crossover and case-time-control designs as alternatives in pharmacoepidemiologic research. Pharmacoepidemiol Drug Saf. 1997;6(SUPPL. 3):S51–9.
    • (1997) Pharmacoepidemiol Drug Saf , vol.6 , pp. S51-S59
    • Schneeweiss, S.1    Stürmer, T.2    Maclure, M.3
  • 26
    • 58849111255 scopus 로고    scopus 로고
    • The case-crossover study design in pharmacoepidemiology
    • PID: 18765504
    • Delaney JA, Suissa S. The case-crossover study design in pharmacoepidemiology. Stat Methods Med Res. 2009;18(1):53–65.
    • (2009) Stat Methods Med Res , vol.18 , Issue.1 , pp. 53-65
    • Delaney, J.A.1    Suissa, S.2
  • 28
    • 0026592068 scopus 로고
    • Psychoactive drugs and the risk of injurious motor vehicle crashes in elderly drivers
    • COI: 1:STN:280:DyaK3s%2FntF2jtw%3D%3D, PID: 1442753
    • Ray WA, Fought RL, Decker MD. Psychoactive drugs and the risk of injurious motor vehicle crashes in elderly drivers. Am J Epidemiol. 1992;136(7):873–83.
    • (1992) Am J Epidemiol , vol.136 , Issue.7 , pp. 873-883
    • Ray, W.A.1    Fought, R.L.2    Decker, M.D.3
  • 29
    • 34548220886 scopus 로고    scopus 로고
    • Benzodiazepines and elderly drivers: a comparison of pharmacoepidemiological study designs
    • PID: 17563091
    • Hebert C, Delaney J, Hemmelgarn B, Lévesque LE, Suissa S. Benzodiazepines and elderly drivers: a comparison of pharmacoepidemiological study designs. Pharmacoepidemiol Drug Saf. 2007;16(8):845–9.
    • (2007) Pharmacoepidemiol Drug Saf , vol.16 , Issue.8 , pp. 845-849
    • Hebert, C.1    Delaney, J.2    Hemmelgarn, B.3    Lévesque, L.E.4    Suissa, S.5
  • 30
    • 0028901318 scopus 로고
    • The case-time-control design
    • COI: 1:STN:280:DyaK2MzksFajuw%3D%3D, PID: 7619931
    • Suissa S. The case-time-control design. Epidemiology. 1995;6(3):248–53.
    • (1995) Epidemiology , vol.6 , Issue.3 , pp. 248-253
    • Suissa, S.1
  • 31
    • 79959648268 scopus 로고    scopus 로고
    • Potential for bias in case-crossover studies with shared exposures analyzed using SAS
    • PID: 21540322
    • Wang SV, Coull BA, Schwartz J, Mittleman MA, Wellenius GA. Potential for bias in case-crossover studies with shared exposures analyzed using SAS. Am J Epidemiol. 2011;174(1):118–24.
    • (2011) Am J Epidemiol , vol.174 , Issue.1 , pp. 118-124
    • Wang, S.V.1    Coull, B.A.2    Schwartz, J.3    Mittleman, M.A.4    Wellenius, G.A.5
  • 32
    • 0043286838 scopus 로고    scopus 로고
    • Case-crossover and case-time-control designs in birth defects epidemiology
    • PID: 12915504
    • Hernandez-Diaz S, Hernan MA, Meyer K, Werler MM, Mitchell AA. Case-crossover and case-time-control designs in birth defects epidemiology. Am J Epidemiol. 2003;158(4):385–91.
    • (2003) Am J Epidemiol , vol.158 , Issue.4 , pp. 385-391
    • Hernandez-Diaz, S.1    Hernan, M.A.2    Meyer, K.3    Werler, M.M.4    Mitchell, A.A.5
  • 33
    • 12344338939 scopus 로고    scopus 로고
    • Application of case-crossover and case–time–control study designs in analyses of time-varying predictors of T-cell homeostasis failure
    • PID: 15652719
    • Schneider MF, Gange SJ, Margolick JB, Detels R, Chmiel JS, Rinaldo C, et al. Application of case-crossover and case–time–control study designs in analyses of time-varying predictors of T-cell homeostasis failure. Ann Epidemiol. 2005;15(2):137–44.
    • (2005) Ann Epidemiol , vol.15 , Issue.2 , pp. 137-144
    • Schneider, M.F.1    Gange, S.J.2    Margolick, J.B.3    Detels, R.4    Chmiel, J.S.5    Rinaldo, C.6
  • 34
    • 0029023538 scopus 로고
    • Relative incidence estimation from case series for vaccine safety evaluation
    • COI: 1:STN:280:DyaK2M3osVagug%3D%3D, PID: 7766778
    • Farrington CP. Relative incidence estimation from case series for vaccine safety evaluation. Biometrics. 1995;51(1):228–35.
    • (1995) Biometrics , vol.51 , Issue.1 , pp. 228-235
    • Farrington, C.P.1
  • 35
    • 58849150724 scopus 로고    scopus 로고
    • The methodology of self-controlled case series studies
    • PID: 18562396
    • Whitaker HJ, Hocine MN, Farrington CP. The methodology of self-controlled case series studies. Stat Methods Med Res. 2009;18(1):7–26.
    • (2009) Stat Methods Med Res , vol.18 , Issue.1 , pp. 7-26
    • Whitaker, H.J.1    Hocine, M.N.2    Farrington, C.P.3
  • 36
    • 33646790167 scopus 로고    scopus 로고
    • Tutorial in biostatistics: the self-controlled case series method
    • PID: 16220518
    • Whitaker HJ, Farrington CP, Spiessens B, Musonda P. Tutorial in biostatistics: the self-controlled case series method. Stat Med. 2006;25(10):1768–97.
    • (2006) Stat Med , vol.25 , Issue.10 , pp. 1768-1797
    • Whitaker, H.J.1    Farrington, C.P.2    Spiessens, B.3    Musonda, P.4
  • 37
    • 84975797705 scopus 로고    scopus 로고
    • The Open University
    • The Self Controlled Case Series Method (internet). The Open University, UK (updated 2010; cited 2015 Dec 4). http://statistics.open.ac.uk/sccs/index.htm.
    • (2015) UK (updated 2010; cited , pp. 4
  • 38
    • 84860573013 scopus 로고    scopus 로고
    • Prior event rate ratio adjustment: numerical studies of a statistical method to address unrecognized confounding in observational studies
    • PID: 22552981
    • Yu M, Xie D, Wang X, Weiner MG, Tannen RL. Prior event rate ratio adjustment: numerical studies of a statistical method to address unrecognized confounding in observational studies. Pharmacoepidemiol Drug Saf. 2012;21(Suppl. 2):60–8.
    • (2012) Pharmacoepidemiol Drug Saf , vol.21 , pp. 60-68
    • Yu, M.1    Xie, D.2    Wang, X.3    Weiner, M.G.4    Tannen, R.L.5
  • 39
    • 61849172253 scopus 로고    scopus 로고
    • Use of primary care electronic medical record database in drug efficacy research on cardiovascular outcomes: comparison of database and randomised controlled trial findings
    • Tannen RL, Weiner MG, Xie D. Use of primary care electronic medical record database in drug efficacy research on cardiovascular outcomes: comparison of database and randomised controlled trial findings. BMJ. 2009;338(7691):395–9.
    • (2009) BMJ , vol.338 , Issue.7691 , pp. 395-399
    • Tannen, R.L.1    Weiner, M.G.2    Xie, D.3
  • 40
    • 84872127720 scopus 로고    scopus 로고
    • A new “Comparative Effectiveness” assessment strategy using the THIN database: comparison of the cardiac complications of pioglitazone and rosiglitazone
    • COI: 1:CAS:528:DC%2BC3sXmslSlsA%3D%3D, PID: 23070833
    • Tannen R, Xie D, Wang X, Yu M, Weiner MG. A new “Comparative Effectiveness” assessment strategy using the THIN database: comparison of the cardiac complications of pioglitazone and rosiglitazone. Pharmacoepidemiol Drug Saf. 2013;22(1):86–97.
    • (2013) Pharmacoepidemiol Drug Saf , vol.22 , Issue.1 , pp. 86-97
    • Tannen, R.1    Xie, D.2    Wang, X.3    Yu, M.4    Weiner, M.G.5
  • 41
    • 48249139471 scopus 로고    scopus 로고
    • Replicated studies of two randomized trials of angiotensin-converting enzyme inhibitors: further empiric validation of the ‘prior event rate ratio’ to adjust for unmeasured confounding by indication
    • COI: 1:CAS:528:DC%2BD1cXps12ks7w%3D, PID: 18327852
    • Tannen RL, Weiner MG, Xie D. Replicated studies of two randomized trials of angiotensin-converting enzyme inhibitors: further empiric validation of the ‘prior event rate ratio’ to adjust for unmeasured confounding by indication. Pharmacoepidemiol Drug Saf. 2008;17(7):671–85.
    • (2008) Pharmacoepidemiol Drug Saf , vol.17 , Issue.7 , pp. 671-685
    • Tannen, R.L.1    Weiner, M.G.2    Xie, D.3
  • 42
    • 48249156614 scopus 로고    scopus 로고
    • Replication of the Scandinavian Simvastatin Survival Study using a primary care medical record database prompted exploration of a new method to address unmeasured confounding
    • PID: 18327857
    • Weiner MG, Xie D, Tannen RL. Replication of the Scandinavian Simvastatin Survival Study using a primary care medical record database prompted exploration of a new method to address unmeasured confounding. Pharmacoepidemiol Drug Saf. 2008;17(7):661–70.
    • (2008) Pharmacoepidemiol Drug Saf , vol.17 , Issue.7 , pp. 661-670
    • Weiner, M.G.1    Xie, D.2    Tannen, R.L.3
  • 44
    • 77950933862 scopus 로고    scopus 로고
    • Negative controls: a tool for detecting confounding and bias in observational studies
    • PID: 20335814
    • Lipsitch M, Tchetgen E Tchetgen, Cohen T. Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiology. 2010;21(3):383–8.
    • (2010) Epidemiology , vol.21 , Issue.3 , pp. 383-388
    • Lipsitch, M.1    Tchetgen, E.T.2    Cohen, T.3
  • 45
    • 84890240053 scopus 로고    scopus 로고
    • Interpreting observational studies: why empirical calibration is needed to correct p-values
    • PID: 23900808
    • Schuemie MJ, Ryan PB, Dumouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct p-values. Stat Med. 2014;33(2):209–18.
    • (2014) Stat Med , vol.33 , Issue.2 , pp. 209-218
    • Schuemie, M.J.1    Ryan, P.B.2    Dumouchel, W.3    Suchard, M.A.4    Madigan, D.5
  • 46
    • 33645815277 scopus 로고    scopus 로고
    • Evidence of bias in estimates of influenza vaccine effectiveness in seniors
    • PID: 16368725
    • Jackson LA, Jackson ML, Nelson JC, Neuzil KM, Weiss NS. Evidence of bias in estimates of influenza vaccine effectiveness in seniors. Int J Epidemiol. 2006;35(2):337–44.
    • (2006) Int J Epidemiol , vol.35 , Issue.2 , pp. 337-344
    • Jackson, L.A.1    Jackson, M.L.2    Nelson, J.C.3    Neuzil, K.M.4    Weiss, N.S.5
  • 47
    • 78650767788 scopus 로고    scopus 로고
    • A method for detection of residual confounding in time-series and other observational studies
    • PID: 21068669
    • Flanders WD, Klein M, Darrow LA, Strickland MJ, Sarnat SE, Sarnat JA, et al. A method for detection of residual confounding in time-series and other observational studies. Epidemiology. 2011;22(1):59–67.
    • (2011) Epidemiology , vol.22 , Issue.1 , pp. 59-67
    • Flanders, W.D.1    Klein, M.2    Darrow, L.A.3    Strickland, M.J.4    Sarnat, S.E.5    Sarnat, J.A.6
  • 48
    • 84896736302 scopus 로고    scopus 로고
    • The control outcome calibration approach for causal inference with unobserved confounding
    • Tchetgen E Tchetgen. The control outcome calibration approach for causal inference with unobserved confounding. Am J Epidemiol. 2014;179(5):633–40.
    • (2014) Am J Epidemiol , vol.179 , Issue.5 , pp. 633-640
    • Tchetgen, E.T.1
  • 49
    • 84877132331 scopus 로고    scopus 로고
    • Falsification end points for observational studies
    • COI: 1:CAS:528:DC%2BC3sXnvVCntLc%3D, PID: 23632712
    • Groenwold RHH. Falsification end points for observational studies. JAMA. 2013;309(17):1769–70.
    • (2013) JAMA , vol.309 , Issue.17 , pp. 1769-1770
    • Groenwold, R.H.H.1
  • 50
    • 70350574644 scopus 로고    scopus 로고
    • Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships
    • PID: 19356901
    • Rassen JA, Brookhart MA, Glynn RJ, Mittleman MA, Schneeweiss S. Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships. J Clin Epidemiol. 2009;62(12):1226–32.
    • (2009) J Clin Epidemiol , vol.62 , Issue.12 , pp. 1226-1232
    • Rassen, J.A.1    Brookhart, M.A.2    Glynn, R.J.3    Mittleman, M.A.4    Schneeweiss, S.5
  • 51
    • 79955023419 scopus 로고    scopus 로고
    • Use of instrumental variable in prescription drug research with observational data: a systematic review
    • PID: 21163621
    • Chen Y, Briesacher BA. Use of instrumental variable in prescription drug research with observational data: a systematic review. J Clin Epidemiol. 2011;64(6):687–700.
    • (2011) J Clin Epidemiol , vol.64 , Issue.6 , pp. 687-700
    • Chen, Y.1    Briesacher, B.A.2
  • 52
    • 84876295967 scopus 로고    scopus 로고
    • Issues in the reporting and conduct of instrumental variable studies: a systematic review
    • PID: 23532055
    • Davies NM, Smith GD, Windmeijer F, Martin RM. Issues in the reporting and conduct of instrumental variable studies: a systematic review. Epidemiology. 2013;24(3):363–9.
    • (2013) Epidemiology , vol.24 , Issue.3 , pp. 363-369
    • Davies, N.M.1    Smith, G.D.2    Windmeijer, F.3    Martin, R.M.4
  • 54
    • 33748106661 scopus 로고    scopus 로고
    • Instruments for causal inference: an epidemiologist’s dream?
    • PID: 16755261
    • Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream? Epidemiology. 2006;17(4):360–72.
    • (2006) Epidemiology , vol.17 , Issue.4 , pp. 360-372
    • Hernán, M.A.1    Robins, J.M.2
  • 55
    • 0033853460 scopus 로고    scopus 로고
    • An introduction to instrumental variables for epidemiologists
    • COI: 1:STN:280:DC%2BD3cvlvVaquw%3D%3D, PID: 10922351
    • Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000;29(4):722–9.
    • (2000) Int J Epidemiol , vol.29 , Issue.4 , pp. 722-729
    • Greenland, S.1
  • 56
    • 33947264305 scopus 로고    scopus 로고
    • Risk of death associated with the use of conventional versus atypical antipsychotic drugs among elderly patients
    • Schneeweiss S, Setoguchi S, Brookhart A, Dormuth C, Wang PS. Risk of death associated with the use of conventional versus atypical antipsychotic drugs among elderly patients. Can Med Assoc J. 2007;176(5):627.
    • (2007) Can Med Assoc J , vol.176 , Issue.5 , pp. 627
    • Schneeweiss, S.1    Setoguchi, S.2    Brookhart, A.3    Dormuth, C.4    Wang, P.S.5
  • 57
    • 84892867805 scopus 로고    scopus 로고
    • Performance of instrumental variable methods in cohort and nested case–control studies: a simulation study
    • PID: 24306965
    • Uddin MJ, Groenwold RHH, de Boer A, Belitser S, Roes KCB, Hoes AW, et al. Performance of instrumental variable methods in cohort and nested case–control studies: a simulation study. Pharmacoepidemiol Drug Saf. 2014;23:165–77.
    • (2014) Pharmacoepidemiol Drug Saf , vol.23 , pp. 165-177
    • Uddin, M.J.1    Groenwold, R.H.H.2    de Boer, A.3    Belitser, S.4    Roes, K.C.B.5    Hoes, A.W.6
  • 58
    • 77953519101 scopus 로고    scopus 로고
    • Instrumental variable methods in comparative safety and effectiveness research
    • PID: 20354968
    • Brookhart MA, Rassen JA, Schneeweiss S. Instrumental variable methods in comparative safety and effectiveness research. Pharmacoepidemiol Drug Saf. 2010;19(6):537–44.
    • (2010) Pharmacoepidemiol Drug Saf , vol.19 , Issue.6 , pp. 537-544
    • Brookhart, M.A.1    Rassen, J.A.2    Schneeweiss, S.3
  • 59
    • 84975886368 scopus 로고    scopus 로고
    • (updated 2015; cited 2015 Dec 4)
    • Instrumental Variables (internet). Econometrics Academy (updated 2015; cited 2015 Dec 4). https://sites.google.com/site/econometricsacademy/econometrics-models/instrumental-variables.
    • Instrumental Variables (internet). Econometrics Academy
  • 60
    • 84890311228 scopus 로고    scopus 로고
    • Bias and sensitivity analysis when estimating treatment effects from the cox model with omitted covariates
    • PID: 24224574
    • Lin NX, Logan S, Henley WE. Bias and sensitivity analysis when estimating treatment effects from the cox model with omitted covariates. Biometrics. 2013;69(4):850–60.
    • (2013) Biometrics , vol.69 , Issue.4 , pp. 850-860
    • Lin, N.X.1    Logan, S.2    Henley, W.E.3
  • 61
    • 77952316050 scopus 로고    scopus 로고
    • Sensitivity analyses to estimate the potential impact of unmeasured confounding in causal research
    • PID: 19948779
    • Groenwold RH, Nelson DB, Nichol KL, Hoes AW, Hak E. Sensitivity analyses to estimate the potential impact of unmeasured confounding in causal research. Int J Epidemiol. 2010;39(1):107–17.
    • (2010) Int J Epidemiol , vol.39 , Issue.1 , pp. 107-117
    • Groenwold, R.H.1    Nelson, D.B.2    Nichol, K.L.3    Hoes, A.W.4    Hak, E.5
  • 62
    • 0030470138 scopus 로고    scopus 로고
    • Basic methods for sensitivity analysis of biases
    • COI: 1:STN:280:DyaK2s7nvFahtQ%3D%3D, PID: 9027513
    • Greenland S. Basic methods for sensitivity analysis of biases. Int J Epidemiol. 1996;25(6):1107–16.
    • (1996) Int J Epidemiol , vol.25 , Issue.6 , pp. 1107-1116
    • Greenland, S.1
  • 63
    • 84893184206 scopus 로고    scopus 로고
    • Detecting and correcting the bias of unmeasured factors using perturbation analysis: a data-mining approach
    • PID: 24499374
    • Lee WC. Detecting and correcting the bias of unmeasured factors using perturbation analysis: a data-mining approach. BMC Med Res Methodol. 2014;14(1):18.
    • (2014) BMC Med Res Methodol , vol.14 , Issue.1 , pp. 18
    • Lee, W.C.1
  • 64
    • 78650778119 scopus 로고    scopus 로고
    • Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders
    • PID: 21052008
    • Vanderweele TJ, Arah OA. Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders. Epidemiology. 2011;22(1):42–52.
    • (2011) Epidemiology , vol.22 , Issue.1 , pp. 42-52
    • Vanderweele, T.J.1    Arah, O.A.2
  • 65
    • 0344628714 scopus 로고    scopus 로고
    • Uses of ecologic studies in the assessment of intended treatment effects
    • COI: 1:STN:280:DyaK1M7jslemsQ%3D%3D, PID: 9973068
    • Wen SW, Kramer MS. Uses of ecologic studies in the assessment of intended treatment effects. J Clin Epidemiol. 1999;52(1):7–12.
    • (1999) J Clin Epidemiol , vol.52 , Issue.1 , pp. 7-12
    • Wen, S.W.1    Kramer, M.S.2
  • 66
    • 0029021640 scopus 로고
    • Ecologic studies in epidemiology: concepts, principles, and methods
    • COI: 1:STN:280:DyaK2MzmslWhsw%3D%3D, PID: 7639884
    • Morgenstern H. Ecologic studies in epidemiology: concepts, principles, and methods. Annu Rev Public Health. 1995;16:61–81.
    • (1995) Annu Rev Public Health , vol.16 , pp. 61-81
    • Morgenstern, H.1
  • 67
    • 0032840109 scopus 로고    scopus 로고
    • Uses of ecologic studies in the assessment of intended treatment effects multiple letters
    • COI: 1:STN:280:DyaK1Mvls1aquw%3D%3D, PID: 10529031
    • Groome PA, Mackillop WJ, Naylor CD. Uses of ecologic studies in the assessment of intended treatment effects multiple letters. J Clin Epidemiol. 1999;52(9):903–4.
    • (1999) J Clin Epidemiol , vol.52 , Issue.9 , pp. 903-904
    • Groome, P.A.1    Mackillop, W.J.2    Naylor, C.D.3
  • 68
    • 34447547659 scopus 로고    scopus 로고
    • Developments in post-marketing comparative effectiveness research
    • COI: 1:STN:280:DC%2BD2svhtFSlsQ%3D%3D, PID: 17554243
    • Schneeweiss S. Developments in post-marketing comparative effectiveness research. Clin Pharmacol Ther. 2007;82(2):143–56.
    • (2007) Clin Pharmacol Ther , vol.82 , Issue.2 , pp. 143-156
    • Schneeweiss, S.1
  • 69
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41–55.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 70
    • 84920572572 scopus 로고    scopus 로고
    • Reporting of covariate selection and balance assessment in propensity score analysis is suboptimal: a systematic review
    • PID: 25433444
    • Ali MS, Groenwold RH, Belitser SV, Pestman WR, Hoes AW, Roes KC, et al. Reporting of covariate selection and balance assessment in propensity score analysis is suboptimal: a systematic review. J Clin Epidemiol. 2015;68(2):112–21.
    • (2015) J Clin Epidemiol , vol.68 , Issue.2 , pp. 112-121
    • Ali, M.S.1    Groenwold, R.H.2    Belitser, S.V.3    Pestman, W.R.4    Hoes, A.W.5    Roes, K.C.6
  • 71
    • 24144477605 scopus 로고    scopus 로고
    • Adjusting effect estimates for unmeasured confounding with validation data using propensity score calibration
    • PID: 15987725
    • Stürmer T, Schneeweiss S, Avorn J, Glynn RJ. Adjusting effect estimates for unmeasured confounding with validation data using propensity score calibration. Am J Epidemiol. 2005;162(3):279–89.
    • (2005) Am J Epidemiol , vol.162 , Issue.3 , pp. 279-289
    • Stürmer, T.1    Schneeweiss, S.2    Avorn, J.3    Glynn, R.J.4
  • 72
    • 34447129608 scopus 로고    scopus 로고
    • Performance of propensity score calibration—a simulation study
    • PID: 17395595
    • Sturmer T, Schneeweiss S, Rothman KJ, Avorn J, Glynn RJ. Performance of propensity score calibration—a simulation study. Am J Epidemiol. 2007;165(10):1110–8.
    • (2007) Am J Epidemiol , vol.165 , Issue.10 , pp. 1110-1118
    • Sturmer, T.1    Schneeweiss, S.2    Rothman, K.J.3    Avorn, J.4    Glynn, R.J.5
  • 73
    • 84862497951 scopus 로고    scopus 로고
    • Propensity score calibration in the absence of surrogacy
    • PID: 22688682
    • Lunt M, Glynn RJ, Rothman KJ, Avorn J, Stürmer T. Propensity score calibration in the absence of surrogacy. Am J Epidemiol. 2012;175(12):1294–302.
    • (2012) Am J Epidemiol , vol.175 , Issue.12 , pp. 1294-1302
    • Lunt, M.1    Glynn, R.J.2    Rothman, K.J.3    Avorn, J.4    Stürmer, T.5
  • 74
    • 0031900083 scopus 로고    scopus 로고
    • Controlling confounding when studying large pharmacoepidemiologic databases: a case study of the two-stage sampling design
    • COI: 1:STN:280:DyaK1c3kt1OhtA%3D%3D, PID: 9583424
    • Collet JP, Schaubel D, Hanley J, Sharpe C, Boivin JF. Controlling confounding when studying large pharmacoepidemiologic databases: a case study of the two-stage sampling design. Epidemiology. 1998;9(3):309–15.
    • (1998) Epidemiology , vol.9 , Issue.3 , pp. 309-315
    • Collet, J.P.1    Schaubel, D.2    Hanley, J.3    Sharpe, C.4    Boivin, J.F.5
  • 75
    • 58849124121 scopus 로고    scopus 로고
    • Efficient sampling approaches to address confounding in database studies
    • PID: 18815164
    • Hanley JA, Dendukuri N. Efficient sampling approaches to address confounding in database studies. Stat Methods Med Res. 2009;18(1):81–105.
    • (2009) Stat Methods Med Res , vol.18 , Issue.1 , pp. 81-105
    • Hanley, J.A.1    Dendukuri, N.2
  • 76
    • 34547738140 scopus 로고    scopus 로고
    • Comparison of performance of propensity score calibration (PSC) and multiple imputation (MI) to control for unmeasured confounding using an internal validation study
    • (abstract)
    • Stürmer T, Schneeweiss S, Rothman KJ, Avorn J, Glynn RJ. Comparison of performance of propensity score calibration (PSC) and multiple imputation (MI) to control for unmeasured confounding using an internal validation study. Pharmacoepidemiol Drug Saf. 2006;15:S39–40 (abstract).
    • (2006) Pharmacoepidemiol Drug Saf , vol.15 , pp. S39-S40
    • Stürmer, T.1    Schneeweiss, S.2    Rothman, K.J.3    Avorn, J.4    Glynn, R.J.5
  • 77
    • 84875448813 scopus 로고    scopus 로고
    • Evaluating the impact of unmeasured confounding with internal validation data: an example cost evaluation in type 2 diabetes
    • PID: 23538177
    • Faries D, Peng X, Pawaskar M, Price K, Stamey JD, Seaman JW. Evaluating the impact of unmeasured confounding with internal validation data: an example cost evaluation in type 2 diabetes. Value Health. 2013;16(2):259–66.
    • (2013) Value Health , vol.16 , Issue.2 , pp. 259-266
    • Faries, D.1    Peng, X.2    Pawaskar, M.3    Price, K.4    Stamey, J.D.5    Seaman, J.W.6
  • 80
    • 23044525261 scopus 로고    scopus 로고
    • Multiple imputation in practice: comparison of software packages for regression models with missing variables
    • Horton NJ, Lipsitz SR. Multiple imputation in practice: comparison of software packages for regression models with missing variables. Am Stat. 2001;55(3):244–54.
    • (2001) Am Stat , vol.55 , Issue.3 , pp. 244-254
    • Horton, N.J.1    Lipsitz, S.R.2
  • 81
    • 0020960084 scopus 로고
    • The need for randomization in the study of intended effects
    • COI: 1:STN:280:DyaL2c%2Fnt1ensg%3D%3D, PID: 6648141
    • Miettinen OS. The need for randomization in the study of intended effects. Stat Med. 1983;2(2):267–71.
    • (1983) Stat Med , vol.2 , Issue.2 , pp. 267-271
    • Miettinen, O.S.1
  • 82


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.