메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Cloud-based Electronic Health Records for Real-time, Region-specific Influenza Surveillance

Author keywords

[No Author keywords available]

Indexed keywords

CLOUD COMPUTING; ELECTRONIC HEALTH RECORD; GEOGRAPHY; HEALTH SURVEY; HUMAN; INFLUENZA; SEASON; STATISTICAL MODEL;

EID: 84966333746     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep25732     Document Type: Article
Times cited : (55)

References (31)
  • 2
    • 34748836339 scopus 로고    scopus 로고
    • Reengineering real time outbreak detection systems for influenza epidemic monitoring
    • Brownstein, J. S & Mandl, K. D. Reengineering real time outbreak detection systems for influenza epidemic monitoring. Am Med Inform Assoc, Annual Symposium Proceedings vol. 2006, p. 866 (2006).
    • (2006) Am Med Inform Assoc, Annual Symposium Proceedings , vol.2006 , pp. 866
    • Brownstein, J.S.1    Mandl, K.D.2
  • 3
    • 33749520654 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention. Accessed June 21 2015. January 27
    • Centers for Disease Control and Prevention. Overview of Influenza Surveillance in the United States. January 27, 2015. Accessed June 21, http://www. cdc. gov/flu/weekly/overview. htm, (2015).
    • (2015) Overview of Influenza Surveillance in the United States
  • 4
    • 55849100040 scopus 로고    scopus 로고
    • Using internet searches for influenza surveillance
    • Polgreen, P. M., Chen, Y., Pennock, D. M., Nelson, F. D & Weinstein, R. A. Using internet searches for influenza surveillance. Clin Infect Dis. 47(11), 1443-1448, doi: 10. 1086/593098 PMID: 18954267 (2008).
    • (2008) Clin Infect Dis. , vol.47 , Issue.11 , pp. 1443-1448
    • Polgreen, P.M.1    Chen, Y.2    Pennock, D.M.3    Nelson, F.D.4    Weinstein, R.A.5
  • 5
    • 84891941337 scopus 로고    scopus 로고
    • National and local influenza surveillance through twitter: An analysis of the 2012-2013 influenza epidemic
    • Broniatowski, D. A., Paul, M. J & Dredze, M. National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic. PLoS ONE 8(12), e83672, doi: 10. 1371/journal. pone. 0083672 (2013).
    • (2013) PLoS ONE , vol.8 , Issue.12 , pp. e83672
    • Broniatowski, D.A.1    Paul, M.J.2    Dredze, M.3
  • 6
    • 84923276281 scopus 로고    scopus 로고
    • Separating fact from fear: Tracking flu infections on twitter
    • Lamb, A., Paul, M. J & Dredze, M. Separating Fact from Fear: Tracking Flu Infections on Twitter. Proc of HLT-NAACL 13(1), 789-795 (2013).
    • (2013) Proc of HLT-NAACL , vol.13 , Issue.1 , pp. 789-795
    • Lamb, A.1    Paul, M.J.2    Dredze, M.3
  • 7
    • 84918787542 scopus 로고    scopus 로고
    • Using clinicians' search query data to monitor influenza epidemics
    • Santillana, M., Nsoesie, E. O., Mekaru, S. R., Scales, D & Brownstein, J. S. Using Clinicians' Search Query Data to Monitor Influenza Epidemics. Clin Infect Dis. 59(10), 1446-1450, doi: 10. 1093/cid/ciu647 PMID: 25115873 (2014).
    • (2014) Clin Infect Dis. , vol.59 , Issue.10 , pp. 1446-1450
    • Santillana, M.1    Nsoesie, E.O.2    Mekaru, S.R.3    Scales, D.4    Brownstein, J.S.5
  • 8
    • 84901331477 scopus 로고    scopus 로고
    • Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
    • McIver, D. J & Brownstein, J. S. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput. Biol. 10, e1003581, doi: 10. 1371/journal. pcbi. 1003581 PMID: 24743682 (2014).
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003581
    • McIver, D.J.1    Brownstein, J.S.2
  • 9
    • 84941360461 scopus 로고    scopus 로고
    • Flu near you: Crowd-sourced symptom reporting spanning two influenza seasons
    • Smolinski, M. S. et al. Flu Near You: Crowd-sourced Symptom Reporting Spanning Two Influenza Seasons. Am J Public Health 105(10), e1-e7 (2015).
    • (2015) Am J Public Health , vol.105 , Issue.10 , pp. e1-e7
    • Smolinski, M.S.1
  • 10
    • 84878474470 scopus 로고    scopus 로고
    • Monitoring influenza epidemics in China with search query from Baidu
    • Yuan, Q. et al. Monitoring influenza epidemics in China with search query from Baidu. PLoS One 8, e64323, doi: 10. 1371/journal. pone. 0064323 PMID: 23750192 (2013).
    • (2013) PLoS One , vol.8 , pp. e64323
    • Yuan, Q.1
  • 11
    • 84910107444 scopus 로고    scopus 로고
    • A case study of the New York city 2012-2013 influenza season with daily geocoded twitter data from temporal and spatiotemporal perspectives
    • Nagar, R. et al. A Case Study of the New York City 2012-2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives. J Med Internet Res, 16(10), e236, doi: 10. 2196/jmir. 3416 (2014).
    • (2014) J Med Internet Res , vol.16 , Issue.10 , pp. e236
    • Nagar, R.1
  • 12
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • Ginsberg, J. et al. Detecting influenza epidemics using search engine query data. Nature 457, 1012-1014, doi: 10. 1038/nature07634 PMID: 19020500 (2009).
    • (2009) Nature , vol.457 , pp. 1012-1014
    • Ginsberg, J.1
  • 13
    • 80051831902 scopus 로고    scopus 로고
    • Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
    • Cook, S., Conrad, C., Fowlkes, A. L & Mohebbi, M. H. Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS ONE 6, e23610, doi: 10. 1371/journal. pone. 0023610 PMID: 21886802 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e23610
    • Cook, S.1    Conrad, C.2    Fowlkes, A.L.3    Mohebbi, M.H.4
  • 14
    • 84891911558 scopus 로고    scopus 로고
    • Google disease trends: An update
    • Copeland, P. et al. Google disease trends: An update. Int Soc Negl Trop Dis. 3, (2013).
    • (2013) Int Soc Negl Trop Dis. , vol.3
    • Copeland, P.1
  • 15
    • 84896056107 scopus 로고    scopus 로고
    • The parable of Google flu: Traps in big data analysis
    • Lazer, D. M., Kennedy, R., King, L & Vespigniani, A. The parable of Google flu: Traps in big data analysis. Science 343, 1203-1205, doi: 10. 1126/science. 1248506 PMID: 24626916 (2014).
    • (2014) Science , vol.343 , pp. 1203-1205
    • Lazer, D.M.1    Kennedy, R.2    King, L.3    Vespigniani, A.4
  • 16
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (an external revision to) Google flu trends> Am
    • Santillana, M., Zhang, D. W., Althouse, B. M & Ayers, J. W. What can digital disease detection learn from (an external revision to) Google flu trends> Am. J. Prev. Med. 47, 341-347, doi: 10. 1016/j. Amepre. 2014. 05. 020 PMID: 24997572 (2014).
    • (2014) J. Prev. Med. , vol.47 , pp. 341-347
    • Santillana, M.1    Zhang, D.W.2    Althouse, B.M.3    Ayers, J.W.4
  • 17
    • 84947998511 scopus 로고    scopus 로고
    • Accurate estimation of influenza epidemics using Google search data via ARGO
    • Yang, S., Santillana, M & Kou, S. C. Accurate estimation of influenza epidemics using Google search data via ARGO. Proc Natl Acad Sci. 112, no. 47, 14473-14478, doi: 10. 1073/pnas. 1515373112 (2015).
    • (2015) Proc Natl Acad Sci. , vol.112 , Issue.47 , pp. 14473-14478
    • Yang, S.1    Santillana, M.2    Kou, S.C.3
  • 18
    • 84938513272 scopus 로고    scopus 로고
    • Advances in nowcasting influenza-like illness rates using search query logs
    • Lampos, V., Miller, A. C., Crossan, S & Stefansen, C. Advances in nowcasting influenza-like illness rates using search query logs. Sci. Rep. 5, doi: 10. 1038/srep12760 (2015).
    • (2015) Sci. Rep. , vol.5
    • Lampos, V.1    Miller, A.C.2    Crossan, S.3    Stefansen, C.4
  • 19
    • 84946026274 scopus 로고    scopus 로고
    • Combining search, social media, and traditional data sources to improve influenza surveillance
    • Santillana, M. et al. Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol 11, no. 10, e1004513, doi: 10. 1371/journal. pcbi. 1004513 (2015).
    • (2015) PLoS Comput Biol , vol.11 , Issue.10 , pp. e1004513
    • Santillana, M.1
  • 21
    • 84924132651 scopus 로고    scopus 로고
    • Inference of seasonal and pandemic influenza transmission dynamics
    • Yang, W., Lipsitch, M & Shaman, J. Inference of seasonal and pandemic influenza transmission dynamics. Proc Natl Acad Sci. 112, no. 9, 2723-2728, doi: 10. 1073/pnas. 1415012112 (2015).
    • (2015) Proc Natl Acad Sci. , vol.112 , Issue.9 , pp. 2723-2728
    • Yang, W.1    Lipsitch, M.2    Shaman, J.3
  • 22
    • 84930999810 scopus 로고    scopus 로고
    • Using networks to combine big data and traditional surveillance to improve influenza predictions
    • Davidson, M. W., Haim, D. A & Radin, J. M. Using Networks to Combine Big Data and Traditional Surveillance to Improve Influenza Predictions. Sci. Rep. 5, doi: 10. 1038/srep08154 (2015).
    • (2015) Sci. Rep. , vol.5
    • Davidson, M.W.1    Haim, D.A.2    Radin, J.M.3
  • 23
    • 84887293587 scopus 로고    scopus 로고
    • Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales
    • Olson, D. R. et al. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales. PLoS Comput Biol 9, no. 10, e1003256, doi: 10. 1371/journal. pcbi. 1003256 (2013).
    • (2013) PLoS Comput Biol , vol.9 , Issue.10 , pp. e1003256
    • Olson, D.R.1
  • 24
    • 18744394326 scopus 로고    scopus 로고
    • Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): The example of lower respiratory infection
    • Lazarus, R., Kleinman, K. P., Dashevsky, I., DeMaria, A & Platt, R. Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): The example of lower respiratory infection. BMC public health 1, no. 1, 9, doi: 10. 1186/1471-2458-1-9 (2001).
    • (2001) BMC Public Health , vol.1 , Issue.1 , pp. 9
    • Lazarus, R.1    Kleinman, K.P.2    Dashevsky, I.3    DeMaria, A.4    Platt, R.5
  • 25
    • 65349112142 scopus 로고    scopus 로고
    • Syndromic surveillance using ambulatory electronic health records
    • Hripcsak, G. et al. Syndromic surveillance using ambulatory electronic health records. J Am Med Inform Assoc. 16, no. 3, 354-361, doi: 10. 1197/jamia. M2922 (2009).
    • (2009) J Am Med Inform Assoc. , vol.16 , Issue.3 , pp. 354-361
    • Hripcsak, G.1
  • 26
    • 84904961485 scopus 로고    scopus 로고
    • Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US
    • Viboud, C. et al. Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US. PLoS One, e102429, doi: 10. 1371/journal. pone. 0102429 (2014).
    • (2014) PLoS One , pp. e102429
    • Viboud, C.1
  • 27
    • 84861156434 scopus 로고    scopus 로고
    • Optimizing provider recruitment for influenza surveillance networks
    • Scarpino, S. V., Dimitrov, N. B & Meyers, L. A. Optimizing provider recruitment for influenza surveillance networks. PLoS Comput Biol 8, no. 4, e1002472, doi: 10. 1371/journal. pcbi. 1002472 (2012).
    • (2012) PLoS Comput Biol , vol.8 , Issue.4 , pp. e1002472
    • Scarpino, S.V.1    Dimitrov, N.B.2    Meyers, L.A.3
  • 28
    • 34548637081 scopus 로고    scopus 로고
    • Automated time series forecasting for biosurveillance
    • Burkom, H & Murphy, S. P. Automated time series forecasting for biosurveillance. Statistics in Medicine, Stat Medic 26(22), 06-035 (2007).
    • (2007) Statistics in Medicine, Stat Medic , vol.26 , Issue.22 , pp. 06-035
    • Burkom, H.1    Murphy, S.P.2
  • 29
    • 33645807073 scopus 로고
    • Data assimilation in meteorology and oceanography
    • Ghil, M & Malanotte-Rizzoli, P. Data assimilation in meteorology and oceanography. Adv. Geophys 33, 141-266, doi: 10. 1016/ S0065-2687(08)60442-2 (1991).
    • (1991) Adv. Geophys , vol.33 , pp. 141-266
    • Ghil, M.1    Malanotte-Rizzoli, P.2
  • 30
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A. J & Schölkopf, B. A tutorial on support vector regression. Stat Comput 14, no. 3, 199-222 (2004).
    • (2004) Stat Comput , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 31
    • 84937499054 scopus 로고    scopus 로고
    • Twitter improves influenza forecasting
    • Paul, M. J., Dredze, M & Broniatowski, D. Twitter Improves Influenza Forecasting. PLoS currents 6, doi: 10. 1371/currents. outbreaks. 90b9ed0f59bae4ccaa683a39865d9117 (2014).
    • (2014) PLoS Currents , vol.6
    • Paul, M.J.1    Dredze, M.2    Broniatowski, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.