-
2
-
-
34748836339
-
Reengineering real time outbreak detection systems for influenza epidemic monitoring
-
Brownstein, J. S & Mandl, K. D. Reengineering real time outbreak detection systems for influenza epidemic monitoring. Am Med Inform Assoc, Annual Symposium Proceedings vol. 2006, p. 866 (2006).
-
(2006)
Am Med Inform Assoc, Annual Symposium Proceedings
, vol.2006
, pp. 866
-
-
Brownstein, J.S.1
Mandl, K.D.2
-
3
-
-
33749520654
-
-
Centers for Disease Control and Prevention. Accessed June 21 2015. January 27
-
Centers for Disease Control and Prevention. Overview of Influenza Surveillance in the United States. January 27, 2015. Accessed June 21, http://www. cdc. gov/flu/weekly/overview. htm, (2015).
-
(2015)
Overview of Influenza Surveillance in the United States
-
-
-
4
-
-
55849100040
-
Using internet searches for influenza surveillance
-
Polgreen, P. M., Chen, Y., Pennock, D. M., Nelson, F. D & Weinstein, R. A. Using internet searches for influenza surveillance. Clin Infect Dis. 47(11), 1443-1448, doi: 10. 1086/593098 PMID: 18954267 (2008).
-
(2008)
Clin Infect Dis.
, vol.47
, Issue.11
, pp. 1443-1448
-
-
Polgreen, P.M.1
Chen, Y.2
Pennock, D.M.3
Nelson, F.D.4
Weinstein, R.A.5
-
5
-
-
84891941337
-
National and local influenza surveillance through twitter: An analysis of the 2012-2013 influenza epidemic
-
Broniatowski, D. A., Paul, M. J & Dredze, M. National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic. PLoS ONE 8(12), e83672, doi: 10. 1371/journal. pone. 0083672 (2013).
-
(2013)
PLoS ONE
, vol.8
, Issue.12
, pp. e83672
-
-
Broniatowski, D.A.1
Paul, M.J.2
Dredze, M.3
-
6
-
-
84923276281
-
Separating fact from fear: Tracking flu infections on twitter
-
Lamb, A., Paul, M. J & Dredze, M. Separating Fact from Fear: Tracking Flu Infections on Twitter. Proc of HLT-NAACL 13(1), 789-795 (2013).
-
(2013)
Proc of HLT-NAACL
, vol.13
, Issue.1
, pp. 789-795
-
-
Lamb, A.1
Paul, M.J.2
Dredze, M.3
-
7
-
-
84918787542
-
Using clinicians' search query data to monitor influenza epidemics
-
Santillana, M., Nsoesie, E. O., Mekaru, S. R., Scales, D & Brownstein, J. S. Using Clinicians' Search Query Data to Monitor Influenza Epidemics. Clin Infect Dis. 59(10), 1446-1450, doi: 10. 1093/cid/ciu647 PMID: 25115873 (2014).
-
(2014)
Clin Infect Dis.
, vol.59
, Issue.10
, pp. 1446-1450
-
-
Santillana, M.1
Nsoesie, E.O.2
Mekaru, S.R.3
Scales, D.4
Brownstein, J.S.5
-
8
-
-
84901331477
-
Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
-
McIver, D. J & Brownstein, J. S. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput. Biol. 10, e1003581, doi: 10. 1371/journal. pcbi. 1003581 PMID: 24743682 (2014).
-
(2014)
PLoS Comput. Biol.
, vol.10
, pp. e1003581
-
-
McIver, D.J.1
Brownstein, J.S.2
-
9
-
-
84941360461
-
Flu near you: Crowd-sourced symptom reporting spanning two influenza seasons
-
Smolinski, M. S. et al. Flu Near You: Crowd-sourced Symptom Reporting Spanning Two Influenza Seasons. Am J Public Health 105(10), e1-e7 (2015).
-
(2015)
Am J Public Health
, vol.105
, Issue.10
, pp. e1-e7
-
-
Smolinski, M.S.1
-
10
-
-
84878474470
-
Monitoring influenza epidemics in China with search query from Baidu
-
Yuan, Q. et al. Monitoring influenza epidemics in China with search query from Baidu. PLoS One 8, e64323, doi: 10. 1371/journal. pone. 0064323 PMID: 23750192 (2013).
-
(2013)
PLoS One
, vol.8
, pp. e64323
-
-
Yuan, Q.1
-
11
-
-
84910107444
-
A case study of the New York city 2012-2013 influenza season with daily geocoded twitter data from temporal and spatiotemporal perspectives
-
Nagar, R. et al. A Case Study of the New York City 2012-2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives. J Med Internet Res, 16(10), e236, doi: 10. 2196/jmir. 3416 (2014).
-
(2014)
J Med Internet Res
, vol.16
, Issue.10
, pp. e236
-
-
Nagar, R.1
-
12
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
Ginsberg, J. et al. Detecting influenza epidemics using search engine query data. Nature 457, 1012-1014, doi: 10. 1038/nature07634 PMID: 19020500 (2009).
-
(2009)
Nature
, vol.457
, pp. 1012-1014
-
-
Ginsberg, J.1
-
13
-
-
80051831902
-
Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
-
Cook, S., Conrad, C., Fowlkes, A. L & Mohebbi, M. H. Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS ONE 6, e23610, doi: 10. 1371/journal. pone. 0023610 PMID: 21886802 (2011).
-
(2011)
PLoS ONE
, vol.6
, pp. e23610
-
-
Cook, S.1
Conrad, C.2
Fowlkes, A.L.3
Mohebbi, M.H.4
-
14
-
-
84891911558
-
Google disease trends: An update
-
Copeland, P. et al. Google disease trends: An update. Int Soc Negl Trop Dis. 3, (2013).
-
(2013)
Int Soc Negl Trop Dis.
, vol.3
-
-
Copeland, P.1
-
15
-
-
84896056107
-
The parable of Google flu: Traps in big data analysis
-
Lazer, D. M., Kennedy, R., King, L & Vespigniani, A. The parable of Google flu: Traps in big data analysis. Science 343, 1203-1205, doi: 10. 1126/science. 1248506 PMID: 24626916 (2014).
-
(2014)
Science
, vol.343
, pp. 1203-1205
-
-
Lazer, D.M.1
Kennedy, R.2
King, L.3
Vespigniani, A.4
-
16
-
-
84906354517
-
What can digital disease detection learn from (an external revision to) Google flu trends> Am
-
Santillana, M., Zhang, D. W., Althouse, B. M & Ayers, J. W. What can digital disease detection learn from (an external revision to) Google flu trends> Am. J. Prev. Med. 47, 341-347, doi: 10. 1016/j. Amepre. 2014. 05. 020 PMID: 24997572 (2014).
-
(2014)
J. Prev. Med.
, vol.47
, pp. 341-347
-
-
Santillana, M.1
Zhang, D.W.2
Althouse, B.M.3
Ayers, J.W.4
-
17
-
-
84947998511
-
Accurate estimation of influenza epidemics using Google search data via ARGO
-
Yang, S., Santillana, M & Kou, S. C. Accurate estimation of influenza epidemics using Google search data via ARGO. Proc Natl Acad Sci. 112, no. 47, 14473-14478, doi: 10. 1073/pnas. 1515373112 (2015).
-
(2015)
Proc Natl Acad Sci.
, vol.112
, Issue.47
, pp. 14473-14478
-
-
Yang, S.1
Santillana, M.2
Kou, S.C.3
-
18
-
-
84938513272
-
Advances in nowcasting influenza-like illness rates using search query logs
-
Lampos, V., Miller, A. C., Crossan, S & Stefansen, C. Advances in nowcasting influenza-like illness rates using search query logs. Sci. Rep. 5, doi: 10. 1038/srep12760 (2015).
-
(2015)
Sci. Rep.
, vol.5
-
-
Lampos, V.1
Miller, A.C.2
Crossan, S.3
Stefansen, C.4
-
19
-
-
84946026274
-
Combining search, social media, and traditional data sources to improve influenza surveillance
-
Santillana, M. et al. Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol 11, no. 10, e1004513, doi: 10. 1371/journal. pcbi. 1004513 (2015).
-
(2015)
PLoS Comput Biol
, vol.11
, Issue.10
, pp. e1004513
-
-
Santillana, M.1
-
20
-
-
79957755362
-
Improving the evidence base for decision making during a pandemic: The example of 2009 influenza A/H1N1
-
Lipsitch, M., Finelli, L., Heffernan, R. T., Leung, G. M & Redd, S. C. Improving the evidence base for decision making during a pandemic: The example of 2009 influenza A/H1N1. Biosecurity and bioterrorism: biodefense strategy, practice, and science 9, no. 2, 89-115, doi: 10. 1089/bsp. 2011. 0007 (2011).
-
(2011)
Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science
, vol.9
, Issue.2
, pp. 89-115
-
-
Lipsitch, M.1
Finelli, L.2
Heffernan, R.T.3
Leung, G.M.4
Redd, S.C.5
-
21
-
-
84924132651
-
Inference of seasonal and pandemic influenza transmission dynamics
-
Yang, W., Lipsitch, M & Shaman, J. Inference of seasonal and pandemic influenza transmission dynamics. Proc Natl Acad Sci. 112, no. 9, 2723-2728, doi: 10. 1073/pnas. 1415012112 (2015).
-
(2015)
Proc Natl Acad Sci.
, vol.112
, Issue.9
, pp. 2723-2728
-
-
Yang, W.1
Lipsitch, M.2
Shaman, J.3
-
22
-
-
84930999810
-
Using networks to combine big data and traditional surveillance to improve influenza predictions
-
Davidson, M. W., Haim, D. A & Radin, J. M. Using Networks to Combine Big Data and Traditional Surveillance to Improve Influenza Predictions. Sci. Rep. 5, doi: 10. 1038/srep08154 (2015).
-
(2015)
Sci. Rep.
, vol.5
-
-
Davidson, M.W.1
Haim, D.A.2
Radin, J.M.3
-
23
-
-
84887293587
-
Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales
-
Olson, D. R. et al. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales. PLoS Comput Biol 9, no. 10, e1003256, doi: 10. 1371/journal. pcbi. 1003256 (2013).
-
(2013)
PLoS Comput Biol
, vol.9
, Issue.10
, pp. e1003256
-
-
Olson, D.R.1
-
24
-
-
18744394326
-
Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): The example of lower respiratory infection
-
Lazarus, R., Kleinman, K. P., Dashevsky, I., DeMaria, A & Platt, R. Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): The example of lower respiratory infection. BMC public health 1, no. 1, 9, doi: 10. 1186/1471-2458-1-9 (2001).
-
(2001)
BMC Public Health
, vol.1
, Issue.1
, pp. 9
-
-
Lazarus, R.1
Kleinman, K.P.2
Dashevsky, I.3
DeMaria, A.4
Platt, R.5
-
25
-
-
65349112142
-
Syndromic surveillance using ambulatory electronic health records
-
Hripcsak, G. et al. Syndromic surveillance using ambulatory electronic health records. J Am Med Inform Assoc. 16, no. 3, 354-361, doi: 10. 1197/jamia. M2922 (2009).
-
(2009)
J Am Med Inform Assoc.
, vol.16
, Issue.3
, pp. 354-361
-
-
Hripcsak, G.1
-
26
-
-
84904961485
-
Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US
-
Viboud, C. et al. Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US. PLoS One, e102429, doi: 10. 1371/journal. pone. 0102429 (2014).
-
(2014)
PLoS One
, pp. e102429
-
-
Viboud, C.1
-
27
-
-
84861156434
-
Optimizing provider recruitment for influenza surveillance networks
-
Scarpino, S. V., Dimitrov, N. B & Meyers, L. A. Optimizing provider recruitment for influenza surveillance networks. PLoS Comput Biol 8, no. 4, e1002472, doi: 10. 1371/journal. pcbi. 1002472 (2012).
-
(2012)
PLoS Comput Biol
, vol.8
, Issue.4
, pp. e1002472
-
-
Scarpino, S.V.1
Dimitrov, N.B.2
Meyers, L.A.3
-
28
-
-
34548637081
-
Automated time series forecasting for biosurveillance
-
Burkom, H & Murphy, S. P. Automated time series forecasting for biosurveillance. Statistics in Medicine, Stat Medic 26(22), 06-035 (2007).
-
(2007)
Statistics in Medicine, Stat Medic
, vol.26
, Issue.22
, pp. 06-035
-
-
Burkom, H.1
Murphy, S.P.2
-
29
-
-
33645807073
-
Data assimilation in meteorology and oceanography
-
Ghil, M & Malanotte-Rizzoli, P. Data assimilation in meteorology and oceanography. Adv. Geophys 33, 141-266, doi: 10. 1016/ S0065-2687(08)60442-2 (1991).
-
(1991)
Adv. Geophys
, vol.33
, pp. 141-266
-
-
Ghil, M.1
Malanotte-Rizzoli, P.2
-
30
-
-
4043137356
-
A tutorial on support vector regression
-
Smola, A. J & Schölkopf, B. A tutorial on support vector regression. Stat Comput 14, no. 3, 199-222 (2004).
-
(2004)
Stat Comput
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
31
-
-
84937499054
-
Twitter improves influenza forecasting
-
Paul, M. J., Dredze, M & Broniatowski, D. Twitter Improves Influenza Forecasting. PLoS currents 6, doi: 10. 1371/currents. outbreaks. 90b9ed0f59bae4ccaa683a39865d9117 (2014).
-
(2014)
PLoS Currents
, vol.6
-
-
Paul, M.J.1
Dredze, M.2
Broniatowski, D.3
|