-
1
-
-
85018399883
-
Influenza (Seasonal) [Internet]
-
[cited 2016 May 10]
-
WHO. Influenza (Seasonal) [Internet]. Fact Sheet Number 211. 2015 [cited 2016 May 10]. Available from:http://www. who.int/mediacentre/factsheets/fs211/en/index.html.
-
(2015)
-
-
-
2
-
-
79957755362
-
2009 H1n1 Surveillance Group. Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1
-
Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd SC. 2009 H1n1 Surveillance Group. Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1. Biosecur Bioterror. 2011;9:89-115.
-
(2011)
Biosecur Bioterror
, vol.9
, pp. 89-115
-
-
Lipsitch, M.1
Finelli, L.2
Heffernan, R.T.3
Leung, G.M.4
Redd, S.C.5
-
3
-
-
85018388664
-
-
[Internet]. [cited 2016 May 31]
-
Overview of Influenza Surveillance in the United States | Seasonal Influenza (Flu) | CDC [Internet]. [cited 2016 May 31] Available from: http://www.cdc.gov/flu/weekly/overview.htm
-
-
-
-
4
-
-
0037641182
-
Use of the Internet and e-mail for health care information: results from a national survey
-
Baker L, Wagner TH, Singer S, Bundorf MK. Use of the Internet and e-mail for health care information: results from a national survey. JAMA. 2003;289:2400-6.
-
(2003)
JAMA
, vol.289
, pp. 2400-2406
-
-
Baker, L.1
Wagner, T.H.2
Singer, S.3
Bundorf, M.K.4
-
5
-
-
66149157263
-
Digital disease detection--harnessing the Web for public health surveillance
-
Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection--harnessing the Web for public health surveillance. N Engl J Med. 2009;360:2153-5. 2157
-
(2009)
N Engl J Med
, vol.360
, pp. 2153-2155
-
-
Brownstein, J.S.1
Freifeld, C.C.2
Madoff, L.C.3
-
6
-
-
3042658536
-
Health-related searches on the Internet
-
Eysenbach G, Köhler C. Health-related searches on the Internet. JAMA. 2004;291:2946.
-
(2004)
JAMA
, vol.291
, pp. 2946
-
-
Eysenbach, G.1
Köhler, C.2
-
7
-
-
34748880596
-
Infodemiology: tracking flu-related searches on the web for syndromic surveillance
-
Eysenbach G. Infodemiology: tracking flu-related searches on the web for syndromic surveillance. AMIA Annu Symp Proc. 2006:244-8.
-
(2006)
AMIA Annu Symp Proc
, pp. 244-248
-
-
Eysenbach, G.1
-
8
-
-
85018417855
-
Enhancing Feature Selection Using Word Embeddings: The Case of Flu Surveillance
-
In: International World Wide Web Conferences Steering Committee
-
Lampos V, Zou B, Cox IJ. Enhancing Feature Selection Using Word Embeddings: The Case of Flu Surveillance. Proceedings of the 26th International Conference on World Wide Web. In: International World Wide Web Conferences Steering Committee; 2017. p. 695-704.
-
(2017)
Proceedings of the 26th International Conference on World Wide Web
, pp. 695-704
-
-
Lampos, V.1
Zou, B.2
Cox, I.J.3
-
9
-
-
84906354517
-
What can digital disease detection learn from (an external revision to) Google Flu Trends?
-
Santillana M, Zhang DW, Althouse BM, Ayers JW. What can digital disease detection learn from (an external revision to) Google Flu Trends? Am J Prev Med. 2014;47:341-7.
-
(2014)
Am J Prev Med
, vol.47
, pp. 341-347
-
-
Santillana, M.1
Zhang, D.W.2
Althouse, B.M.3
Ayers, J.W.4
-
10
-
-
84947998511
-
Accurate estimation of influenza epidemics using Google search data via ARGO
-
Yang S, Santillana M, Kou SC. Accurate estimation of influenza epidemics using Google search data via ARGO. Proc Natl Acad Sci U S A. 2015;112:14473-8.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 14473-14478
-
-
Yang, S.1
Santillana, M.2
Kou, S.C.3
-
11
-
-
84946026274
-
Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance
-
Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS. Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance. PLoS Comput Biol. 2015;11:e1004513.
-
(2015)
PLoS Comput Biol
, vol.11
-
-
Santillana, M.1
Nguyen, A.T.2
Dredze, M.3
Paul, M.J.4
Nsoesie, E.O.5
Brownstein, J.S.6
-
12
-
-
85018451381
-
Cloud-based Electronic Health Records for Real-time
-
Santillana M, Nguyen AT, Louie T, Zink A, Gray J, Sung I, et al. Cloud-based Electronic Health Records for Real-time. Region-specific Influenza Surveillance Sci Rep. 2016;6
-
(2016)
Region-specific Influenza Surveillance Sci Rep.
, pp. 6
-
-
Santillana, M.1
Nguyen, A.T.2
Louie, T.3
Zink, A.4
Gray, J.5
Sung, I.6
-
13
-
-
18744394326
-
Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): the example of lower respiratory infection
-
Lazarus R, Kleinman KP, Dashevsky I, DeMaria A, Platt R. Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): the example of lower respiratory infection. BMC Public Health. 2001;1:9.
-
(2001)
BMC Public Health
, vol.1
, pp. 9
-
-
Lazarus, R.1
Kleinman, K.P.2
Dashevsky, I.3
DeMaria, A.4
Platt, R.5
-
14
-
-
65349112142
-
Syndromic surveillance using ambulatory electronic health records
-
Hripcsak G, Soulakis ND, Li L, Morrison FP, Lai AM, Friedman C, et al. Syndromic surveillance using ambulatory electronic health records. J Am Med Inform Assoc. 2009;16:354-61.
-
(2009)
J Am Med Inform Assoc
, vol.16
, pp. 354-361
-
-
Hripcsak, G.1
Soulakis, N.D.2
Li, L.3
Morrison, F.P.4
Lai, A.M.5
Friedman, C.6
-
15
-
-
84904961485
-
Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US
-
Viboud C, Charu V, Olson D, Ballesteros S, Gog J, Khan F, et al. Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US. PLoS One. 2014;9:e102429.
-
(2014)
PLoS One
, vol.9
-
-
Viboud, C.1
Charu, V.2
Olson, D.3
Ballesteros, S.4
Gog, J.5
Khan, F.6
-
16
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457:1012-4.
-
(2009)
Nature
, vol.457
, pp. 1012-1014
-
-
Ginsberg, J.1
Mohebbi, M.H.2
Patel, R.S.3
Brammer, L.4
Smolinski, M.S.5
Brilliant, L.6
-
18
-
-
84938513272
-
Advances in nowcasting influenza-like illness rates using search query logs
-
Lampos V, Miller AC, Crossan S, Stefansen C. Advances in nowcasting influenza-like illness rates using search query logs. Sci Rep. 2015;5:12760.
-
(2015)
Sci Rep
, vol.5
, pp. 12760
-
-
Lampos, V.1
Miller, A.C.2
Crossan, S.3
Stefansen, C.4
-
19
-
-
84979000412
-
Results from the centers for disease control and prevention's predict the 2013--2014 Influenza Season Challenge
-
Biggerstaff M, Alper D, Dredze M, Fox S, Fung IC-H, Hickmann KS, et al. Results from the centers for disease control and prevention's predict the 2013--2014 Influenza Season Challenge. BMC Infect Dis BioMed Central. 2016;16:357.
-
(2016)
BMC Infect Dis BioMed Central
, vol.16
, pp. 357
-
-
Biggerstaff, M.1
Alper, D.2
Dredze, M.3
Fox, S.4
Fung, I.-H.5
Hickmann, K.S.6
-
20
-
-
85018439389
-
CDC Names Most Accurate Forecaster for 2015-16 | Spotlights (Flu) | CDC
-
[Internet]. [cited 2017 Jan 5]
-
New Flu Activity Forecasts Available for 2016-17 Season; CDC Names Most Accurate Forecaster for 2015-16 | Spotlights (Flu) | CDC [Internet]. [cited 2017 Jan 5]. Available from: https://www.cdc.gov/flu/spotlights/flu-activity-forecasts-2016-2017.htm.
-
-
-
-
21
-
-
84899439666
-
Influenza forecasting in human populations: a scoping review
-
Chretien J-P, George D, Shaman J, Chitale RA, McKenzie FE. Influenza forecasting in human populations: a scoping review. PLoS One. 2014;9:e94130.
-
(2014)
PLoS One
, vol.9
-
-
Chretien, J.-P.1
George, D.2
Shaman, J.3
Chitale, R.A.4
McKenzie, F.E.5
-
22
-
-
67649104447
-
Pandemic Influenza Preparedness and Response: A WHO Guidance Document
-
Pandemic Influenza Preparedness and Response: A WHO Guidance Document. World Health Organization; 2009.
-
(2009)
World Health Organization
-
-
-
23
-
-
75349096658
-
Flutracking: a weekly Australian community online survey of influenza-like illness in 2006, 2007 and 2008
-
Dalton C, Durrheim D, Fejsa J, Francis L, Carlson S, d'Espaignet ET, et al. Flutracking: a weekly Australian community online survey of influenza-like illness in 2006, 2007 and 2008. Commun Dis Intell Q Rep search.informit.com.au. 2009;33:316-22.
-
(2009)
Commun Dis Intell Q Rep
, vol.33
, pp. 316-322
-
-
Dalton, C.1
Durrheim, D.2
Fejsa, J.3
Francis, L.4
Carlson, S.5
d'Espaignet, E.T.6
-
24
-
-
84870859794
-
Forecasting seasonal outbreaks of influenza
-
Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci U S A. 2012;109:20425-30.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 20425-20430
-
-
Shaman, J.1
Karspeck, A.2
-
25
-
-
84940740947
-
Flexible Modeling of Epidemics with an Empirical Bayes Framework
-
Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R. Flexible Modeling of Epidemics with an Empirical Bayes Framework. PLoS Comput Biol. 2015;11:e1004382.
-
(2015)
PLoS Comput Biol
, vol.11
-
-
Brooks, L.C.1
Farrow, D.C.2
Hyun, S.3
Tibshirani, R.J.4
Rosenfeld, R.5
-
26
-
-
84890239936
-
Real-time influenza forecasts during the 2012-2013 season
-
Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M. Real-time influenza forecasts during the 2012-2013 season. Nat Commun. 2013;4:2837.
-
(2013)
Nat Commun
, vol.4
, pp. 2837
-
-
Shaman, J.1
Karspeck, A.2
Yang, W.3
Tamerius, J.4
Lipsitch, M.5
-
27
-
-
84901348387
-
Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics
-
Yang W, Karspeck A, Shaman J. Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics. PLoS Comput Biol. 2014;10:e1003583.
-
(2014)
PLoS Comput Biol
, vol.10
-
-
Yang, W.1
Karspeck, A.2
Shaman, J.3
-
28
-
-
84958580699
-
Improved Discrimination of Influenza Forecast Accuracy Using Consecutive Predictions
-
[Internet]
-
Shaman J, Kandula S. Improved Discrimination of Influenza Forecast Accuracy Using Consecutive Predictions. PLoS Curr. [Internet]. 2015;7.doi: 10.1371/currents.outbreaks.8a6a3df285af7ca973fab4b22e10911e.
-
(2015)
PLoS Curr.
, pp. 7
-
-
Shaman, J.1
Kandula, S.2
-
29
-
-
84937499054
-
Twitter improves influenza forecasting
-
[Internet]
-
Paul MJ, Dredze M, Broniatowski D. Twitter improves influenza forecasting. PLoS Curr. [Internet]. 2014;6. doi: 10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117.
-
(2014)
PLoS Curr
, pp. 6
-
-
Paul, M.J.1
Dredze, M.2
Broniatowski, D.3
-
30
-
-
84924813547
-
Forecasting a Moving Target: Ensemble Models for ILI Case Count Predictions
-
Chakraborty P, Khadivi P, Lewis B, Mahendiran A, Chen J, Butler P, et al. Forecasting a Moving Target: Ensemble Models for ILI Case Count Predictions. Proceedings of the 2014 SIAM International Conference on Data Mining. 2014. p. 262-70.
-
(2014)
Proceedings of the 2014 SIAM International Conference on Data Mining
, pp. 262-270
-
-
Chakraborty, P.1
Khadivi, P.2
Lewis, B.3
Mahendiran, A.4
Chen, J.5
Butler, P.6
-
31
-
-
84930606330
-
Forecasting the 2013-2014 Influenza Season Using Wikipedia
-
Hickmann KS, Fairchild G, Priedhorsky R, Generous N, Hyman JM, Deshpande A, et al. Forecasting the 2013-2014 Influenza Season Using Wikipedia. PLoS Comput Biol Public Library of Science. 2015;11:e1004239.
-
(2015)
PLoS Comput Biol Public Library of Science
, vol.11
-
-
Hickmann, K.S.1
Fairchild, G.2
Priedhorsky, R.3
Generous, N.4
Hyman, J.M.5
Deshpande, A.6
-
34
-
-
79955757514
-
The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic
-
Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS One. 2011;6:e19467.
-
(2011)
PLoS One
, vol.6
-
-
Signorini, A.1
Segre, A.M.2
Polgreen, P.M.3
-
35
-
-
84941360461
-
Flu Near You: Crowdsourced Symptom Reporting Spanning 2 Influenza Seasons
-
Smolinski MS, Crawley AW, Kristin B, Rumi C, Olsen JM, Oktawia W, et al. Flu Near You: Crowdsourced Symptom Reporting Spanning 2 Influenza Seasons. Am J Public Health. 2015;105:2124-30.
-
(2015)
Am J Public Health
, vol.105
, pp. 2124-2130
-
-
Smolinski, M.S.1
Crawley, A.W.2
Kristin, B.3
Rumi, C.4
Olsen, J.M.5
Oktawia, W.6
-
36
-
-
84918787542
-
Using clinicians' search query data to monitor influenza epidemics
-
Santillana M, Nsoesie EO, Mekaru SR, Scales D, Brownstein JS. Using clinicians' search query data to monitor influenza epidemics. Clin Infect Dis. 2014;59:1446-50.
-
(2014)
Clin Infect Dis
, vol.59
, pp. 1446-1450
-
-
Santillana, M.1
Nsoesie, E.O.2
Mekaru, S.R.3
Scales, D.4
Brownstein, J.S.5
-
37
-
-
84901331477
-
Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
-
McIver DJ, Brownstein JS. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput Biol. 2014;10:e1003581.
-
(2014)
PLoS Comput Biol
, vol.10
-
-
McIver, D.J.1
Brownstein, J.S.2
-
38
-
-
84912131759
-
Global disease monitoring and forecasting with Wikipedia
-
Generous N, Fairchild G, Deshpande A, Del Valle SY, Priedhorsky R. Global disease monitoring and forecasting with Wikipedia. PLoS Comput Biol. 2014;10:e1003892.
-
(2014)
PLoS Comput Biol
, vol.10
-
-
Generous, N.1
Fairchild, G.2
Deshpande, A.3
Del Valle, S.Y.4
Priedhorsky, R.5
-
39
-
-
79251637834
-
The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale
-
[Internet]
-
Broeck WVD, Van den Broeck W, Gioannini C, Gonçalves B, Quaggiotto M, Colizza V, et al. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect. Dis. [Internet]. 2011;11:37. doi: 10.1186/1471-2334-11-37.
-
(2011)
BMC Infect.Dis.
, vol.11
, pp. 37
-
-
Broeck, W.V.D.1
Van den Broeck, W.2
Gioannini, C.3
Gonçalves, B.4
Quaggiotto, M.5
Colizza, V.6
-
41
-
-
84878474470
-
Monitoring influenza epidemics in china with search query from baidu
-
Yuan Q, Nsoesie EO, Lv B, Peng G, Chunara R, Brownstein JS. Monitoring influenza epidemics in china with search query from baidu. PLoS One. 2013;8:e64323.
-
(2013)
PLoS One
, vol.8
-
-
Yuan, Q.1
Nsoesie, E.O.2
Lv, B.3
Peng, G.4
Chunara, R.5
Brownstein, J.S.6
-
42
-
-
84873655668
-
When Google got flu wrong
-
Butler D. When Google got flu wrong. Nature. 2013;494:155-6.
-
(2013)
Nature
, vol.494
, pp. 155-156
-
-
Butler, D.1
-
43
-
-
80051831902
-
Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
-
Cook S, Conrad C, Fowlkes AL, Mohebbi MH. Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS One. 2011;6:e23610.
-
(2011)
PLoS One
, vol.6
-
-
Cook, S.1
Conrad, C.2
Fowlkes, A.L.3
Mohebbi, M.H.4
-
44
-
-
84887293587
-
Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales
-
Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol. 2013;9:e1003256.
-
(2013)
PLoS Comput Biol
, vol.9
-
-
Olson, D.R.1
Konty, K.J.2
Paladini, M.3
Viboud, C.4
Simonsen, L.5
-
45
-
-
84896056107
-
The Parable of Google Flu: Traps in Big Data Analysis
-
Lazer D, Kennedy R, King G, Vespignani A. The Parable of Google Flu: Traps in Big Data Analysis. Science. 2014;343:1203-5.
-
(2014)
Science
, vol.343
, pp. 1203-1205
-
-
Lazer, D.1
Kennedy, R.2
King, G.3
Vespignani, A.4
-
46
-
-
84877261118
-
Scientists mine web search data to identify epidemics and adverse events
-
Kuehn BM. Scientists mine web search data to identify epidemics and adverse events. JAMA. 2013;309:1883-4.
-
(2013)
JAMA
, vol.309
, pp. 1883-1884
-
-
Kuehn, B.M.1
|