메뉴 건너뛰기




Volumn 17, Issue 1, 2017, Pages

Using electronic health records and Internet search information for accurate influenza forecasting

Author keywords

Autoregression; Digital disease detection; Dynamic error reduction; Influenza like illnesses reports; Validation test

Indexed keywords

ACCESS TO INFORMATION; ACCURACY; ARTICLE; DECISION MAKING; DISEASE ACTIVITY; ELECTRONIC HEALTH RECORD; FORECASTING; GEOGRAPHIC DISTRIBUTION; HUMAN; INTERNET; ONLINE SYSTEM; PREDICTION; RELIABILITY; SEASONAL INFLUENZA; TREND STUDY; HEALTH SURVEY; INFLUENZA, HUMAN; PROCEDURES; PUBLIC HEALTH SERVICE; SEASON; UNITED STATES;

EID: 85018433836     PISSN: None     EISSN: 14712334     Source Type: Journal    
DOI: 10.1186/s12879-017-2424-7     Document Type: Article
Times cited : (79)

References (46)
  • 1
    • 85018399883 scopus 로고    scopus 로고
    • Influenza (Seasonal) [Internet]
    • [cited 2016 May 10]
    • WHO. Influenza (Seasonal) [Internet]. Fact Sheet Number 211. 2015 [cited 2016 May 10]. Available from:http://www. who.int/mediacentre/factsheets/fs211/en/index.html.
    • (2015)
  • 2
    • 79957755362 scopus 로고    scopus 로고
    • 2009 H1n1 Surveillance Group. Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1
    • Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd SC. 2009 H1n1 Surveillance Group. Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1. Biosecur Bioterror. 2011;9:89-115.
    • (2011) Biosecur Bioterror , vol.9 , pp. 89-115
    • Lipsitch, M.1    Finelli, L.2    Heffernan, R.T.3    Leung, G.M.4    Redd, S.C.5
  • 3
    • 85018388664 scopus 로고    scopus 로고
    • [Internet]. [cited 2016 May 31]
    • Overview of Influenza Surveillance in the United States | Seasonal Influenza (Flu) | CDC [Internet]. [cited 2016 May 31] Available from: http://www.cdc.gov/flu/weekly/overview.htm
  • 4
    • 0037641182 scopus 로고    scopus 로고
    • Use of the Internet and e-mail for health care information: results from a national survey
    • Baker L, Wagner TH, Singer S, Bundorf MK. Use of the Internet and e-mail for health care information: results from a national survey. JAMA. 2003;289:2400-6.
    • (2003) JAMA , vol.289 , pp. 2400-2406
    • Baker, L.1    Wagner, T.H.2    Singer, S.3    Bundorf, M.K.4
  • 5
    • 66149157263 scopus 로고    scopus 로고
    • Digital disease detection--harnessing the Web for public health surveillance
    • Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection--harnessing the Web for public health surveillance. N Engl J Med. 2009;360:2153-5. 2157
    • (2009) N Engl J Med , vol.360 , pp. 2153-2155
    • Brownstein, J.S.1    Freifeld, C.C.2    Madoff, L.C.3
  • 6
    • 3042658536 scopus 로고    scopus 로고
    • Health-related searches on the Internet
    • Eysenbach G, Köhler C. Health-related searches on the Internet. JAMA. 2004;291:2946.
    • (2004) JAMA , vol.291 , pp. 2946
    • Eysenbach, G.1    Köhler, C.2
  • 7
    • 34748880596 scopus 로고    scopus 로고
    • Infodemiology: tracking flu-related searches on the web for syndromic surveillance
    • Eysenbach G. Infodemiology: tracking flu-related searches on the web for syndromic surveillance. AMIA Annu Symp Proc. 2006:244-8.
    • (2006) AMIA Annu Symp Proc , pp. 244-248
    • Eysenbach, G.1
  • 8
    • 85018417855 scopus 로고    scopus 로고
    • Enhancing Feature Selection Using Word Embeddings: The Case of Flu Surveillance
    • In: International World Wide Web Conferences Steering Committee
    • Lampos V, Zou B, Cox IJ. Enhancing Feature Selection Using Word Embeddings: The Case of Flu Surveillance. Proceedings of the 26th International Conference on World Wide Web. In: International World Wide Web Conferences Steering Committee; 2017. p. 695-704.
    • (2017) Proceedings of the 26th International Conference on World Wide Web , pp. 695-704
    • Lampos, V.1    Zou, B.2    Cox, I.J.3
  • 9
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (an external revision to) Google Flu Trends?
    • Santillana M, Zhang DW, Althouse BM, Ayers JW. What can digital disease detection learn from (an external revision to) Google Flu Trends? Am J Prev Med. 2014;47:341-7.
    • (2014) Am J Prev Med , vol.47 , pp. 341-347
    • Santillana, M.1    Zhang, D.W.2    Althouse, B.M.3    Ayers, J.W.4
  • 10
    • 84947998511 scopus 로고    scopus 로고
    • Accurate estimation of influenza epidemics using Google search data via ARGO
    • Yang S, Santillana M, Kou SC. Accurate estimation of influenza epidemics using Google search data via ARGO. Proc Natl Acad Sci U S A. 2015;112:14473-8.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 14473-14478
    • Yang, S.1    Santillana, M.2    Kou, S.C.3
  • 13
    • 18744394326 scopus 로고    scopus 로고
    • Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): the example of lower respiratory infection
    • Lazarus R, Kleinman KP, Dashevsky I, DeMaria A, Platt R. Using automated medical records for rapid identification of illness syndromes (syndromic surveillance): the example of lower respiratory infection. BMC Public Health. 2001;1:9.
    • (2001) BMC Public Health , vol.1 , pp. 9
    • Lazarus, R.1    Kleinman, K.P.2    Dashevsky, I.3    DeMaria, A.4    Platt, R.5
  • 15
    • 84904961485 scopus 로고    scopus 로고
    • Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US
    • Viboud C, Charu V, Olson D, Ballesteros S, Gog J, Khan F, et al. Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US. PLoS One. 2014;9:e102429.
    • (2014) PLoS One , vol.9
    • Viboud, C.1    Charu, V.2    Olson, D.3    Ballesteros, S.4    Gog, J.5    Khan, F.6
  • 18
    • 84938513272 scopus 로고    scopus 로고
    • Advances in nowcasting influenza-like illness rates using search query logs
    • Lampos V, Miller AC, Crossan S, Stefansen C. Advances in nowcasting influenza-like illness rates using search query logs. Sci Rep. 2015;5:12760.
    • (2015) Sci Rep , vol.5 , pp. 12760
    • Lampos, V.1    Miller, A.C.2    Crossan, S.3    Stefansen, C.4
  • 19
    • 84979000412 scopus 로고    scopus 로고
    • Results from the centers for disease control and prevention's predict the 2013--2014 Influenza Season Challenge
    • Biggerstaff M, Alper D, Dredze M, Fox S, Fung IC-H, Hickmann KS, et al. Results from the centers for disease control and prevention's predict the 2013--2014 Influenza Season Challenge. BMC Infect Dis BioMed Central. 2016;16:357.
    • (2016) BMC Infect Dis BioMed Central , vol.16 , pp. 357
    • Biggerstaff, M.1    Alper, D.2    Dredze, M.3    Fox, S.4    Fung, I.-H.5    Hickmann, K.S.6
  • 20
    • 85018439389 scopus 로고    scopus 로고
    • CDC Names Most Accurate Forecaster for 2015-16 | Spotlights (Flu) | CDC
    • [Internet]. [cited 2017 Jan 5]
    • New Flu Activity Forecasts Available for 2016-17 Season; CDC Names Most Accurate Forecaster for 2015-16 | Spotlights (Flu) | CDC [Internet]. [cited 2017 Jan 5]. Available from: https://www.cdc.gov/flu/spotlights/flu-activity-forecasts-2016-2017.htm.
  • 22
    • 67649104447 scopus 로고    scopus 로고
    • Pandemic Influenza Preparedness and Response: A WHO Guidance Document
    • Pandemic Influenza Preparedness and Response: A WHO Guidance Document. World Health Organization; 2009.
    • (2009) World Health Organization
  • 23
    • 75349096658 scopus 로고    scopus 로고
    • Flutracking: a weekly Australian community online survey of influenza-like illness in 2006, 2007 and 2008
    • Dalton C, Durrheim D, Fejsa J, Francis L, Carlson S, d'Espaignet ET, et al. Flutracking: a weekly Australian community online survey of influenza-like illness in 2006, 2007 and 2008. Commun Dis Intell Q Rep search.informit.com.au. 2009;33:316-22.
    • (2009) Commun Dis Intell Q Rep , vol.33 , pp. 316-322
    • Dalton, C.1    Durrheim, D.2    Fejsa, J.3    Francis, L.4    Carlson, S.5    d'Espaignet, E.T.6
  • 24
    • 84870859794 scopus 로고    scopus 로고
    • Forecasting seasonal outbreaks of influenza
    • Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci U S A. 2012;109:20425-30.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 20425-20430
    • Shaman, J.1    Karspeck, A.2
  • 27
    • 84901348387 scopus 로고    scopus 로고
    • Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics
    • Yang W, Karspeck A, Shaman J. Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics. PLoS Comput Biol. 2014;10:e1003583.
    • (2014) PLoS Comput Biol , vol.10
    • Yang, W.1    Karspeck, A.2    Shaman, J.3
  • 28
    • 84958580699 scopus 로고    scopus 로고
    • Improved Discrimination of Influenza Forecast Accuracy Using Consecutive Predictions
    • [Internet]
    • Shaman J, Kandula S. Improved Discrimination of Influenza Forecast Accuracy Using Consecutive Predictions. PLoS Curr. [Internet]. 2015;7.doi: 10.1371/currents.outbreaks.8a6a3df285af7ca973fab4b22e10911e.
    • (2015) PLoS Curr. , pp. 7
    • Shaman, J.1    Kandula, S.2
  • 29
    • 84937499054 scopus 로고    scopus 로고
    • Twitter improves influenza forecasting
    • [Internet]
    • Paul MJ, Dredze M, Broniatowski D. Twitter improves influenza forecasting. PLoS Curr. [Internet]. 2014;6. doi: 10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117.
    • (2014) PLoS Curr , pp. 6
    • Paul, M.J.1    Dredze, M.2    Broniatowski, D.3
  • 34
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic
    • Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS One. 2011;6:e19467.
    • (2011) PLoS One , vol.6
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 37
    • 84901331477 scopus 로고    scopus 로고
    • Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
    • McIver DJ, Brownstein JS. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput Biol. 2014;10:e1003581.
    • (2014) PLoS Comput Biol , vol.10
    • McIver, D.J.1    Brownstein, J.S.2
  • 39
    • 79251637834 scopus 로고    scopus 로고
    • The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale
    • [Internet]
    • Broeck WVD, Van den Broeck W, Gioannini C, Gonçalves B, Quaggiotto M, Colizza V, et al. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect. Dis. [Internet]. 2011;11:37. doi: 10.1186/1471-2334-11-37.
    • (2011) BMC Infect.Dis. , vol.11 , pp. 37
    • Broeck, W.V.D.1    Van den Broeck, W.2    Gioannini, C.3    Gonçalves, B.4    Quaggiotto, M.5    Colizza, V.6
  • 42
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • Butler D. When Google got flu wrong. Nature. 2013;494:155-6.
    • (2013) Nature , vol.494 , pp. 155-156
    • Butler, D.1
  • 43
    • 80051831902 scopus 로고    scopus 로고
    • Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
    • Cook S, Conrad C, Fowlkes AL, Mohebbi MH. Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS One. 2011;6:e23610.
    • (2011) PLoS One , vol.6
    • Cook, S.1    Conrad, C.2    Fowlkes, A.L.3    Mohebbi, M.H.4
  • 44
    • 84887293587 scopus 로고    scopus 로고
    • Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales
    • Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol. 2013;9:e1003256.
    • (2013) PLoS Comput Biol , vol.9
    • Olson, D.R.1    Konty, K.J.2    Paladini, M.3    Viboud, C.4    Simonsen, L.5
  • 45
    • 84896056107 scopus 로고    scopus 로고
    • The Parable of Google Flu: Traps in Big Data Analysis
    • Lazer D, Kennedy R, King G, Vespignani A. The Parable of Google Flu: Traps in Big Data Analysis. Science. 2014;343:1203-5.
    • (2014) Science , vol.343 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 46
    • 84877261118 scopus 로고    scopus 로고
    • Scientists mine web search data to identify epidemics and adverse events
    • Kuehn BM. Scientists mine web search data to identify epidemics and adverse events. JAMA. 2013;309:1883-4.
    • (2013) JAMA , vol.309 , pp. 1883-1884
    • Kuehn, B.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.