메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1-381

Statistical analysis with missing data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85101444608     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781119013563     Document Type: Book
Times cited : (14153)

References (331)
  • 1
    • 0000828942 scopus 로고
    • Missing observations in multivariate statistics: Review of the literature
    • Afifi, A.A., and Elashoff, R.M. (1966). Missing observations in multivariate statistics: Review of the literature, J. Am. Statist. Assoc. 61, 595–604.
    • (1966) J. Am. Statist. Assoc , vol.61 , pp. 595-604
    • Afifi, A.A.1    Elashoff, R.M.2
  • 2
    • 0032958330 scopus 로고    scopus 로고
    • A general maximum likelihood analysis of variance components in generalized linear models
    • Aitkin, M. (1999). A general maximum likelihood analysis of variance components in generalized linear models, Biometrics 55, 117–128.
    • (1999) Biometrics , vol.55 , pp. 117-128
    • Aitkin, M.1
  • 3
    • 0002582140 scopus 로고
    • Estimation and hypothesis testing in finite mixture models
    • Aitkin, M., and Rubin, D.B. (1985). Estimation and hypothesis testing in finite mixture models, J. Roy. Statist. Soc. B 47, 67–75.
    • (1985) J. Roy. Statist. Soc. B , vol.47 , pp. 67-75
    • Aitkin, M.1    Rubin, D.B.2
  • 4
    • 0000417176 scopus 로고
    • Mixture models, outliers, and the EM algorithm
    • Aitkin, M., and Wilson, G.T. (1980). Mixture models, outliers, and the EM algorithm, Technometrics 22, 325–331.
    • (1980) Technometrics , vol.22 , pp. 325-331
    • Aitkin, M.1    Wilson, G.T.2
  • 5
    • 0039137224 scopus 로고
    • A method of estimating the yield of a missing plot in field experiments
    • Allan, F.G., and Wishart, J. (1930). A method of estimating the yield of a missing plot in field experiments, J. Agric. Sci. 20, 399–406.
    • (1930) J. Agric. Sci , vol.20 , pp. 399-406
    • Allan, F.G.1    Wishart, J.2
  • 6
    • 3142702323 scopus 로고
    • Tobit models: A survey
    • Amemiya, T. (1984). Tobit models: A survey, J. Econometrics 24, 3–61.
    • (1984) J. Econometrics , vol.24 , pp. 3-61
    • Amemiya, T.1
  • 7
    • 2642651530 scopus 로고
    • Missing plot techniques
    • Anderson, R.L. (1946). Missing plot techniques, Biometrics 2, 41–47.
    • (1946) Biometrics , vol.2 , pp. 41-47
    • Anderson, R.L.1
  • 8
    • 0000254441 scopus 로고
    • Maximum likelihood estimates for the multivariate normal distribution when some observations are missing
    • Anderson, T.W. (1957). Maximum likelihood estimates for the multivariate normal distribution when some observations are missing, J. Am. Statist. Assoc. 52, 200–203.
    • (1957) J. Am. Statist. Assoc , vol.52 , pp. 200-203
    • Anderson, T.W.1
  • 10
    • 0346880128 scopus 로고    scopus 로고
    • Identification of causal effects using instrumental variables (With discussion)
    • Angrist, J.D., Imbens, G.W., and Rubin, D.B. (1996). Identification of causal effects using instrumental variables (with discussion), J. Am. Statist. Assoc. 91, 444–472.
    • (1996) J. Am. Statist. Assoc , vol.91 , pp. 444-472
    • Angrist, J.D.1    Imbens, G.W.2    Rubin, D.B.3
  • 12
    • 84947792475 scopus 로고
    • Comparison of the biases of the ‘‘hot deck’’ imputation procedure with an ‘‘equal weights’’ imputation procedure
    • W.G. Madow and I. Olkin, eds.), New York: Academic Press
    • Bailar, B.A., and Bailar, J.C. (1983). Comparison of the biases of the ‘‘hot deck’’ imputation procedure with an ‘‘equal weights’’ imputation procedure, in Incomplete Data in Sample Surveys, Vol. III: Symposium on Incomplete Data, Proceedings (W.G. Madow and I. Olkin, eds.), New York: Academic Press.
    • (1983) Incomplete Data in Sample Surveys, Vol. III: Symposium on Incomplete Data, Proceedings
    • Bailar, B.A.1    Bailar, J.C.2
  • 14
    • 79959851335 scopus 로고
    • Technical Report, Department of Biostatistics, Harvard School of Public Health, Boston, MA
    • Baker, S., and Laird, N. (1985). Categorical response subject to nonresponse, Technical Report, Department of Biostatistics, Harvard School of Public Health, Boston, MA.
    • (1985) Categorical Response Subject to Nonresponse
    • Baker, S.1    Laird, N.2
  • 16
    • 0032347346 scopus 로고    scopus 로고
    • A broader template for analyzing broken randomized experiments
    • Barnard, J., Du, J., Hill, J., and Rubin, D.B. (1998). A broader template for analyzing broken randomized experiments, Sociol. Meth. Res. 27, 285–318.
    • (1998) Sociol. Meth. Res , vol.27 , pp. 285-318
    • Barnard, J.1    Du, J.2    Hill, J.3    Rubin, D.B.4
  • 17
    • 2442736478 scopus 로고    scopus 로고
    • Small-sample degrees of freedom with multiple imputation
    • Barnard, J., and Rubin, D.B. (1999), Small-sample degrees of freedom with multiple imputation, Biometrika 86, 949–955.
    • (1999) Biometrika , vol.86 , pp. 949-955
    • Barnard, J.1    Rubin, D.B.2
  • 18
    • 0000417746 scopus 로고
    • Some examples of statistical methods of research in agriculture and applied botany
    • Bartlett, M.S. (1937). Some examples of statistical methods of research in agriculture and applied botany, J. Roy. Statist. Soc. B 4, 137–170.
    • (1937) J. Roy. Statist. Soc. B , vol.4 , pp. 137-170
    • Bartlett, M.S.1
  • 19
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L.E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Statist. 41, 164–171.
    • (1970) Ann. Math. Statist , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 20
  • 22
    • 0031090019 scopus 로고    scopus 로고
    • EM algorithms without missing data, Statist
    • Becker, M.P., Yang, I., and Lange, K. (1997). EM algorithms without missing data, Statist. Meth. Med. Res. 6, 38–54.
    • (1997) Meth. Med. Res , vol.6 , pp. 38-54
    • Becker, M.P.1    Yang, I.2    Lange, K.3
  • 23
    • 0001302989 scopus 로고
    • Problems with EM for ML factor analysis
    • Bentler, P.M., and Tanaka, J.S. (1983). Problems with EM for ML factor analysis, Psychometrika 48, 247–253.
    • (1983) Psychometrika , vol.48 , pp. 247-253
    • Bentler, P.M.1    Tanaka, J.S.2
  • 24
    • 0001211603 scopus 로고
    • Estimation and inference in nonlinear structural models
    • Berndt, E.B., Hall, B., Hall, R., and Hausman, J.A. (1974). Estimation and inference in nonlinear structural models, Ann. Econ. Soc. Meas. 3, 653–665.
    • (1974) Ann. Econ. Soc. Meas , vol.3 , pp. 653-665
    • Berndt, E.B.1    Hall, B.2    Hall, R.3    Hausman, J.A.4
  • 25
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • Besag, J. (1986). On the statistical analysis of dirty pictures, J. Roy. Statist. Soc. B 48, 259–279.
    • (1986) J. Roy. Statist. Soc. B , vol.48 , pp. 259-279
    • Besag, J.1
  • 26
    • 25444450992 scopus 로고    scopus 로고
    • Weighting adjustments for ignorable nonresponse, Chapter 18
    • (R.M. Groves, D.A. Dillman, J.L. Eltinge, and R.J. Little, eds.), New York: Wiley
    • Bethlehem, J.G. (2002). Weighting adjustments for ignorable nonresponse, Chapter 18, in Survey Nonresponse (R.M. Groves, D.A. Dillman, J.L. Eltinge, and R.J. Little, eds.), New York: Wiley.
    • (2002) Survey Nonresponse
    • Bethlehem, J.G.1
  • 28
    • 0000133998 scopus 로고
    • An analysis of transformations
    • Box, G.E.P., and Cox, D.R. (1964). An analysis of transformations, J. Roy. Statist. Soc. B 26, 211–252.
    • (1964) J. Roy. Statist. Soc. B , vol.26 , pp. 211-252
    • Box, G.E.P.1    Cox, D.R.2
  • 32
    • 70350314636 scopus 로고
    • Missing values in multi-response nonlinear data fitting
    • Box, M.J., Draper, N.R., and Hunter, W.G. (1970). Missing values in multi-response nonlinear data fitting, Technometrics 12, 613–620.
    • (1970) Technometrics , vol.12 , pp. 613-620
    • Box, M.J.1    Draper, N.R.2    Hunter, W.G.3
  • 33
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • Breslow, N.E., and Clayton, D.G. (1993). Approximate inference in generalized linear mixed models, J. Am. Statist. Assoc. 88, 9–25.
    • (1993) J. Am. Statist. Assoc , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 34
    • 0003020981 scopus 로고
    • Bias correction in generalised linear mixed models with a single component of dispersion
    • Breslow, N.E., and Lin, X. (1995). Bias correction in generalised linear mixed models with a single component of dispersion, Biometrika 82, 81–91.
    • (1995) Biometrika , vol.82 , pp. 81-91
    • Breslow, N.E.1    Lin, X.2
  • 35
    • 0025071087 scopus 로고
    • Protecting against nonrandomly missing data in longitudinal studies
    • Brown, C.H. (1990), Protecting against nonrandomly missing data in longitudinal studies, Biometrics 46, 143–157.
    • (1990) Biometrics , vol.46 , pp. 143-157
    • Brown, C.H.1
  • 37
    • 0001342385 scopus 로고
    • A method of estimation of missing values in multivariate data suitable for use with an electronic computer
    • Buck, S.F. (1960). A method of estimation of missing values in multivariate data suitable for use with an electronic computer, J. Roy. Statist. Soc. B 22, 302–306.
    • (1960) J. Roy. Statist. Soc. B , vol.22 , pp. 302-306
    • Buck, S.F.1
  • 39
    • 0016359285 scopus 로고
    • Two-dimensional contingency tables with both completely and partially classified data
    • Chen, T., and Fienberg, S.E. (1974). Two-dimensional contingency tables with both completely and partially classified data, Biometrics 30, 629–642.
    • (1974) Biometrics , vol.30 , pp. 629-642
    • Chen, T.1    Fienberg, S.E.2
  • 42
    • 0000057576 scopus 로고
    • Controlling bias in observational studies: A review
    • Cochran, W.G., and Rubin, D.B. (1973). Controlling bias in observational studies: A review, Sankhya A 35, 417–446.
    • (1973) Sankhya A , vol.35 , pp. 417-446
    • Cochran, W.G.1    Rubin, D.B.2
  • 48
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • Day, N.E. (1969). Estimating the components of a mixture of normal distributions, Biometrika 56, 464–474.
    • (1969) Biometrika , vol.56 , pp. 464-474
    • Day, N.E.1
  • 50
    • 0346810001 scopus 로고
    • Estimation of the correlation coefficient from a broken random sample
    • DeGroot, M.H., and Goel, K. (1980). Estimation of the correlation coefficient from a broken random sample, Ann. Statist. 8, 264–278.
    • (1980) Ann. Statist , vol.8 , pp. 264-278
    • Degroot, M.H.1    Goel, K.2
  • 52
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (With discussion)
    • Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. Roy. Statist. Soc. B 39, 1–38.
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 53
    • 0040618942 scopus 로고
    • Iteratively reweighted least squares for linear regression when errors are normal/independent distributed
    • Dempster, A.P., Laird, N.M., and Rubin, D.B. (1980). Iteratively reweighted least squares for linear regression when errors are normal/independent distributed, Multivariate Analysis V, 35–37.
    • (1980) Multivariate Analysis V , pp. 35-37
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 56
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis
    • Diggle, P., and Kenward, M.G. (1994). Informative drop-out in longitudinal data analysis, J. Roy. Statist. Soc. C 43, 49–73.
    • (1994) J. Roy. Statist. Soc. C , vol.43 , pp. 49-73
    • Diggle, P.1    Kenward, M.G.2
  • 57
    • 0003565214 scopus 로고
    • Berkeley CA: University of California Press
    • Dixon, W.J. (1988). BMDP Statistical Software. Berkeley CA: University of California Press.
    • (1988) BMDP Statistical Software
    • Dixon, W.J.1
  • 60
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B. (1979). Bootstrap methods: Another look at the jackknife, Ann. Stat. 7, 1–26.
    • (1979) Ann. Stat , vol.7 , pp. 1-26
    • Efron, B.1
  • 61
    • 84923818429 scopus 로고
    • Better bootstrap confidence intervals
    • Efron, B. (1987). Better bootstrap confidence intervals, J. Am. Statist. Assoc. 82, 171–200 (with discussion).
    • (1987) J. Am. Statist. Assoc , vol.82 , pp. 171-200
    • Efron, B.1
  • 62
    • 21344497888 scopus 로고
    • Missing data, imputation, and the bootstrap
    • Efron, B. (1994). Missing data, imputation, and the bootstrap, J. Am. Statist. Assoc. 89, 463–478.
    • (1994) J. Am. Statist. Assoc , vol.89 , pp. 463-478
    • Efron, B.1
  • 63
    • 0018115641 scopus 로고
    • Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information
    • Efron, B., and Hinkley, D.V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information, Biometrika 65, 457–487.
    • (1978) Biometrika , vol.65 , pp. 457-487
    • Efron, B.1    Hinkley, D.V.2
  • 65
    • 0041175330 scopus 로고    scopus 로고
    • The Muscatine children’s obesity data reanalysed using pattern mixture models
    • Ekholm, A., and Skinner, C. (1998). The Muscatine children’s obesity data reanalysed using pattern mixture models, Appl. Statist. 47, 251–264.
    • (1998) Appl. Statist , vol.47 , pp. 251-264
    • Ekholm, A.1    Skinner, C.2
  • 66
    • 0344645049 scopus 로고
    • Variance of the estimated mean for several imputation procedures
    • Ernst, L.R. (1980). Variance of the estimated mean for several imputation procedures, Proc. Survey Res. Meth. Sec., Am. Statist. Assoc. 1980, 716–721.
    • (1980) Proc. Survey Res. Meth. Sec., Am. Statist. Assoc , pp. 716-721
    • Ernst, L.R.1
  • 70
    • 0030557655 scopus 로고    scopus 로고
    • Alternative paradigms for the analysis of imputed survey data
    • Fay, R.E. (1996). Alternative paradigms for the analysis of imputed survey data, J. Am. Statist. Assoc. 91, 490–498.
    • (1996) J. Am. Statist. Assoc , vol.91 , pp. 490-498
    • Fay, R.E.1
  • 74
    • 0000741850 scopus 로고    scopus 로고
    • Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment noncompliance and subsequent missing outcomes
    • Frangakis, C., and Rubin, D.B. (1999). Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment noncompliance and subsequent missing outcomes, Biometrika 86, 366–379.
    • (1999) Biometrika , vol.86 , pp. 366-379
    • Frangakis, C.1    Rubin, D.B.2
  • 75
    • 0035000039 scopus 로고    scopus 로고
    • Addressing an idiosyncracy in estimating survival curves using double sampling in the presence of self-selected right censoring
    • With discussion and rejoinder, pp. 343–353
    • Frangakis, C., and Rubin, D.B. (2001). Addressing an idiosyncracy in estimating survival curves using double sampling in the presence of self-selected right censoring, Biometrics 57, 333–342. With discussion and rejoinder, pp. 343–353.
    • (2001) Biometrics , vol.57 , pp. 333-342
    • Frangakis, C.1    Rubin, D.B.2
  • 76
    • 0036188782 scopus 로고    scopus 로고
    • Principal stratification in causal inference
    • Frangakis, C., and Rubin, D.B. (2002). Principal stratification in causal inference, Biometrics 58, 21–29.
    • (2002) Biometrics , vol.58 , pp. 21-29
    • Frangakis, C.1    Rubin, D.B.2
  • 77
    • 84950824646 scopus 로고
    • Maximum likelihood estimation and model selection in contingency tables with missing data
    • Fuchs, C. (1982). Maximum likelihood estimation and model selection in contingency tables with missing data, J. Am. Statist. Assoc. 77, 270–278.
    • (1982) J. Am. Statist. Assoc , vol.77 , pp. 270-278
    • Fuchs, C.1
  • 78
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Gelfand, A.E., and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities, J. Am. Statist. Assoc. 85, 398–409.
    • (1990) J. Am. Statist. Assoc , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 79
    • 84865262077 scopus 로고
    • Illustration of Bayesian inference in normal data models using Gibbs sampling
    • Gelfand, A.E., Hills, S.E., Racine-Poon, A., and Smith, A.F.M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling, J. Am. Statist. Assoc. 85, 972–985.
    • (1990) J. Am. Statist. Assoc , vol.85 , pp. 972-985
    • Gelfand, A.E.1    Hills, S.E.2    Racine-Poon, A.3    Smith, A.F.M.4
  • 82
    • 0000736067 scopus 로고    scopus 로고
    • Computing normalizing constants: From importance sampling to bridge sampling to path sampling
    • Gelman, A.E., and Meng, X.L. (1998). Computing normalizing constants: From importance sampling to bridge sampling to path sampling, Statist. Sci. 13, 163–185.
    • (1998) Statist. Sci , vol.13 , pp. 163-185
    • Gelman, A.E.1    Meng, X.L.2
  • 83
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (With discussion)
    • Gelman, A.E., and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences (with discussion), Statist. Sci. 7, 457–472.
    • (1992) Statist. Sci , vol.7 , pp. 457-472
    • Gelman, A.E.1    Rubin, D.B.2
  • 84
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo (With discussion)
    • Geyer, C.J. (1992). Practical Markov chain Monte Carlo (with discussion), Statist. Sci. 7, 473– 503.
    • (1992) Statist. Sci , vol.7
    • Geyer, C.J.1
  • 87
    • 21144481276 scopus 로고
    • Multiple imputation in mixture models for nonignorable nonresponse with follow-ups
    • Glynn, R.J., Laird, N.M., and Rubin, D.B. (1993). Multiple imputation in mixture models for nonignorable nonresponse with follow-ups, J. Am. Statist. Assoc. 88, 984–993.
    • (1993) J. Am. Statist. Assoc , vol.88 , pp. 984-993
    • Glynn, R.J.1    Laird, N.M.2    Rubin, D.B.3
  • 88
    • 84950652276 scopus 로고
    • The multivariate analysis of qualitative data: Interaction among multiple classifications
    • Goodman, L.A. (1970). The multivariate analysis of qualitative data: Interaction among multiple classifications, J. Am. Statist. Assoc. 65, 225–256.
    • (1970) J. Am. Statist. Assoc , vol.65 , pp. 225-256
    • Goodman, L.A.1
  • 89
    • 0040006707 scopus 로고
    • Simple models for the analysis of association in crossclassifications having ordered categories
    • Goodman, L.A. (1979). Simple models for the analysis of association in crossclassifications having ordered categories, J. Am. Statist. Assoc. 74, 537–552.
    • (1979) J. Am. Statist. Assoc , vol.74 , pp. 537-552
    • Goodman, L.A.1
  • 90
    • 84947680781 scopus 로고
    • A tutorial on the SWEEP operator
    • Goodnight, J.H. (1979). A tutorial on the SWEEP operator, Am. Statist. 33, 149–158.
    • (1979) Am. Statist , vol.33 , pp. 149-158
    • Goodnight, J.H.1
  • 91
    • 0018478511 scopus 로고
    • Linear system identification from nonstationary crosssectional data
    • Goodrich, R.L., and Caines, P.E. (1979). Linear system identification from nonstationary crosssectional data, IEEE Trans. Aut. Control AC-24, 403–411.
    • (1979) IEEE Trans. Aut. Control AC-24 , pp. 403-411
    • Goodrich, R.L.1    Caines, P.E.2
  • 92
    • 0039300203 scopus 로고
    • Imputation of missing values when the probability of response depends on the variable being imputed
    • Greenlees, W.S., Reece, J.S., and Zieschang, K.D. (1982). Imputation of missing values when the probability of response depends on the variable being imputed, J. Am. Statist. Assoc. 77, 251–261.
    • (1982) J. Am. Statist. Assoc , vol.77 , pp. 251-261
    • Greenlees, W.S.1    Reece, J.S.2    Zieschang, K.D.3
  • 94
    • 0016333007 scopus 로고
    • Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations
    • Gupta, N.K., and Mehra, R.K. (1974). Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations, IEEE Trans. Aut. Control AC-19, 774–783.
    • (1974) IEEE Trans. Aut. Control AC-19 , pp. 774-783
    • Gupta, N.K.1    Mehra, R.K.2
  • 96
    • 0002626849 scopus 로고
    • Missing data in regression analysis
    • Haitovsky, Y. (1968). Missing data in regression analysis, J. Roy. Statist. Soc. B 30, 67–81.
    • (1968) J. Roy. Statist. Soc. B , vol.30 , pp. 67-81
    • Haitovsky, Y.1
  • 97
    • 85101483074 scopus 로고
    • Limiting distributions in simple random sampling from a finite population
    • Hajek, J. (1960). Limiting distributions in simple random sampling from a finite population, Pub. Math. Inst. Hung. Acad. Sci. 4, 49–57.
    • (1960) Pub. Math. Inst. Hung. Acad. Sci , vol.4 , pp. 49-57
    • Hajek, J.1
  • 100
    • 84889281123 scopus 로고
    • Programming analysis of variance for general-purpose computers
    • Hartley, H.O. (1956). Programming analysis of variance for general-purpose computers, Biometrics 12, 110–122.
    • (1956) Biometrics , vol.12 , pp. 110-122
    • Hartley, H.O.1
  • 101
    • 0000996386 scopus 로고
    • Maximum likelihood estimation from incomplete data
    • Hartley, H.O. (1958). Maximum likelihood estimation from incomplete data, Biometrics 14, 174–194.
    • (1958) Biometrics , vol.14 , pp. 174-194
    • Hartley, H.O.1
  • 102
    • 0000996385 scopus 로고
    • The analysis of incomplete data
    • Hartley, H.O., and Hocking, R.R. (1971). The analysis of incomplete data, Biometrics 27, 783–808.
    • (1971) Biometrics , vol.27 , pp. 783-808
    • Hartley, H.O.1    Hocking, R.R.2
  • 104
    • 0018424432 scopus 로고
    • Maximum likelihood estimation of regression models with autoregressive-moving average disturbances
    • Harvey, A.C., and Phillips, G.D.A. (1979). Maximum likelihood estimation of regression models with autoregressive-moving average disturbances, Biometrika 66, 49–58.
    • (1979) Biometrika , vol.66 , pp. 49-58
    • Harvey, A.C.1    Phillips, G.D.A.2
  • 105
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems (With discussion)
    • Harville, D.A. (1977). Maximum likelihood approaches to variance component estimation and to related problems (with discussion), J. Am. Statist. Assoc. 72, 320–340.
    • (1977) J. Am. Statist. Assoc , vol.72 , pp. 320-340
    • Harville, D.A.1
  • 106
    • 0019277112 scopus 로고
    • Analysis of coarsely grouped data from the lognormal distribution
    • Hasselblad, V., Stead, A.G., and Galke, W. (1980). Analysis of coarsely grouped data from the lognormal distribution, J. Am. Statist. Assoc. 75, 771–778.
    • (1980) J. Am. Statist. Assoc , vol.75 , pp. 771-778
    • Hasselblad, V.1    Stead, A.G.2    Galke, W.3
  • 107
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57, 97–109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 108
    • 0000620901 scopus 로고
    • Missing values in experiments analyzed on automatic computers
    • Healy, M.J.R., and Westmacott, M. (1956). Missing values in experiments analyzed on automatic computers, Appl. Statist. 5, 203–206.
    • (1956) Appl. Statist , vol.5 , pp. 203-206
    • Healy, M.J.R.1    Westmacott, M.2
  • 109
    • 0001766028 scopus 로고
    • The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models
    • Heckman, J.I. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models, Ann. Econ. Soc. Meas. 5, 475–492.
    • (1976) Ann. Econ. Soc. Meas , vol.5 , pp. 475-492
    • Heckman, J.I.1
  • 110
    • 0242605043 scopus 로고    scopus 로고
    • Multivariate imputation of coarsened survey data on household wealth, Chapter 24
    • R.M. Groves, D.A. Dillman, J.L. Eltinge, and R.J.A. Little, eds.), New York: Wiley
    • Heeringa, S.G., Little, R.J.A., and Raghunathan, T. (2002). Multivariate imputation of coarsened survey data on household wealth, Chapter 24, in Survey Nonresponse (R.M. Groves, D.A. Dillman, J.L. Eltinge, and R.J.A. Little, eds.), New York: Wiley.
    • (2002) Survey Nonresponse
    • Heeringa, S.G.1    Little, R.J.A.2    Raghunathan, T.3
  • 111
    • 0000579766 scopus 로고
    • Ignorability in general incomplete-data models
    • Heitjan, D. F. (1994). Ignorability in general incomplete-data models, Biometrika. 81, 701 708.
    • (1994) Biometrika , vol.81 , Issue.701 , pp. 708
    • Heitjan, D.F.1
  • 112
    • 0000993483 scopus 로고
    • Ignorability and coarse data
    • Heitjan, D., and Rubin, D.B. (1991). Ignorability and coarse data, Ann. Statist. 19, 2244 2253.
    • (1991) Ann. Statist , vol.19 , Issue.2244 , pp. 2253
    • Heitjan, D.1    Rubin, D.B.2
  • 113
    • 0016704147 scopus 로고
    • Best linear unbiased estimation and prediction under a selection model
    • Henderson, C.R. (1975). Best linear unbiased estimation and prediction under a selection model, Biometrics 31, 423–447.
    • (1975) Biometrics , vol.31 , pp. 423-447
    • Henderson, C.R.1
  • 115
    • 0002765045 scopus 로고    scopus 로고
    • Estimating the effect of an influenza vaccine in an encouragement design
    • Hirano, K., Imbens, G., Rubin, D.B., and Zhou, X.H. (2000). Estimating the effect of an influenza vaccine in an encouragement design, Biostatistics 1, 69–88.
    • (2000) Biostatistics , vol.1 , pp. 69-88
    • Hirano, K.1    Imbens, G.2    Rubin, D.B.3    Zhou, X.H.4
  • 116
    • 0016231543 scopus 로고
    • The analysis of partially categorized contingency data
    • Hocking, R.R., and Oxspring, H.H. (1974). The analysis of partially categorized contingency data, Biometrics 30, 469–483.
    • (1974) Biometrics , vol.30 , pp. 469-483
    • Hocking, R.R.1    Oxspring, H.H.2
  • 117
    • 0011591309 scopus 로고
    • Section pre-equating: A preliminary investigation
    • P.W. Holland and D.B. Rubin, eds.), New York: Academic Press
    • Holland, P.W., and Wightman, L.E. (1982). Section pre-equating: A preliminary investigation, in Test Equating (P.W. Holland and D.B. Rubin, eds.), New York: Academic Press.
    • (1982) Test Equating
    • Holland, P.W.1    Wightman, L.E.2
  • 119
    • 0032937149 scopus 로고    scopus 로고
    • Maximum likelihood analysis of generalized linear models with missing covariates
    • Horton, N.J., and Laird, N.M. (1998). Maximum likelihood analysis of generalized linear models with missing covariates, Statist. Meth. Med. Res. 8, 37–50.
    • (1998) Statist. Meth. Med. Res , vol.8 , pp. 37-50
    • Horton, N.J.1    Laird, N.M.2
  • 120
    • 84947396376 scopus 로고
    • A generalization of sampling without replacement from a finite population
    • Horvitz, D.G., and Thompson, D.J. (1952). A generalization of sampling without replacement from a finite population, J. Am. Statist. Assoc. 47, 663–685.
    • (1952) J. Am. Statist. Assoc , vol.47 , pp. 663-685
    • Horvitz, D.G.1    Thompson, D.J.2
  • 122
    • 84950431939 scopus 로고
    • Incomplete data in generalized linear models
    • Ibrahim, J.G. (1990). Incomplete data in generalized linear models, J. Am. Statist. Assoc. 85, 765–769.
    • (1990) J. Am. Statist. Assoc , vol.85 , pp. 765-769
    • Ibrahim, J.G.1
  • 123
    • 0033474233 scopus 로고    scopus 로고
    • Missing covariates in generalized linear models when the missing data mechanism is non-ignorable
    • Ibrahim, J.G., Lipsitz, S.R., and Chen, M.-H. (1999). Missing covariates in generalized linear models when the missing data mechanism is non-ignorable, J. Roy. Statist. Soc. B 61, 173–190.
    • (1999) J. Roy. Statist. Soc. B , vol.61 , pp. 173-190
    • Ibrahim, J.G.1    Lipsitz, S.R.2    Chen, M.-H.3
  • 124
    • 0014256178 scopus 로고
    • Contingency tables with given marginals
    • Ireland, C.T., and Kullback, S. (1968). Contingency tables with given marginals, Biometrika 55, 179–188.
    • (1968) Biometrika , vol.55 , pp. 179-188
    • Ireland, C.T.1    Kullback, S.2
  • 125
    • 21144460553 scopus 로고
    • Conjugate gradient acceleration of the EM algorithm
    • Jamshidian, M., and Jennrich, R.I. (1993). Conjugate gradient acceleration of the EM algorithm, J. Am. Statist. Assoc. 88, 221–228.
    • (1993) J. Am. Statist. Assoc , vol.88 , pp. 221-228
    • Jamshidian, M.1    Jennrich, R.I.2
  • 126
    • 0013523428 scopus 로고
    • The analysis of designed experiments with missing observations, Appl
    • Jarrett, R.G. (1978). The analysis of designed experiments with missing observations, Appl. Statist. 27, 38–46.
    • (1978) Statist , vol.27 , pp. 38-46
    • Jarrett, R.G.1
  • 127
    • 0022966316 scopus 로고
    • Incomplete repeated-measures models with structured covariance matrices
    • Jennrich, R.I., and Schluchter, M.D. (1986). Incomplete repeated-measures models with structured covariance matrices, Biometrics 42, 805–820.
    • (1986) Biometrics , vol.42 , pp. 805-820
    • Jennrich, R.I.1    Schluchter, M.D.2
  • 128
    • 0001353940 scopus 로고
    • Maximum likelihood fitting of ARMA models to time series with missing observations
    • Jones, R.H. (1980). Maximum likelihood fitting of ARMA models to time series with missing observations, Technometrics 22, 389–395.
    • (1980) Technometrics , vol.22 , pp. 389-395
    • Jones, R.H.1
  • 129
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems, Trans. ASME
    • Kalman, R.E. (1960). A new approach to linear filtering and prediction problems, Trans. ASME J. Basic Eng. 82, 34–35.
    • (1960) J. Basic Eng , vol.82 , pp. 34-35
    • Kalman, R.E.1
  • 132
    • 0039051974 scopus 로고
    • Imputation of the 1989 Survey of Consumer Finances: Stochastic relaxation and multiple imputation
    • Kennickell, A.B. (1991). Imputation of the 1989 Survey of Consumer Finances: Stochastic relaxation and multiple imputation, Proc. Sec. Surv. Res. Meth., Am. Statist. Assoc., 1–10.
    • (1991) Proc. Sec. Surv. Res. Meth., Am. Statist. Assoc , pp. 1-10
    • Kennickell, A.B.1
  • 133
    • 0345734935 scopus 로고    scopus 로고
    • Likelihood based frequentist inference when data are missing at random
    • Kenward, M.G., and Molenberghs, G. (1998). Likelihood based frequentist inference when data are missing at random, Statist. Sci. 13, 236–247.
    • (1998) Statist. Sci , vol.13 , pp. 236-247
    • Kenward, M.G.1    Molenberghs, G.2
  • 134
    • 0008596328 scopus 로고
    • A curious likelihood identity for the multivariate T-distribution, Commun
    • Kent, J.T., Tyler, D.E., and Vardi, Y. (1994). A curious likelihood identity for the multivariate T-distribution, Commun. Statist. B—Simulation and Computation 23, 441–453.
    • (1994) Statist. B—Simulation and Computation , vol.23 , pp. 441-453
    • Kent, J.T.1    Tyler, D.E.2    Vardi, Y.3
  • 135
    • 84970352416 scopus 로고
    • The treatment of missing data in multivariate analysis
    • Kim, J.O., and Curry, J. (1977). The treatment of missing data in multivariate analysis, Sociol. Meth. Res. 6, 215–240.
    • (1977) Sociol. Meth. Res , vol.6 , pp. 215-240
    • Kim, J.O.1    Curry, J.2
  • 137
    • 84950943564 scopus 로고
    • Sequential imputations and Bayesian missing data problems
    • Kong, A., Liu, J.S., and Wong, W. H. (1994). Sequential imputations and Bayesian missing data problems, J. Am. Statist. Assoc. 89, 278–288.
    • (1994) J. Am. Statist. Assoc , vol.89 , pp. 278-288
    • Kong, A.1    Liu, J.S.2    Wong, W.H.3
  • 138
    • 0019066492 scopus 로고
    • Mixtures of continuous and categorical variables in discriminant analysis
    • Krzanowski, W.J. (1980). Mixtures of continuous and categorical variables in discriminant analysis, Biometrics 36, 493–499.
    • (1980) Biometrics , vol.36 , pp. 493-499
    • Krzanowski, W.J.1
  • 139
    • 0020342140 scopus 로고
    • Mixtures of continuous and categorical variables in discriminant analysis: A hypothesis-testing approach
    • Krzanowski, W.J. (1982). Mixtures of continuous and categorical variables in discriminant analysis: A hypothesis-testing approach, Biometrics 38, 991–1002.
    • (1982) Biometrics , vol.38 , pp. 991-1002
    • Krzanowski, W.J.1
  • 141
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N.M., and Ware, J.H. (1982). Random-effects models for longitudinal data, Biometrics 38, 963–974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 142
    • 0000808747 scopus 로고
    • A gradient algorithm locally equivalent to the EM algorithm
    • Lange, K. (1995a). A gradient algorithm locally equivalent to the EM algorithm, J. Roy. Statist. Soc. B 57, 425–437.
    • (1995) J. Roy. Statist. Soc. B , vol.57 , pp. 425-437
    • Lange, K.1
  • 143
    • 0002414768 scopus 로고
    • A quasi-Newtonian acceleration of the EM algorithm
    • Lange, K. (1995b). A quasi-Newtonian acceleration of the EM algorithm, Statistica Sinica 5, 1–18.
    • (1995) Statistica Sinica , vol.5 , pp. 1-18
    • Lange, K.1
  • 144
    • 84950441032 scopus 로고
    • Robust statistical inference using the t distribution
    • Lange, K., Little, R.J.A., and Taylor, J.M.G. (1989). Robust statistical inference using the t distribution, J. Am. Statist. Assoc. 84, 881–896.
    • (1989) J. Am. Statist. Assoc , vol.84 , pp. 881-896
    • Lange, K.1    Little, R.J.A.2    Taylor, J.M.G.3
  • 145
    • 85101478975 scopus 로고
    • The analysis of incomplete longitudinal data with modeled covariance matrices, Mimeo 1449
    • University of N. Carolina
    • LaVange, L.M., and Helms, R.W. (1983). The analysis of incomplete longitudinal data with modeled covariance matrices, Mimeo 1449, Inst. of Statistics, University of N. Carolina.
    • (1983) Inst. Of Statistics
    • Lavange, L.M.1    Helms, R.W.2
  • 146
    • 0029157096 scopus 로고
    • A multiple imputation strategy for clinical trials with truncation of patient data
    • Lavori, P.W., Dawson, R., and Shera, D. (1995). A multiple imputation strategy for clinical trials with truncation of patient data, Stat. Med. 14, 1913–1925.
    • (1995) Stat. Med , vol.14 , pp. 1913-1925
    • Lavori, P.W.1    Dawson, R.2    Shera, D.3
  • 147
    • 2942510686 scopus 로고    scopus 로고
    • Random-effects models for smoothing post stratification weights
    • Lazzeroni, L.C., and Little, R.J. (1998). Random-effects models for smoothing post stratification weights, J. Official Statist. 14(1), 61–78.
    • (1998) J. Official Statist , vol.14 , Issue.1 , pp. 61-78
    • Lazzeroni, L.C.1    Little, R.J.2
  • 148
    • 1542493935 scopus 로고
    • A recursive approach to parameter estimation in regression and time series problems, Commun. Statist
    • Ledolter, J. (1979). A recursive approach to parameter estimation in regression and time series problems, Commun. Statist. Theory Meth. A8, 1227–1245.
    • (1979) Theory Meth , vol.A8 , pp. 1227-1245
    • Ledolter, J.1
  • 149
    • 33750172458 scopus 로고    scopus 로고
    • Variance estimation from survey data under single imputation, Chapter 21
    • R.M. Groves, D.A. Dillman, J.L.A. Eltinge, and R.J.A. Little, eds.), New York: Wiley
    • Lee, H., Rancourt, E., and Sarndal, C.E. (2002). Variance estimation from survey data under single imputation, Chapter 21, in Survey Nonresponse (R.M. Groves, D.A. Dillman, J.L.A. Eltinge, and R.J.A. Little, eds.), New York: Wiley.
    • (2002) Survey Nonresponse
    • Lee, H.1    Rancourt, E.2    Sarndal, C.E.3
  • 150
    • 0000312997 scopus 로고    scopus 로고
    • Hierarchical generalized linear models
    • with discussion
    • Lee, Y., and Nelder, J.A. (1996). Hierarchical generalized linear models, J. Roy. Statist. Soc. Ser. B 58, 619–678 (with discussion).
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 619-678
    • Lee, Y.1    Nelder, J.A.2
  • 151
    • 0040630186 scopus 로고
    • Significance levels from repeated p-values with multiply-imputed data
    • Li, K.H., Meng, X.-L., Raghunathan, T.E., and Rubin, D.B. (1991). Significance levels from repeated p-values with multiply-imputed data, Statist. Sinica 1, 65–92.
    • (1991) Statist. Sinica , vol.1 , pp. 65-92
    • Li, K.H.1    Meng, X.-L.2    Raghunathan, T.E.3    Rubin, D.B.4
  • 152
    • 0000265107 scopus 로고
    • Large sample significance levels from multiply-imputed data using moment-based statistics and an F reference distribution
    • Li, K.H., Raghunathan, T.E., and Rubin, D.B. (1991). Large sample significance levels from multiply-imputed data using moment-based statistics and an F reference distribution, J. Am. Statist. Assoc. 86, 1065–1073.
    • (1991) J. Am. Statist. Assoc , vol.86 , pp. 1065-1073
    • Li, K.H.1    Raghunathan, T.E.2    Rubin, D.B.3
  • 153
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K.-Y., and Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models, Biometrika 73, 13–22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.-Y.1    Zeger, S.L.2
  • 155
    • 84935778947 scopus 로고
    • What do we really know about wages? The importance of nonreporting and census imputation
    • Lillard, L., Smith, J.P., and Welch, F. (1986). What do we really know about wages? The importance of nonreporting and census imputation, J. Political Econ. 94, 489–506.
    • (1986) J. Political Econ , vol.94 , pp. 489-506
    • Lillard, L.1    Smith, J.P.2    Welch, F.3
  • 157
    • 0442278074 scopus 로고    scopus 로고
    • Aweighted estimating equation for missing covariate data with properties similar to maximum likelihood
    • Lipsitz, S.R., Ibrahim, J.G., and Zhao, L.P. (1999). Aweighted estimating equation for missing covariate data with properties similar to maximum likelihood, J. Am. Statist. Assoc. 94, 1147–1160.
    • (1999) J. Am. Statist. Assoc , vol.94 , pp. 1147-1160
    • Lipsitz, S.R.1    Ibrahim, J.G.2    Zhao, L.P.3
  • 158
    • 0017201945 scopus 로고
    • Inference about means from incomplete multivariate data
    • Little, R.J.A. (1976). Inference about means from incomplete multivariate data, Biometrika 63, 593–604.
    • (1976) Biometrika , vol.63 , pp. 593-604
    • Little, R.J.A.1
  • 159
    • 0002536106 scopus 로고
    • Maximum likelihood inference for multiple regression with missing values: A simulation study
    • Little, R.J.A. (1979). Maximum likelihood inference for multiple regression with missing values: A simulation study, J. Roy. Statist. Soc. B 41, 76–87.
    • (1979) J. Roy. Statist. Soc. B , vol.41 , pp. 76-87
    • Little, R.J.A.1
  • 160
    • 0000575549 scopus 로고
    • Models for nonresponse in sample surveys
    • Little, R.J.A. (1982). Models for nonresponse in sample surveys, J. Am. Statist. Assoc. 77, 237–250.
    • (1982) J. Am. Statist. Assoc , vol.77 , pp. 237-250
    • Little, R.J.A.1
  • 161
    • 0000564981 scopus 로고
    • A note about models for selectivity bias
    • Little, R.J.A. (1985a). A note about models for selectivity bias, Econometrica 53, 1469–1474.
    • (1985) Econometrica , vol.53 , pp. 1469-1474
    • Little, R.J.A.1
  • 162
    • 0039326327 scopus 로고
    • Nonresponse adjustments in longitudinal surveys: Models for categorical data, Bulletin
    • Little, R.J.A. (1985b). Nonresponse adjustments in longitudinal surveys: Models for categorical data, Bulletin Int. Statist. Inst. 15(1), 1–15.
    • (1985) Int. Statist. Inst , vol.15 , Issue.1 , pp. 1-15
    • Little, R.J.A.1
  • 163
    • 0000497256 scopus 로고
    • Survey nonresponse adjustments
    • Little, R.J.A. (1986). Survey nonresponse adjustments, Int. Statist. Rev. 54, 139–157.
    • (1986) Int. Statist. Rev , vol.54 , pp. 139-157
    • Little, R.J.A.1
  • 164
    • 0342558089 scopus 로고
    • Small sample inference about means from bivariate normal data with missing values, Comput. Statist
    • Little, R.J.A. (1988a). Small sample inference about means from bivariate normal data with missing values, Comput. Statist. Data Analysis 7, 161–178.
    • (1988) Data Analysis , vol.7 , pp. 161-178
    • Little, R.J.A.1
  • 165
    • 0023842809 scopus 로고
    • Robust estimation of the mean and covariance matrix from data with missing values
    • Little, R.J.A. (1988b). Robust estimation of the mean and covariance matrix from data with missing values, Appl. Statist. 37, 23–38.
    • (1988) Appl. Statist , vol.37 , pp. 23-38
    • Little, R.J.A.1
  • 166
    • 84950455641 scopus 로고
    • Regression with missing X’s: A review
    • Little, R.J.A. (1992). Regression with missing X’s: A review, J. Am. Statist. Assoc. 87, 1227– 1237.
    • (1992) J. Am. Statist. Assoc , vol.87
    • Little, R.J.A.1
  • 167
    • 84950933409 scopus 로고
    • Post-stratification: A modeler’s perspective
    • Little, R.J.A. (1993a). Post-stratification: A modeler’s perspective, J. Am. Statist. Assoc. 88, 1001–1012.
    • (1993) J. Am. Statist. Assoc , vol.88 , pp. 1001-1012
    • Little, R.J.A.1
  • 168
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little, R.J.A. (1993b). Pattern-mixture models for multivariate incomplete data, J. Am. Statist. Assoc. 88, 125–134.
    • (1993) J. Am. Statist. Assoc , vol.88 , pp. 125-134
    • Little, R.J.A.1
  • 169
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal missing data
    • Little, R.J.A. (1994). A class of pattern-mixture models for normal missing data, Biometrika 81(3), 471–483.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 471-483
    • Little, R.J.A.1
  • 170
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in longitudinal studies
    • Little, R.J.A. (1995). Modeling the drop-out mechanism in longitudinal studies, J. Am. Statist. Assoc. 90, 1112–1121.
    • (1995) J. Am. Statist. Assoc , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 171
    • 0003496949 scopus 로고    scopus 로고
    • Biostatistical analysis with missing data
    • (P. Armitage and T. Colton, eds.), London: Wiley
    • Little, R.J.A. (1997). Biostatistical analysis with missing data, in Encyclopedia of Biostatistics (P. Armitage and T. Colton, eds.), London: Wiley.
    • (1997) Encyclopedia of Biostatistics
    • Little, R.J.A.1
  • 173
    • 0000088579 scopus 로고
    • On jointly estimating parameters and missing data by maximizing the complete-data likelihood
    • Little, R.J.A., and Rubin, D.B. (1983b). On jointly estimating parameters and missing data by maximizing the complete-data likelihood, Am. Statist. 37, 218–220.
    • (1983) Am. Statist , vol.37 , pp. 218-220
    • Little, R.J.A.1    Rubin, D.B.2
  • 176
    • 0000704344 scopus 로고
    • Maximum likelihood estimation for mixed continuous and categorical data with missing values
    • Little, R.J.A., and Schluchter, M.D. (1985). Maximum likelihood estimation for mixed continuous and categorical data with missing values, Biometrika 72, 497–512.
    • (1985) Biometrika , vol.72 , pp. 497-512
    • Little, R.J.A.1    Schluchter, M.D.2
  • 178
    • 0009425748 scopus 로고
    • Item nonresponse in panel surveys
    • (D. Kasprzyk, G. Duncan, and M.P. Singh, eds.), New York: Wiley
    • Little, R.J.A., and Su, H.L. (1989). Item nonresponse in panel surveys, pp. 400–425, in Panel Surveys (D. Kasprzyk, G. Duncan, and M.P. Singh, eds.), New York: Wiley.
    • (1989) Panel Surveys , pp. 400-425
    • Little, R.J.A.1    Su, H.L.2
  • 180
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • Little, R.J.A., andWang, Y.-X. (1996). Pattern-mixture models for multivariate incomplete data with covariates, Biometrics 52, 98–111.
    • (1996) Biometrics , vol.52 , pp. 98-111
    • Little, R.J.A.1    Wang, Y.-X.2
  • 181
    • 0030460385 scopus 로고    scopus 로고
    • Intent-to-treat analysis in longitudinal studies with drop-outs
    • Little, R.J.A., and Yau, L. (1996). Intent-to-treat analysis in longitudinal studies with drop-outs, Biometrics 52, 1324–1333.
    • (1996) Biometrics , vol.52 , pp. 1324-1333
    • Little, R.J.A.1    Yau, L.2
  • 182
    • 0000106418 scopus 로고
    • Missing-data imputation using the multivariate T distribution
    • Liu, C.H. (1995). Missing-data imputation using the multivariate T distribution, J. Multivariate Anal. 53, 139–158.
    • (1995) J. Multivariate Anal , vol.53 , pp. 139-158
    • Liu, C.H.1
  • 183
    • 0042123139 scopus 로고    scopus 로고
    • Bayesian robust multivariate linear regression with incomplete data
    • Liu, C.H. (1996). Bayesian robust multivariate linear regression with incomplete data, J. Am. Statist. Assoc. 91, 1219–1227.
    • (1996) J. Am. Statist. Assoc , vol.91 , pp. 1219-1227
    • Liu, C.H.1
  • 184
    • 0000315742 scopus 로고
    • The ECME algorithm: A simple extension of EM and ECM with fast monotone convergence
    • Liu, C.H., and Rubin, D.B. (1994). The ECME algorithm: A simple extension of EM and ECM with fast monotone convergence, Biometrika 81, 633–648.
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.H.1    Rubin, D.B.2
  • 185
    • 0002129118 scopus 로고    scopus 로고
    • Markov-normal analysis of iterative simulations before their convergence
    • Liu, C.H., and Rubin, D.B. (1996). Markov-normal analysis of iterative simulations before their convergence, J. Econometrics 75, 69–78.
    • (1996) J. Econometrics , vol.75 , pp. 69-78
    • Liu, C.H.1    Rubin, D.B.2
  • 186
    • 0000622671 scopus 로고    scopus 로고
    • Ellipsoidally symmetric extensions of the general location model for mixed categorical and continuous data
    • Liu, C.H., and Rubin, D.B. (1998). Ellipsoidally symmetric extensions of the general location model for mixed categorical and continuous data, Biometrika 85, 673–688.
    • (1998) Biometrika , vol.85 , pp. 673-688
    • Liu, C.H.1    Rubin, D.B.2
  • 187
    • 85101477465 scopus 로고    scopus 로고
    • Markov-normal analysis of iterative simulations before their convergence: Redesign for better performance, to appear
    • Liu, C.H., and Rubin, D.B. (2002). Markov-normal analysis of iterative simulations before their convergence: redesign for better performance, to appear in Statist. Sinica.
    • (2002) Statist. Sinica
    • Liu, C.H.1    Rubin, D.B.2
  • 188
    • 0001508169 scopus 로고    scopus 로고
    • Parameter expansion to accelerate EM: The PX EM algorithm
    • Liu, C.H., Rubin, D.B., andWu, Y. (1998). Parameter expansion to accelerate EM: The PX EM algorithm, Biometrika 85, 755–770.
    • (1998) Biometrika , vol.85 , pp. 755-770
    • Liu, C.H.1    Rubin, D.B.2    Andwu, Y.3
  • 190
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • Liu, J.S., and Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems, J. Am. Statist. Assoc. 93, 1032–1044.
    • (1998) J. Am. Statist. Assoc , vol.93 , pp. 1032-1044
    • Liu, J.S.1    Chen, R.2
  • 191
    • 0001044811 scopus 로고
    • Estimation of parameters from incomplete data
    • Lord, F.M. (1955). Estimation of parameters from incomplete data, J. Am. Statist. Assoc. 50, 870–876.
    • (1955) J. Am. Statist. Assoc , vol.50 , pp. 870-876
    • Lord, F.M.1
  • 192
    • 0001044972 scopus 로고
    • Finding the observed information when using the EM algorithm
    • Louis, T.A. (1982). Finding the observed information when using the EM algorithm, J. Roy. Statist. Soc. B 44, 226–233.
    • (1982) J. Roy. Statist. Soc. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 196
    • 0000847211 scopus 로고
    • The estimation of choice probabilities from choice based samples
    • Manski, C.F., and Lerman, S.R. (1977). The estimation of choice probabilities from choice based samples, Econometrica 45, 1977–1988.
    • (1977) Econometrica , vol.45 , pp. 1977-1988
    • Manski, C.F.1    Lerman, S.R.2
  • 197
    • 70350088268 scopus 로고
    • Maximum likelihood estimation in panel studies with missing data
    • San Francisco: Jossey Bass
    • Marini, M.M., Olsen, A.R., and Rubin, D.B. (1980). Maximum likelihood estimation in panel studies with missing data, Sociological Methodology 1980, San Francisco: Jossey Bass.
    • (1980) Sociological Methodology 1980
    • Marini, M.M.1    Olsen, A.R.2    Rubin, D.B.3
  • 198
    • 0345948567 scopus 로고    scopus 로고
    • Large-scale imputation for complex surveys, Chapter 22
    • R.M. Groves, D.A. Dillman, J.L. Eltinge, and R.J.A. Little, eds.), New York: Wiley
    • Marker, D.A., Judkins, D.R., and Winglee, M. (2002). Large-scale imputation for complex surveys, Chapter 22, in Survey Nonresponse (R.M. Groves, D.A. Dillman, J.L. Eltinge, and R.J.A. Little, eds.), New York: Wiley.
    • (2002) Survey Nonresponse
    • Marker, D.A.1    Judkins, D.R.2    Winglee, M.3
  • 199
    • 33845806990 scopus 로고
    • Estimation of parameters from incomplete data with application to design of sample surveys
    • Matthai, A. (1951). Estimation of parameters from incomplete data with application to design of sample surveys, Sankhya 2, 145–152.
    • (1951) Sankhya , vol.2 , pp. 145-152
    • Matthai, A.1
  • 200
    • 0001306637 scopus 로고
    • Regression models for ordinal data
    • McCullagh, P. (1980). Regression models for ordinal data, J. Roy. Statist. Soc. B 42, 109 142.
    • (1980) J. Roy. Statist. Soc. B , vol.42 , Issue.109 , pp. 142
    • McCullagh, P.1
  • 202
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch, C.E. (1997). Maximum likelihood algorithms for generalized linear mixed models, J. Am. Statist. Assoc. 92, 162–170.
    • (1997) J. Am. Statist. Assoc , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 203
    • 84860215339 scopus 로고
    • Applications of mathematics to medical problems
    • McKendrick, A.G. (1926). Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc. 44, 98–130.
    • (1926) Proc. Edinburgh Math. Soc , vol.44 , pp. 98-130
    • McKendrick, A.G.1
  • 205
    • 0001232538 scopus 로고
    • A fast improvement to the EM algorithm on its own terms
    • Meilijson, I. (1989). A fast improvement to the EM algorithm on its own terms, J. Roy. Statist. Soc. B 51, 127–138.
    • (1989) J. Roy. Statist. Soc. B , vol.51 , pp. 127-138
    • Meilijson, I.1
  • 206
    • 0019296443 scopus 로고
    • Toward more definitive clinical trials
    • Meinert, C.L. (1980). Toward more definitive clinical trials, Controlled Clin. Trials 1, 249 261.
    • (1980) Controlled Clin. Trials , vol.1 , Issue.249 , pp. 261
    • Meinert, C.L.1
  • 208
    • 0000359333 scopus 로고
    • Multiple imputation with uncongenial sources of input (With discussion)
    • Meng, X.-L. (1995). Multiple imputation with uncongenial sources of input (with discussion), Statist. Sci. 10, 538–573.
    • (1995) Statist. Sci , vol.10 , pp. 538-573
    • Meng, X.-L.1
  • 209
    • 0345673603 scopus 로고    scopus 로고
    • A congenial overview and investigation of multiple imputation inferences under uncongeniality, Chapter 23
    • R. Groves, D. Dillman, J. Eltinge, and R. Little, eds.), New York: Wiley
    • Meng, X.L. (2002). A congenial overview and investigation of multiple imputation inferences under uncongeniality, Chapter 23, in Survey Nonresponse (R. Groves, D. Dillman, J. Eltinge, and R. Little, eds.), New York: Wiley.
    • (2002) Survey Nonresponse
    • Meng, X.L.1
  • 211
    • 84864615423 scopus 로고
    • Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm
    • Meng, X.-L., and Rubin, D.B. (1991), Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm, J. Am. Statist. Assoc. 86, 899–909.
    • (1991) J. Am. Statist. Assoc , vol.86 , pp. 899-909
    • Meng, X.-L.1    Rubin, D.B.2
  • 212
    • 0001109923 scopus 로고
    • Performing likelihood ratio tests with multiply imputed data sets
    • Meng, X.-L., and Rubin, D.B. (1992). Performing likelihood ratio tests with multiply imputed data sets, Biometrika 79, 103–111.
    • (1992) Biometrika , vol.79 , pp. 103-111
    • Meng, X.-L.1    Rubin, D.B.2
  • 213
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • Meng, X.-L., and Rubin, D.B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika 80, 267–278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.-L.1    Rubin, D.B.2
  • 214
    • 38149148314 scopus 로고
    • On the global and component-wise rates of convergence of the EM algorithm
    • Meng, X.-L., and Rubin, D. B. (1994). On the global and component-wise rates of convergence of the EM algorithm. Linear Algebra and its Applications 199, 413–425.
    • (1994) Linear Algebra and Its Applications , vol.199 , pp. 413-425
    • Meng, X.-L.1    Rubin, D.B.2
  • 215
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • Meng, X.-L., and Wong, W.H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration, Statist. Sinica 6, 831–860.
    • (1996) Statist. Sinica , vol.6 , pp. 831-860
    • Meng, X.-L.1    Wong, W.H.2
  • 216
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm—an old folk song sung to a fast new tune (With discussion)
    • Meng, X.L., and van Dyk, D.A. (1997). The EM algorithm—an old folk song sung to a fast new tune (with discussion), J. Roy. Statist. Soc. B 59, 511–567.
    • (1997) J. Roy. Statist. Soc. B , vol.59 , pp. 511-567
    • Meng, X.L.1    Van Dyk, D.A.2
  • 218
    • 0015971972 scopus 로고
    • The jackknife—a review
    • Miller, R.G. (1974). The jackknife—a review, Biometrika 61, 1–15.
    • (1974) Biometrika , vol.61 , pp. 1-15
    • Miller, R.G.1
  • 219
    • 0028198441 scopus 로고
    • Slope estimation in the presence of informative censoring: Modeling the number of observations as a geometric random variable
    • Mori, M., Woolson, R.F., and Woodsworth, G.G. (1994). Slope estimation in the presence of informative censoring: Modeling the number of observations as a geometric random variable, Biometrics 50, 39–50.
    • (1994) Biometrics , vol.50 , pp. 39-50
    • Mori, M.1    Woolson, R.F.2    Woodsworth, G.G.3
  • 220
    • 0000923092 scopus 로고
    • Expectations and variances of maximum likelihood estimates of the multivariate normal distribution parameters with missing data
    • Morrison, D.F. (1971). Expectations and variances of maximum likelihood estimates of the multivariate normal distribution parameters with missing data, J. Am. Statist. Assoc. 66, 602–604.
    • (1971) J. Am. Statist. Assoc , vol.66 , pp. 602-604
    • Morrison, D.F.1
  • 222
    • 0023741546 scopus 로고
    • Correcting for the bias caused by drop-outs in hypertension trials
    • Murray, G.D., and Findlay, J.G. (1988). Correcting for the bias caused by drop-outs in hypertension trials, Statist. Med. 7, 941–946.
    • (1988) Statist. Med , vol.7 , pp. 941-946
    • Murray, G.D.1    Findlay, J.G.2
  • 223
    • 0000399707 scopus 로고
    • On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection
    • Neyman, J. (1934). On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection, J. Roy. Statist. Soc. A 97, 558– 606.
    • (1934) J. Roy. Statist. Soc. A , vol.97 , pp. 558-606
    • Neyman, J.1
  • 225
    • 84950953410 scopus 로고
    • Inference from nonrandomly missing data: An example from a genetic study on Turner’s Syndrome
    • Nordheim, E.V. (1984). Inference from nonrandomly missing data: An example from a genetic study on Turner’s Syndrome, J. Am. Statist. Assoc. 79, 772–780.
    • (1984) J. Am. Statist. Assoc , vol.79 , pp. 772-780
    • Nordheim, E.V.1
  • 227
    • 0000317187 scopus 로고
    • Multivariate correlation models with mixed discrete and continuous variables
    • Olkin, I., and Tate, R.F. (1961). Multivariate correlation models with mixed discrete and continuous variables, Ann. Math. Statist. 32, 448–465.
    • (1961) Ann. Math. Statist , vol.32 , pp. 448-465
    • Olkin, I.1    Tate, R.F.2
  • 228
    • 0001499447 scopus 로고
    • A least squares correction for selectivity bias
    • Olsen, R.J. (1980). A least squares correction for selectivity bias, Econometrica 48, 1815– 1820.
    • (1980) Econometrica , vol.48
    • Olsen, R.J.1
  • 229
    • 0001483601 scopus 로고
    • A missing information principle: Theory and applications, Proc. 6th Berkeley Symposium on
    • Orchard, T., and Woodbury, M.A. (1972). A missing information principle: Theory and applications, Proc. 6th Berkeley Symposium on Math. Statist. and Prob. 1, 697–715.
    • (1972) Math. Statist. And Prob. , vol.1 , pp. 697-715
    • Orchard, T.1    Woodbury, M.A.2
  • 230
    • 0027179643 scopus 로고
    • A comparison of the generalized estimating equation approach with the maximum likelihood approach for repeated measurements
    • Park, T. (1993). A comparison of the generalized estimating equation approach with the maximum likelihood approach for repeated measurements, Statist. Med. 12, 1723–1732.
    • (1993) Statist. Med , vol.12 , pp. 1723-1732
    • Park, T.1
  • 232
    • 0141700640 scopus 로고
    • Re-weighted least squares estimation with censored and grouped data: An application of the EM algorithm
    • Pettitt, A.N. (1985). Re-weighted least squares estimation with censored and grouped data: An application of the EM algorithm, J. Roy. Statist. Soc. B 47, 253–261.
    • (1985) J. Roy. Statist. Soc. B , vol.47 , pp. 253-261
    • Pettitt, A.N.1
  • 235
    • 0000661332 scopus 로고
    • A generalized multivariate analysis of variance model useful especially for growth curve problems
    • Potthoff, R.F., and Roy, S.N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika 51, 313–326.
    • (1964) Biometrika , vol.51 , pp. 313-326
    • Potthoff, R.F.1    Roy, S.N.2
  • 236
    • 0040915482 scopus 로고
    • Iterative procedures for missing values in experiments
    • Preece, D.A. (1971). Iterative procedures for missing values in experiments, Technometrics 13, 743–753.
    • (1971) Technometrics , vol.13 , pp. 743-753
    • Preece, D.A.1
  • 237
    • 0002842990 scopus 로고
    • Typical survey data: Estimation and imputation
    • Pregibon, D. (1977). Typical survey data: Estimation and imputation, Survey Methodol. 2, 70– 102.
    • (1977) Survey Methodol , vol.2
    • Pregibon, D.1
  • 238
    • 0039658793 scopus 로고
    • Missing variables in Bayesian regression, II
    • Press, S.J., and Scott, A.J. (1976). Missing variables in Bayesian regression, II, J. Am. Statist. Assoc. 71, 366–369.
    • (1976) J. Am. Statist. Assoc , vol.71 , pp. 366-369
    • Press, S.J.1    Scott, A.J.2
  • 239
    • 84934379606 scopus 로고
    • Choosing between logistic regression and discriminant analysis
    • Press, S.J., and Wilson, S. (1978). Choosing between logistic regression and discriminant analysis, J. Am. Statist. Assoc. 73, 699–705.
    • (1978) J. Am. Statist. Assoc , vol.73 , pp. 699-705
    • Press, S.J.1    Wilson, S.2
  • 240
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • (in press). For associated IVEWARE software
    • Raghunathan, T., Lepkowski, J., van Hoewyk, M., and Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models, Survey Methodol. (in press). For associated IVEWARE software see http://www.isr.umich.edu/src/smp/ive/
    • (2001) Survey Methodol
    • Raghunathan, T.1    Lepkowski, J.2    Van Hoewyk, M.3    Solenberger, P.4
  • 244
    • 0346937787 scopus 로고    scopus 로고
    • On variance estimation with imputed survey data
    • Rao, J.N.K. (1996). On variance estimation with imputed survey data, J. Am. Statist. Assoc. 91, 499–506.
    • (1996) J. Am. Statist. Assoc , vol.91 , pp. 499-506
    • Rao, J.N.K.1
  • 245
    • 0000974584 scopus 로고
    • Jackknife variance estimation with survey data under hot deck imputation
    • Rao, J.N.K. and Shao, J. (1992). Jackknife variance estimation with survey data under hot deck imputation, Biometrika 79, 811–822.
    • (1992) Biometrika , vol.79 , pp. 811-822
    • Rao, J.N.K.1    Shao, J.2
  • 246
    • 21844487694 scopus 로고
    • Semiparametric efficiency in multivariate regression models with missing data
    • Robins, J.M., and Rotnitzky, A. (1995). Semiparametric efficiency in multivariate regression models with missing data, J. Am. Statist. Assoc. 90, 122–129.
    • (1995) J. Am. Statist. Assoc , vol.90 , pp. 122-129
    • Robins, J.M.1    Rotnitzky, A.2
  • 247
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins, J.M., Rotnitzky, A., and Zhao, L.P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data, J. Am. Statist. Assoc. 90, 106–121.
    • (1995) J. Am. Statist. Assoc , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 248
    • 85101477495 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • Robins, J.M., and Wang, N. (2002). Inference for imputation estimators, Biometrika 89, in press.
    • (2002) Biometrika , vol.89
    • Robins, J.M.1    Wang, N.2
  • 249
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P.R., and Rubin, D.B. (1983). The central role of the propensity score in observational studies for causal effects, Biometrika 70, 41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 250
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling incorporating the propensity score
    • Rosenbaum, P.R., and Rubin, D.B. (1985). Constructing a control group using multivariate matched sampling incorporating the propensity score, Am. Statist. 39, 33–38.
    • (1985) Am. Statist , vol.39 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 251
    • 0342504861 scopus 로고
    • A non-iterative algorithm for least squares estimation of missing values in any analysis of variance design
    • Rubin, D.B. (1972). A non-iterative algorithm for least squares estimation of missing values in any analysis of variance design, Appl. Statist. 21, 136–141.
    • (1972) Appl. Statist , vol.21 , pp. 136-141
    • Rubin, D.B.1
  • 252
    • 0000394113 scopus 로고
    • Matching to remove bias in observational studies
    • Rubin, D.B. (1973a). Matching to remove bias in observational studies, Biometrics 29, 159–183.
    • (1973) Biometrics , vol.29 , pp. 159-183
    • Rubin, D.B.1
  • 253
    • 0000394113 scopus 로고
    • The use of matched sampling and regression adjustment to remove bias in observational studies
    • Rubin, D.B. (1973b). The use of matched sampling and regression adjustment to remove bias in observational studies, Biometrics 29, 185–203.
    • (1973) Biometrics , vol.29 , pp. 185-203
    • Rubin, D.B.1
  • 254
    • 0001350683 scopus 로고
    • Characterizing the estimation of parameters in incomplete data problems
    • Rubin, D.B. (1974). Characterizing the estimation of parameters in incomplete data problems, J. Am. Statist. Assoc. 69, 467–474.
    • (1974) J. Am. Statist. Assoc , vol.69 , pp. 467-474
    • Rubin, D.B.1
  • 255
    • 0017133178 scopus 로고
    • Inference and missing data (With discussion)
    • Rubin, D.B. (1976a). Inference and missing data (with discussion), Biometrika 63, 581–592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 256
    • 0010181701 scopus 로고
    • Non-iterative least squares estimates, standard errors and F-tests for any analysis of variance with missing data
    • Rubin, D.B. (1976b). Non-iterative least squares estimates, standard errors and F-tests for any analysis of variance with missing data, J. Roy. Statist. Soc. B 38, 270–274.
    • (1976) J. Roy. Statist. Soc. B , vol.38 , pp. 270-274
    • Rubin, D.B.1
  • 257
    • 0016958530 scopus 로고
    • Comparing regressions when some predictor variables are missing
    • Rubin, D.B. (1976c). Comparing regressions when some predictor variables are missing, Technometrics 18, 201–206.
    • (1976) Technometrics , vol.18 , pp. 201-206
    • Rubin, D.B.1
  • 258
    • 0001354633 scopus 로고
    • Formalizing subjective notions about the effect of nonrespondents in sample surveys
    • Rubin, D.B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys, J. Am. Statist. Assoc. 72, 538–543.
    • (1977) J. Am. Statist. Assoc , vol.72 , pp. 538-543
    • Rubin, D.B.1
  • 259
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: The role of randomization
    • Rubin, D.B. (1978a). Bayesian inference for causal effects: The role of randomization, Ann. Statist. 7, 34–58.
    • (1978) Ann. Statist , vol.7 , pp. 34-58
    • Rubin, D.B.1
  • 261
    • 45149085494 scopus 로고
    • Illustrating the use of multiple imputation to handle nonresponse in sample surveys
    • Rubin, D.B. (1980). Illustrating the use of multiple imputation to handle nonresponse in sample surveys, Proc. 42nd Session Int. Stat. Inst., 1979, Book 2, 517–532.
    • (1980) Proc. 42Nd Session Int. Stat. Inst., 1979, Book , vol.2 , pp. 517-532
    • Rubin, D.B.1
  • 263
    • 84878523730 scopus 로고
    • Imputing income in the CPS
    • Jack Triplett, ed.). Chicago: University of Chicago Press
    • Rubin, D.B. (1983b). Imputing income in the CPS, in The Measurement of Labor Cost (Jack Triplett, ed.). Chicago: University of Chicago Press.
    • (1983) The Measurement of Labor Cost
    • Rubin, D.B.1
  • 264
    • 0542388294 scopus 로고
    • The use of propensity scores in applied Bayesian inference
    • J.M. Bernardo, M.H. De Groot, D.V. Lindley, and A.F.M. Smith, eds.), Amsterdam: North Holland
    • Rubin, D.B. (1985a). The use of propensity scores in applied Bayesian inference, in Bayesian Statistics 2 (J.M. Bernardo, M.H. De Groot, D.V. Lindley, and A.F.M. Smith, eds.), Amsterdam: North Holland, pp. 463–472.
    • (1985) Bayesian Statistics 2 , pp. 463-472
    • Rubin, D.B.1
  • 265
    • 84935160294 scopus 로고
    • Comment on ‘‘A statistical model for positron emission tomography,’’
    • Rubin, D.B. (1985b). Comment on ‘‘A statistical model for positron emission tomography,’’ J. Am. Statist. Assoc. 80, 31–32.
    • (1985) J. Am. Statist. Assoc , vol.80 , pp. 31-32
    • Rubin, D.B.1
  • 266
    • 84940952808 scopus 로고
    • Statistical matching using file concatenation with adjusted weights and multiple imputations
    • Rubin, D.B. (1986). Statistical matching using file concatenation with adjusted weights and multiple imputations, J. Bus. Econ. Statist. 4, 87–94.
    • (1986) J. Bus. Econ. Statist , vol.4 , pp. 87-94
    • Rubin, D.B.1
  • 268
    • 84950788916 scopus 로고
    • A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. Discussion of Tanner and Wong (1987)
    • Rubin, D.B. (1987b). A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. Discussion of Tanner and Wong (1987), J. Am. Statist. Assoc. 82, 543–546.
    • (1987) J. Am. Statist. Assoc , vol.82 , pp. 543-546
    • Rubin, D.B.1
  • 269
    • 84950424776 scopus 로고
    • Comment on ‘‘Missing Data, Imputation, and the Bootstrap’’ by Bradley Efron
    • Rubin, D.B. (1994). Comment on ‘‘Missing Data, Imputation, and the Bootstrap’’ by Bradley Efron, J. Am. Statist. Assoc. 89, 475–478.
    • (1994) J. Am. Statist. Assoc , vol.89 , pp. 475-478
    • Rubin, D.B.1
  • 270
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18þ years (With discussion)
    • Rubin, D.B. (1996). Multiple imputation after 18þ years (with discussion), J. Am. Statist. Assoc. 91, 473–489.
    • (1996) J. Am. Statist. Assoc , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 271
    • 85012529898 scopus 로고    scopus 로고
    • The utility of counterfactuals for causal inference. Comment on A.P. Dawid, ‘‘Causal Inference Without Counterfactuals,’’
    • Rubin, D.B. (2000). The utility of counterfactuals for causal inference. Comment on A.P. Dawid, ‘‘Causal Inference Without Counterfactuals,’’ J. Am. Statist. Assoc. 95, 435–438.
    • (2000) J. Am. Statist. Assoc , vol.95 , pp. 435-438
    • Rubin, D.B.1
  • 272
  • 273
    • 84950918760 scopus 로고
    • Multiple imputation for interval estimation from simple random samples with ignorable nonresponse
    • Rubin, D.B., and Schenker, N. (1986). Multiple imputation for interval estimation from simple random samples with ignorable nonresponse, J. Am. Statist. Assoc. 81, 366–374.
    • (1986) J. Am. Statist. Assoc , vol.81 , pp. 366-374
    • Rubin, D.B.1    Schenker, N.2
  • 274
    • 0038166995 scopus 로고
    • Interval estimation from multiply-imputed data: A case study using agriculture industry codes
    • Rubin, D.B., and Schenker, N. (1987). Interval estimation from multiply-imputed data: A case study using agriculture industry codes, J. Official Statist. 3, 375–387.
    • (1987) J. Official Statist , vol.3 , pp. 375-387
    • Rubin, D.B.1    Schenker, N.2
  • 275
    • 84950419706 scopus 로고
    • Handling ‘‘don’t know’’ survey responses: The case of the Slovenian plebiscite
    • Rubin, D.B., Stern, H., and Vehovar, V. (1995). Handling ‘‘don’t know’’ survey responses: The case of the Slovenian plebiscite, J. Am. Statist. Assoc. 90, 822–828.
    • (1995) J. Am. Statist. Assoc , vol.90 , pp. 822-828
    • Rubin, D.B.1    Stern, H.2    Vehovar, V.3
  • 276
    • 0012668726 scopus 로고
    • Finding maximum likelihood estimates for patterned covariance matrices by the EM algorithm
    • Rubin, D.B., and Szatrowski, T.H. (1982). Finding maximum likelihood estimates for patterned covariance matrices by the EM algorithm, Biometrika 69, 657–660.
    • (1982) Biometrika , vol.69 , pp. 657-660
    • Rubin, D.B.1    Szatrowski, T.H.2
  • 277
    • 0002039871 scopus 로고
    • Relating tests given to different samples
    • Rubin, D.B., and Thayer, D. (1978). Relating tests given to different samples, Psychometrika 43, 3–10.
    • (1978) Psychometrika , vol.43 , pp. 3-10
    • Rubin, D.B.1    Thayer, D.2
  • 278
    • 34250232348 scopus 로고
    • EM algorithms for factor analysis
    • Rubin, D.B., and Thayer, D.T. (1982). EM algorithms for factor analysis, Psychometrika 47, 69–76.
    • (1982) Psychometrika , vol.47 , pp. 69-76
    • Rubin, D.B.1    Thayer, D.T.2
  • 279
    • 0009365620 scopus 로고
    • More on EM for ML factor analysis
    • Rubin, D.B., and Thayer, D.T. (1983). More on EM for ML factor analysis, Psychometrika 48, 253–257.
    • (1983) Psychometrika , vol.48 , pp. 253-257
    • Rubin, D.B.1    Thayer, D.T.2
  • 280
    • 0000849981 scopus 로고
    • Affinely invariant matching methods with ellipsoidal distributions
    • Rubin, D.B., and Thomas, N. (1992). Affinely invariant matching methods with ellipsoidal distributions, Ann. Statist. 20, 1079–1093.
    • (1992) Ann. Statist , vol.20 , pp. 1079-1093
    • Rubin, D.B.1    Thomas, N.2
  • 281
    • 1542742319 scopus 로고    scopus 로고
    • Combining propensity score matching with additional adjustments for prognostic covariates
    • Rubin, D.B., and Thomas, N. (2000). Combining propensity score matching with additional adjustments for prognostic covariates, J. Am. Statist. Assoc. 95, 573–585.
    • (2000) J. Am. Statist. Assoc , vol.95 , pp. 573-585
    • Rubin, D.B.1    Thomas, N.2
  • 285
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: A primer
    • Schafer, J.L. (1998a). Multiple imputation: A primer, Statist. Meth. Med. Res. 8, 3–15.
    • (1998) Statist. Meth. Med. Res , vol.8 , pp. 3-15
    • Schafer, J.L.1
  • 287
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable dropout using semiparametric models
    • Scharfstein, D., Rotnitsky, A., and Robins, J. (1999). Adjusting for nonignorable dropout using semiparametric models, J. Am. Statist. Assoc. 94, 1096–1146 (with discussion).
    • (1999) J. Am. Statist. Assoc , vol.94 , pp. 1096-1146
    • Scharfstein, D.1    Rotnitsky, A.2    Robins, J.3
  • 288
    • 0043000169 scopus 로고
    • A comparison of three alternative techniques for allocating unreported social security income on the Survey of the Low-Income Aged and Disabled
    • Schieber, S.J. (1978). A comparison of three alternative techniques for allocating unreported social security income on the Survey of the Low-Income Aged and Disabled, Proc. Survey Res. Meth. Sec., Am. Statist. Assoc. 1978, 212–218.
    • (1978) Proc. Survey Res. Meth. Sec., Am. Statist. Assoc , pp. 212-218
    • Schieber, S.J.1
  • 289
    • 0001926617 scopus 로고
    • Log-linear analysis of censored survival data with partially observed covariates
    • Schluchter, M.D., and Jackson, K.L. (1989). Log-linear analysis of censored survival data with partially observed covariates, J. Am. Statist. Assoc. 84, 42–52.
    • (1989) J. Am. Statist. Assoc , vol.84 , pp. 42-52
    • Schluchter, M.D.1    Jackson, K.L.2
  • 290
    • 48249145943 scopus 로고    scopus 로고
    • Replication methods for variance estimation in complex surveys with imputed data, Chapter 20
    • R.M. Groves, D.A. Dillman, J.L. Eltinge, and R.J.A. Little, eds.), New York: Wiley
    • Shao, J. (2002). Replication methods for variance estimation in complex surveys with imputed data, Chapter 20, in Survey Nonresponse (R.M. Groves, D.A. Dillman, J.L. Eltinge, and R.J.A. Little, eds.), New York: Wiley.
    • (2002) Survey Nonresponse
    • Shao, J.1
  • 291
    • 0032371445 scopus 로고    scopus 로고
    • Balanced repeated replications for stratified multistage survey data under imputation
    • Shao, J., Chen, Y., and Chen, Y. (1998). Balanced repeated replications for stratified multistage survey data under imputation, J. Am. Statist. Assoc. 93, 819–831.
    • (1998) J. Am. Statist. Assoc , vol.93 , pp. 819-831
    • Shao, J.1    Chen, Y.2    Chen, Y.3
  • 292
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the EM algorithm
    • Shumway, R.H., and Stoffer, D.S. (1982). An approach to time series smoothing and forecasting using the EM algorithm, J. Time Series Anal. 3, 253–264.
    • (1982) J. Time Series Anal , vol.3 , pp. 253-264
    • Shumway, R.H.1    Stoffer, D.S.2
  • 294
    • 0003174553 scopus 로고
    • Bayesian statistics without tears: A sampling– resampling perspective
    • Smith, A.F.M., and Gelfand, A.E. (1992). Bayesian statistics without tears: A sampling– resampling perspective, Am. Statistician 46, 84–88.
    • (1992) Am. Statistician , vol.46 , pp. 84-88
    • Smith, A.F.M.1    Gelfand, A.E.2
  • 297
    • 0001953676 scopus 로고
    • Maximum likelihood theory for incomplete data from an exponential family
    • Sundberg, R. (1974). Maximum likelihood theory for incomplete data from an exponential family, Scand. J. Statist. 1, 49–58.
    • (1974) Scand. J. Statist , vol.1 , pp. 49-58
    • Sundberg, R.1
  • 298
    • 51249183956 scopus 로고
    • Explicit solutions, one iteration convergence and averaging in the multivariate normal estimation problem for patterned means and covariances
    • Szatrowski, T.H. (1978). Explicit solutions, one iteration convergence and averaging in the multivariate normal estimation problem for patterned means and covariances, Ann. Inst. Statist. Math. 30, 81–88.
    • (1978) Ann. Inst. Statist. Math , vol.30 , pp. 81-88
    • Szatrowski, T.H.1
  • 299
    • 85101461903 scopus 로고    scopus 로고
    • A pseudo-likelihood method for multivariate monotone missing data with nonignorable nonresponse. Submitted to
    • Tang, G., Little, R.J.A., and Raghunathan, T. (2002). A pseudo-likelihood method for multivariate monotone missing data with nonignorable nonresponse. Submitted to Biometrika.
    • (2002) Biometrika
    • Tang, G.1    Little, R.J.A.2    Raghunathan, T.3
  • 301
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (With discussion)
    • Tanner, M.A., and Wong, W.H. (1987). The calculation of posterior distributions by data augmentation (with discussion), J. Am. Statist. Assoc. 82, 528–550.
    • (1987) J. Am. Statist. Assoc , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 303
    • 0000175291 scopus 로고
    • Estimation of relationships for limited dependent variables
    • Tobin, J. (1958). Estimation of relationships for limited dependent variables, Econometrica 26, 24–36.
    • (1958) Econometrica , vol.26 , pp. 24-36
    • Tobin, J.1
  • 304
    • 0001923866 scopus 로고
    • The design and analysis of block experiments
    • Tocher, K.D. (1952). The design and analysis of block experiments, J. Roy. Statist. Soc. B 14, 45–100.
    • (1952) J. Roy. Statist. Soc. B , vol.14 , pp. 45-100
    • Tocher, K.D.1
  • 305
    • 0039281887 scopus 로고
    • Maximum likelihood with incomplete multivariate data
    • Trawinski, I.M., and Bargmann, R.W. (1964). Maximum likelihood with incomplete multivariate data, Ann. Math. Statist. 35, 647–657.
    • (1964) Ann. Math. Statist , vol.35 , pp. 647-657
    • Trawinski, I.M.1    Bargmann, R.W.2
  • 306
    • 21144476574 scopus 로고
    • The AIDS epidemic: Estimating survival after AIDS diagnosis from surveillance data
    • Tu, X.M., Meng, X.-L., and Pagano, M. (1993). The AIDS epidemic: Estimating survival after AIDS diagnosis from surveillance data, J. Am. Statist. Assoc. 88, 26–36.
    • (1993) J. Am. Statist. Assoc , vol.88 , pp. 26-36
    • Tu, X.M.1    Meng, X.-L.2    Pagano, M.3
  • 308
    • 0039137139 scopus 로고    scopus 로고
    • Leiden: TNO Preventie en Gezondheid, TNO/VGZ/PG 99.054. For associated software
    • Van Buuren, S., and Oudshoorn, C.G.M (1999). Flexible multivariate imputation by MICE. Leiden: TNO Preventie en Gezondheid, TNO/VGZ/PG 99.054. For associated software see http://www.multiple-imputation.com.
    • (1999) Flexible Multivariate Imputation by MICE
    • Van Buuren, S.1    Oudshoorn, C.2
  • 309
    • 0012626964 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: Computing the asymptotic variance
    • Van Dyk, D.A., Meng, X.L., and Rubin, D.B. (1995). Maximum likelihood estimation via the ECM algorithm: Computing the asymptotic variance, Statist. Sinica 5, 55–75.
    • (1995) Statist. Sinica , vol.5 , pp. 55-75
    • Van Dyk, D.A.1    Meng, X.L.2    Rubin, D.B.3
  • 310
    • 18444400801 scopus 로고
    • Least- squares theory based on general distributional assumptions with an application to the incomplete observations problem
    • Van Praag, B.M.S., Dijkstra, T.K., and Van Velzen, J. (1985). Least- squares theory based on general distributional assumptions with an application to the incomplete observations problem, Psychometrika 50, 25–36.
    • (1985) Psychometrika , vol.50 , pp. 25-36
    • Van Praag, B.M.S.1    Dijkstra, T.K.2    Van Velzen, J.3
  • 311
    • 0010293907 scopus 로고
    • A statistical model for positron emission tomography
    • Vardi, Y., Shepp, L.A., and Kaufman, L. (1985). A statistical model for positron emission tomography, J. Am. Statist. Assoc. 80, 8–37.
    • (1985) J. Am. Statist. Assoc , vol.80 , pp. 8-37
    • Vardi, Y.1    Shepp, L.A.2    Kaufman, L.3
  • 314
    • 0028858876 scopus 로고
    • A simulation study of estimators for rates of change in longitudinal studies with attrition
    • Wang-Clow, F., Lange, M., Laird, N.M., and Ware, J.H. (1995). A simulation study of estimators for rates of change in longitudinal studies with attrition, Statist. Med. 14, 283–297.
    • (1995) Statist. Med , vol.14 , pp. 283-297
    • Wang-Clow, F.1    Lange, M.2    Laird, N.M.3    Ware, J.H.4
  • 315
    • 0002820474 scopus 로고
    • Linear models for the analysis of longitudinal studies
    • Ware, J.H. (1985). Linear models for the analysis of longitudinal studies, Am. Statist. 39, 95–101.
    • (1985) Am. Statist , vol.39 , pp. 95-101
    • Ware, J.H.1
  • 317
    • 0002644952 scopus 로고
    • Maximum likelihood under misspecified models
    • White, H. (1982). Maximum likelihood under misspecified models, Econometrica 50, 1–25.
    • (1982) Econometrica , vol.50 , pp. 1-25
    • White, H.1
  • 318
    • 0000473587 scopus 로고
    • Estimation of missing values for the analysis of incomplete data
    • Wilkinson, G.N. (1958a). Estimation of missing values for the analysis of incomplete data, Biometrics 14, 257–286.
    • (1958) Biometrics , vol.14 , pp. 257-286
    • Wilkinson, G.N.1
  • 319
    • 0039729613 scopus 로고
    • The analysis of variance and derivation of standard errors for incomplete data
    • Wilkinson, G.N. (1958b). The analysis of variance and derivation of standard errors for incomplete data, Biometrics 14, 360–384.
    • (1958) Biometrics , vol.14 , pp. 360-384
    • Wilkinson, G.N.1
  • 320
    • 0000086228 scopus 로고
    • Moments and distribution of estimates of population parameters from fragmentary samples
    • Wilks, S.S. (1932). Moments and distribution of estimates of population parameters from fragmentary samples, Ann. Math. Stat. 3, 163–195.
    • (1932) Ann. Math. Stat , vol.3 , pp. 163-195
    • Wilks, S.S.1
  • 324
    • 0001206524 scopus 로고
    • Analysis of categorical incomplete longitudinal data
    • Woolson, R.F., and Clarke, W.R. (1984). Analysis of categorical incomplete longitudinal data, J. Roy. Statist. Soc. A 147, 87–99.
    • (1984) J. Roy. Statist. Soc. A , vol.147 , pp. 87-99
    • Woolson, R.F.1    Clarke, W.R.2
  • 325
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu, C.F.J. (1983). On the convergence properties of the EM algorithm, Ann. Statist. 11, 95–103.
    • (1983) Ann. Statist , vol.11 , pp. 95-103
    • Wu, C.F.J.1
  • 327
    • 0024438062 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model
    • Wu, M.C., and Bailey, K.R. (1989). Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model, Biometrics 45, 939–955.
    • (1989) Biometrics , vol.45 , pp. 939-955
    • Wu, M.C.1    Bailey, K.R.2
  • 328
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu, M.C., and Carroll, R.J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process, Biometrics 44, 175– 188.
    • (1988) Biometrics , vol.44
    • Wu, M.C.1    Carroll, R.J.2
  • 329
    • 0000736815 scopus 로고
    • The analysis of replicated experiments when the field results are incomplete
    • Yates, F. (1933). The analysis of replicated experiments when the field results are incomplete, Emp. J. Exp. Agric. 1, 129–142.
    • (1933) Emp. J. Exp. Agric , vol.1 , pp. 129-142
    • Yates, F.1
  • 330
    • 84946357749 scopus 로고
    • An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias
    • Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias, J. Am. Statist. Assoc. 57, 348–368.
    • (1962) J. Am. Statist. Assoc , vol.57 , pp. 348-368
    • Zellner, A.1
  • 331
    • 0026581492 scopus 로고
    • Designs and analysis of two-stage studies
    • Zhao, L.P., and Lipsitz, S. (1992). Designs and analysis of two-stage studies, Statist. Med. 11, 769–782.
    • (1992) Statist. Med , vol.11 , pp. 769-782
    • Zhao, L.P.1    Lipsitz, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.