메뉴 건너뛰기




Volumn 205, Issue 1, 2017, Pages 61-75

Controlling the rate of GWAS false discoveries

Author keywords

Association studies; FDR; Linkage disequilibrium; Multiple penalized regression

Indexed keywords

CHOLESTEROL; HIGH DENSITY LIPOPROTEIN; LOW DENSITY LIPOPROTEIN; TRIACYLGLYCEROL;

EID: 85008425474     PISSN: 00166731     EISSN: 19432631     Source Type: Journal    
DOI: 10.1534/genetics.116.193987     Document Type: Article
Times cited : (103)

References (49)
  • 1
    • 33746242092 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • Abramovich, F., Y. Benjamini, D. L. Donoho, and I. M. Johnstone, 2006 Adapting to unknown sparsity by controlling the false discovery rate. Ann. Stat. 34: 584-653.
    • (2006) Ann. Stat , vol.34 , pp. 584-653
    • Abramovich, F.1    Benjamini, Y.2    Donoho, D.L.3    Johnstone, I.M.4
  • 2
    • 80054719506 scopus 로고    scopus 로고
    • Stability selection for genomewide association
    • Alexander, D. H., and K. Lange, 2011 Stability selection for genomewide association. Genet. Epidemiol. 35: 722-728.
    • (2011) Genet. Epidemiol , vol.35 , pp. 722-728
    • Alexander, D.H.1    Lange, K.2
  • 3
    • 84929001104 scopus 로고    scopus 로고
    • Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans
    • Ardlie, K. G., D. S. Deluca, A. V. Segre, T. J. Sullivan, T. R. Young et al., 2015 Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348: 648-660.
    • (2015) Science , vol.348 , pp. 648-660
    • Ardlie, K.G.1    Deluca, D.S.2    Segre, A.V.3    Sullivan, T.J.4    Young, T.R.5
  • 5
    • 38349022394 scopus 로고    scopus 로고
    • False discovery rates for spatial signals
    • Benjamini, Y., and R. Heller, 2007 False discovery rates for spatial signals. J. Am. Stat. Assoc. 102: 1272-1281.
    • (2007) J. Am. Stat. Assoc , vol.102 , pp. 1272-1281
    • Benjamini, Y.1    Heller, R.2
  • 6
    • 85008467024 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y., and Y. Hochberg, 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57: 289-300.
    • (1995) J. R. Stat. Soc. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 7
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Benjamini, Y., and D. Yekutieli, 2001 The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29: 1165-1188.
    • (2001) Ann. Stat , vol.29 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 8
    • 14944365889 scopus 로고    scopus 로고
    • False discovery rateadjusted multiple confidence intervals for selected parameters
    • Benjamini, Y., and D. Yekutieli, 2005a False discovery rateadjusted multiple confidence intervals for selected parameters. J. Am. Stat. Assoc. 100: 71-93.
    • (2005) J. Am. Stat. Assoc , vol.100 , pp. 71-93
    • Benjamini, Y.1    Yekutieli, D.2
  • 9
    • 27544473473 scopus 로고    scopus 로고
    • Quantitative trait loci analysis using the false discovery rate
    • Benjamini, Y., and D. Yekutieli, 2005b Quantitative trait loci analysis using the false discovery rate. Genetics 171: 783-790.
    • (2005) Genetics , vol.171 , pp. 783-790
    • Benjamini, Y.1    Yekutieli, D.2
  • 10
    • 84946556176 scopus 로고    scopus 로고
    • SLOPE—adaptive variable selection via convex optimization
    • Bogdan, M., E. van den Berg, C. Sabatti, W. Su, and E. Candès, 2015 SLOPE—adaptive variable selection via convex optimization. Ann. Appl. Stat. 9: 1103-1140, 26709357.
    • (2015) Ann. Appl. Stat , vol.9 , pp. 1103-1140
    • Bogdan, M.1    Van Den Berg, E.2    Sabatti, C.3    Su, W.4    Candès, E.5
  • 13
    • 84863866595 scopus 로고    scopus 로고
    • Scalable variational inference for Bayesian variable selection, and its accuracy in genetic association studies
    • Carbonetto, P., and M. Stephens, 2011 Scalable variational inference for Bayesian variable selection, and its accuracy in genetic association studies. Bayesian Anal. 6: 1-42.
    • (2011) Bayesian Anal , vol.6 , pp. 1-42
    • Carbonetto, P.1    Stephens, M.2
  • 14
    • 84904876562 scopus 로고    scopus 로고
    • Analyzing genome-wide association studies with an FDR controlling modification of the Bayesian information criterion
    • Dolejsi, E., B. Bodenstorfer, and F. Frommlet, 2014 Analyzing genome-wide association studies with an FDR controlling modification of the Bayesian information criterion. PLoS One 9: e103322.
    • (2014) Plos One , vol.9
    • Dolejsi, E.1    Bodenstorfer, B.2    Frommlet, F.3
  • 15
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J., and R. Li, 2001 Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96: 1348-1360.
    • (2001) J. Am. Stat. Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 16
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space
    • Fan, J., and J. Lv, 2008 Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. B 70: 849-911.
    • (2008) J. R. Stat. Soc. B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 19
    • 79959746046 scopus 로고    scopus 로고
    • Modified versions of Bayesian Information Criterion for genome-wide association studies
    • Frommlet, F., F. Ruhaltinger, P. Twaróg, and M. Bogdan, 2012 Modified versions of Bayesian Information Criterion for genome-wide association studies. Comput. Stat. Data Anal. 56: 1038-1051.
    • (2012) Comput. Stat. Data Anal , vol.56 , pp. 1038-1051
    • Frommlet, F.1    Ruhaltinger, F.2    Twaróg, P.3    Bogdan, M.4
  • 20
    • 84887099827 scopus 로고    scopus 로고
    • Discovery and refinement of loci associated with lipid levels
    • Global Lipids Genetics Consortium, 2013 Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45: 1274-1283.
    • (2013) Nat. Genet , vol.45 , pp. 1274-1283
  • 21
    • 84860539286 scopus 로고    scopus 로고
    • Tag SNP selection in genotype data for maximizing SNP prediction accuracy
    • Halperin, E., G. Kimmel, and R. Shamir, 2005 Tag SNP selection in genotype data for maximizing SNP prediction accuracy. Bioinformatics 21: i195-i203.
    • (2005) Bioinformatics , vol.21 , pp. i195-i203
    • Halperin, E.1    Kimmel, G.2    Shamir, R.3
  • 22
    • 78650540144 scopus 로고    scopus 로고
    • A variable selection method for genome-wide association studies
    • He, Q., and D. Y. Lin, 2011 A variable selection method for genome-wide association studies. Bioinformatics 27: 1-8.
    • (2011) Bioinformatics , vol.27 , pp. 1-8
    • He, Q.1    Lin, D.Y.2
  • 23
    • 48249096806 scopus 로고    scopus 로고
    • Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies
    • Hoggart, C. J., J. C. Whittaker, M. D. Iorio, and D. J. Balding, 2008 Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet. 4: e1000130.
    • (2008) Plos Genet , vol.4
    • Hoggart, C.J.1    Whittaker, J.C.2    Iorio, M.D.3    Balding, D.J.4
  • 24
    • 84908042860 scopus 로고    scopus 로고
    • Identifying causal variants at loci with multiple signals of association
    • Hormozdiari, F., E. Kostem, E. Y. Kang, B. Pasaniuc, and E. Eskin, 2014 Identifying causal variants at loci with multiple signals of association. Genetics 198: 497-508.
    • (2014) Genetics , vol.198 , pp. 497-508
    • Hormozdiari, F.1    Kostem, E.2    Kang, E.Y.3    Pasaniuc, B.4    Eskin, E.5
  • 25
    • 77950301214 scopus 로고    scopus 로고
    • Variance component model to account for sample structure in genome-wide association studies
    • Kang, H. M., J. H. Sul, S. K. Service, N. A. Zaitlen, S. Kong et al., 2010 Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42: 348-354.
    • (2010) Nat. Genet , vol.42 , pp. 348-354
    • Kang, H.M.1    Sul, J.H.2    Service, S.K.3    Zaitlen, N.A.4    Kong, S.5
  • 26
    • 84939426058 scopus 로고    scopus 로고
    • Genotyping informatics and quality control for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort
    • Kvale, M. N., S. Hesselson, T. J. Hoffmann, Y. Cao, D. Chan et al., 2015 Genotyping informatics and quality control for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics 200: 1051-1060.
    • (2015) Genetics , vol.200 , pp. 1051-1060
    • Kvale, M.N.1    Hesselson, S.2    Hoffmann, T.J.3    Cao, Y.4    Chan, D.5
  • 27
    • 77349109776 scopus 로고    scopus 로고
    • A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis
    • Logsdon, B. A., G. E. Hoffman, and J. G. Mezey, 2010 A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis. BMC Bioinformatics 11: 58.
    • (2010) BMC Bioinformatics , vol.11 , pp. 58
    • Logsdon, B.A.1    Hoffman, G.E.2    Mezey, J.G.3
  • 30
    • 84951746644 scopus 로고    scopus 로고
    • Many phenotypes without many false discoveries: Error controlling strategies for multitrait association studies
    • Peterson, C. B., M. Bogomolov, Y. Benjamini, and C. Sabatti, 2016 Many phenotypes without many false discoveries: error controlling strategies for multitrait association studies. Genet. Epidemiol. 40: 45-56.
    • (2016) Genet. Epidemiol , vol.40 , pp. 45-56
    • Peterson, C.B.1    Bogomolov, M.2    Benjamini, Y.3    Sabatti, C.4
  • 31
    • 33746512512 scopus 로고    scopus 로고
    • Principal components analysis corrects for stratification in genome-wide association studies
    • Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick et al., 2006 Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38: 904-909.
    • (2006) Nat. Genet , vol.38 , pp. 904-909
    • Price, A.L.1    Patterson, N.J.2    Plenge, R.M.3    Weinblatt, M.E.4    Shadick, N.A.5
  • 32
    • 34548292504 scopus 로고    scopus 로고
    • PLINK: A tool set for whole-genome association and population-based linkage analyses
    • Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira et al., 2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81: 559-575.
    • (2007) Am. J. Hum. Genet , vol.81 , pp. 559-575
    • Purcell, S.1    Neale, B.2    Todd-Brown, K.3    Thomas, L.4    Ferreira, M.A.5
  • 33
    • 68449086236 scopus 로고    scopus 로고
    • Common polygenic variation contributes to risk of schizophrenia and bipolar disorder
    • Purcell, S.M., N.R. Wray, J. L. Stone, P.M. Visscher, M. C. O’Donovan et al., 2009 Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460: 748-752.
    • (2009) Nature , vol.460 , pp. 748-752
    • Purcell, S.M.1    Wray, N.R.2    Stone, J.L.3    Visscher, P.M.4    O’Donovan, M.C.5
  • 34
    • 85008514163 scopus 로고    scopus 로고
    • Multivariate linear models for GWAS
    • Cambridge University Press, Cambridge, United Kingdom
    • Sabatti, C., 2013 Multivariate linear models for GWAS, pp. 188-208 in Advances in Statistical Bioinformatics. Cambridge University Press, Cambridge, United Kingdom.
    • (2013) Advances in Statistical Bioinformatics , pp. 188-208
    • Sabatti, C.1
  • 35
    • 0037786658 scopus 로고    scopus 로고
    • False discovery rate in linkage and association genome screens for complex disorders
    • Sabatti, C., S. Service, and N. Freimer, 2003 False discovery rate in linkage and association genome screens for complex disorders. Genetics 164: 829-833.
    • (2003) Genetics , vol.164 , pp. 829-833
    • Sabatti, C.1    Service, S.2    Freimer, N.3
  • 36
    • 58149159573 scopus 로고    scopus 로고
    • Genome-wide association analysis of metabolic traits in a birth cohort from a founder population
    • Sabatti, C., S. K. Service, A. L. Hartikainen, A. Pouta, S. Ripatti et al., 2009 Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41: 35-46.
    • (2009) Nat. Genet , vol.41 , pp. 35-46
    • Sabatti, C.1    Service, S.K.2    Hartikainen, A.L.3    Pouta, A.4    Ripatti, S.5
  • 37
    • 82255192880 scopus 로고    scopus 로고
    • The false discovery rate for scan statistics
    • Siegmund, D. O., B. Yakir, and N. Zhang, 2011 The false discovery rate for scan statistics. Biometrika 98: 979-985.
    • (2011) Biometrika , vol.98 , pp. 979-985
    • Siegmund, D.O.1    Yakir, B.2    Zhang, N.3
  • 38
    • 84979896369 scopus 로고    scopus 로고
    • Genetic variant selection: Learning across traits and sites
    • Stell, L., and C. Sabatti, 2016 Genetic variant selection: learning across traits and sites. Genetics 202: 439-455.
    • (2016) Genetics , vol.202 , pp. 439-455
    • Stell, L.1    Sabatti, C.2
  • 39
    • 0042424602 scopus 로고    scopus 로고
    • Statistical significance for genomewide studies
    • Storey, J. D., and R. Tibshirani, 2003 Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100: 9440-9445.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 9440-9445
    • Storey, J.D.1    Tibshirani, R.2
  • 40
    • 82155164179 scopus 로고    scopus 로고
    • Underestimated effect sizes in GWAS: Fundamental limitations of single SNP analysis for dichotomous phenotypes
    • Stringer, S., N. R. Wray, R. S. Kahn, and E. M. Derks, 2011 Underestimated effect sizes in GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes. PLoS One 6: e27964.
    • (2011) Plos One , vol.6
    • Stringer, S.1    Wray, N.R.2    Kahn, R.S.3    Derks, E.M.4
  • 41
    • 84869449202 scopus 로고    scopus 로고
    • Scaled sparse linear regression
    • Sun, T., and C. Zhang, 2012 Scaled sparse linear regression. Biometrika 99: 879-898.
    • (2012) Biometrika , vol.99 , pp. 879-898
    • Sun, T.1    Zhang, C.2
  • 42
    • 85194972808 scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R., 1994 Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58: 267-288.
    • (1994) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 43
    • 84891790401 scopus 로고    scopus 로고
    • The NHGRI GWAS Catalog, a curated resource of SNPtrait associations
    • Welter, D., J. MacArthur, J. Morales, T. Burdett, P. Hall et al., 2014 The NHGRI GWAS Catalog, a curated resource of SNPtrait associations. Nucleic Acids Research 42:AD1001-D1006. Available at: http://www.ebi.ac.uk/gwas/.
    • (2014) Nucleic Acids Research , vol.42 , pp. AD1001-ADD1006
    • Welter, D.1    Macarthur, J.2    Morales, J.3    Burdett, T.4    Hall, P.5
  • 44
    • 77949865384 scopus 로고    scopus 로고
    • Screen and clean: A tool for identifying interactions in genome-wide association studies
    • Wu, J., B. Devlin, S. Ringquist, M. Trucco, and K. Roeder, 2010 Screen and clean: a tool for identifying interactions in genome-wide association studies. Genet. Epidemiol. 34: 275-285.
    • (2010) Genet. Epidemiol , vol.34 , pp. 275-285
    • Wu, J.1    Devlin, B.2    Ringquist, S.3    Trucco, M.4    Roeder, K.5
  • 45
    • 62549115747 scopus 로고    scopus 로고
    • Genome-wide association analysis by lasso penalized logistic regression
    • Wu, T. T., Y. F. Chen, T. Hastie, E. Sobel, and K. Lange, 2009 Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25: 714-721.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.T.1    Chen, Y.F.2    Hastie, T.3    Sobel, E.4    Lange, K.5
  • 46
    • 77954140531 scopus 로고    scopus 로고
    • Common SNPs explain a large proportion of the heritability for human height
    • Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders et al., 2010 Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42: 565-569.
    • (2010) Nat. Genet , vol.42 , pp. 565-569
    • Yang, J.1    Benyamin, B.2    McEvoy, B.P.3    Gordon, S.4    Henders, A.K.5
  • 48
    • 84920935072 scopus 로고    scopus 로고
    • Penalized multimarker vs. Single-marker regression methods for genome-wide association studies of quantitative traits
    • Yi, H., P. Breheny, N. Imam, Y. Liu, and I. Hoeschele, 2015 Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits. Genetics 199: 205-222.
    • (2015) Genetics , vol.199 , pp. 205-222
    • Yi, H.1    Breheny, P.2    Imam, N.3    Liu, Y.4    Hoeschele, I.5
  • 49
    • 77957233032 scopus 로고    scopus 로고
    • Association screening of common and rare genetic variants by penalized regression
    • Zhou, H., M. E. Sehl, J. S. Sinsheimer, and K. Lange, 2010 Association screening of common and rare genetic variants by penalized regression. Bioinformatics 26: 2375-2382.
    • (2010) Bioinformatics , vol.26 , pp. 2375-2382
    • Zhou, H.1    Sehl, M.E.2    Sinsheimer, J.S.3    Lange, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.