메뉴 건너뛰기




Volumn 24, Issue 1, 2017, Pages 198-208

Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review

Author keywords

Electronic medical record; Review; Risk assessment

Indexed keywords

CONTROLLED CLINICAL TRIAL; CONTROLLED STUDY; ELECTRONIC HEALTH RECORD; ELECTRONIC MEDICAL RECORD; FOLLOW UP; HOSPITALIZATION; HUMAN; MEDLINE; MORTALITY; MULTICENTER STUDY; PREDICTION; PREDICTOR VARIABLE; PUBLICATION; REPRODUCIBILITY; RISK ASSESSMENT; SAMPLE SIZE; STATISTICS; STUDY DESIGN; SYSTEMATIC REVIEW; VALIDATION PROCESS; PROCEDURES; STATISTICAL MODEL;

EID: 85014666740     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocw042     Document Type: Article
Times cited : (617)

References (140)
  • 1
    • 84908024094 scopus 로고    scopus 로고
    • Adoption of electronic health record systems among U.S. non-federal acute care hospitals
    • 2008-2014
    • Charles D, Gabriel M, Searcy T. Adoption of electronic health record systems among U.S. non-federal acute care hospitals: 2008-2014. 2015 https://www.healthit.gov/sites/default/files/data-brief/2014HospitalAdop tionDataBrief.pdf.
    • (2015)
    • Charles, D.1    Gabriel, M.2    Searcy, T.3
  • 2
    • 84871344657 scopus 로고    scopus 로고
    • Future of electronic health records: implications for decision support
    • Rothman B, Leonard JC, Vigoda MM. Future of electronic health records: implications for decision support. Mt Sinai J Med NY. 2012;79(6): 757-768.
    • (2012) Mt Sinai J Med NY. , vol.79 , Issue.6 , pp. 757-768
    • Rothman, B.1    Leonard, J.C.2    Vigoda, M.M.3
  • 4
    • 84879885267 scopus 로고    scopus 로고
    • Caveats for the use of operational electronic health record data in comparative effectiveness research
    • Hersh WR, Weiner MG, Embi PJ, et al. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med Care. 2013;51(8 Suppl 3):S30-S37.
    • (2013) Med Care. , vol.51 , Issue.8 , pp. S30-S37
    • Hersh, W.R.1    Weiner, M.G.2    Embi, P.J.3
  • 5
  • 6
    • 84876913156 scopus 로고    scopus 로고
    • A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods
    • Tangri N, Inker L, Levey AS. A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods. J Clin Epidemiol. 2013;66(6):697.
    • (2013) J Clin Epidemiol. , vol.66 , Issue.6 , pp. 697
    • Tangri, N.1    Inker, L.2    Levey, A.S.3
  • 8
    • 0034769756 scopus 로고    scopus 로고
    • Systematic review of prognostic models in patients with acute stroke
    • Counsell C, Dennis M. Systematic review of prognostic models in patients with acute stroke. Cerebrovasc Dis Basel Switz. 2001;12(3): 159-170.
    • (2001) Cerebrovasc Dis Basel Switz. , vol.12 , Issue.3 , pp. 159-170
    • Counsell, C.1    Dennis, M.2
  • 9
    • 80052567230 scopus 로고    scopus 로고
    • Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting
    • Collins GS, Mallett S, Omar O, Yu L-M. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011;9:103.
    • (2011) BMC Med. , vol.9 , pp. 103
    • Collins, G.S.1    Mallett, S.2    Omar, O.3    Yu, L-M.4
  • 10
    • 84872011968 scopus 로고    scopus 로고
    • The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration
    • Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1-e34.
    • (2009) J Clin Epidemiol. , vol.62 , Issue.10 , pp. E1-E34
    • Liberati, A.1    Altman, D.G.2    Tetzlaff, J.3
  • 11
    • 0034959579 scopus 로고    scopus 로고
    • Searching for clinical prediction rules in MEDLINE
    • Ingui BJ, Rogers MA. Searching for clinical prediction rules in MEDLINE. J Am Med Inform Assoc. 2001;8(4):391-397.
    • (2001) J Am Med Inform Assoc. , vol.8 , Issue.4 , pp. 391-397
    • Ingui, B.J.1    Rogers, M.A.2
  • 12
    • 84857667538 scopus 로고    scopus 로고
    • Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews
    • Geersing G-J, Bouwmeester W, Zuithoff P, et al. Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews. PloS One. 2012;7(2):e32844.
    • (2012) PloS One. , vol.7 , Issue.2
    • Geersing, G-J.1    Bouwmeester, W.2    Zuithoff, P.3
  • 13
    • 2442534626 scopus 로고    scopus 로고
    • QRESEARCH: a new general practice database for research
    • Hippisley-Cox J, Stables D, Pringle M. QRESEARCH: a new general practice database for research. Inform Prim Care. 2004;12(1):49-50.
    • (2004) Inform Prim Care. , vol.12 , Issue.1 , pp. 49-50
    • Hippisley-Cox, J.1    Stables, D.2    Pringle, M.3
  • 14
    • 84920579212 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement
    • Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. J Clin Epidemiol. 2015;68(2):134-143.
    • (2015) J Clin Epidemiol. , vol.68 , Issue.2 , pp. 134-143
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3    Moons, K.G.M.4
  • 15
    • 84937548548 scopus 로고    scopus 로고
    • Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration
    • Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1): W1-W73.
    • (2015) Ann Intern Med. , vol.162 , Issue.1 , pp. W1-W73
    • Moons, K.G.M.1    Altman, D.G.2    Reitsma, J.B.3
  • 16
    • 84875154847 scopus 로고    scopus 로고
    • Cardiovascular Disease Risk Assessment: Insights from Framingham
    • D'Agostino RB, Pencina MJ, Massaro JM, Coady S. Cardiovascular Disease Risk Assessment: Insights from Framingham. Glob Heart. 2013;8(1): 11-23.
    • (2013) Glob Heart. , vol.8 , Issue.1 , pp. 11-23
    • D'Agostino, R.B.1    Pencina, M.J.2    Massaro, J.M.3    Coady, S.4
  • 17
    • 84874226740 scopus 로고    scopus 로고
    • Predicting out of intensive care unit cardiopulmonary arrest or death using electronic medical record data
    • Alvarez CA, Clark CA, Zhang S, et al. Predicting out of intensive care unit cardiopulmonary arrest or death using electronic medical record data. BMC Med Inform Decis Mak. 2013;13:28.
    • (2013) BMC Med Inform Decis Mak. , vol.13 , pp. 28
    • Alvarez, C.A.1    Clark, C.A.2    Zhang, S.3
  • 18
    • 78049334037 scopus 로고    scopus 로고
    • An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data
    • Amarasingham R, Moore BJ, Tabak YP, et al. An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Med Care. 2010;48(11):981-988.
    • (2010) Med Care. , vol.48 , Issue.11 , pp. 981-988
    • Amarasingham, R.1    Moore, B.J.2    Tabak, Y.P.3
  • 19
    • 84908241239 scopus 로고    scopus 로고
    • Development of a new risk score for hospital-associated venous thromboembolism in noncritically ill children: findings from a large single-institutional case-control study
    • Atchison CM, Arlikar S, Amankwah E, et al. Development of a new risk score for hospital-associated venous thromboembolism in noncritically ill children: findings from a large single-institutional case-control study. J Pediatr. 2014;165(4):793-798.
    • (2014) J Pediatr. , vol.165 , Issue.4 , pp. 793-798
    • Atchison, C.M.1    Arlikar, S.2    Amankwah, E.3
  • 20
    • 84914171142 scopus 로고    scopus 로고
    • Pulse pressure and stroke risk: development and validation of a new stroke risk model
    • Ayyagari R, Vekeman F, Lefebvre P, et al. Pulse pressure and stroke risk: development and validation of a new stroke risk model. Curr Med Res Opin. 2014;30(12):2453-2460.
    • (2014) Curr Med Res Opin. , vol.30 , Issue.12 , pp. 2453-2460
    • Ayyagari, R.1    Vekeman, F.2    Lefebvre, P.3
  • 21
    • 84889640474 scopus 로고    scopus 로고
    • The readmission risk flag: using the electronic health record to automatically identify patients at risk for 30-day readmission
    • Baillie CA, VanZandbergen C, Tait G, et al. The readmission risk flag: using the electronic health record to automatically identify patients at risk for 30-day readmission. J Hosp Med Off Publ Soc Hosp Med. 2013;8(12):689-695.
    • (2013) J Hosp Med Off Publ Soc Hosp Med. , vol.8 , Issue.12 , pp. 689-695
    • Baillie, C.A.1    VanZandbergen, C.2    Tait, G.3
  • 22
    • 78650470824 scopus 로고    scopus 로고
    • A clinical prediction model to estimate risk for 30-day adverse events in emergency department patients with symptomatic atrial fibrillation
    • Barrett TW, Martin AR, Storrow AB, et al. A clinical prediction model to estimate risk for 30-day adverse events in emergency department patients with symptomatic atrial fibrillation. Ann Emerg Med. 2011;57(1):1-12.
    • (2011) Ann Emerg Med. , vol.57 , Issue.1 , pp. 1-12
    • Barrett, T.W.1    Martin, A.R.2    Storrow, A.B.3
  • 23
    • 84884570154 scopus 로고    scopus 로고
    • Choosing a model to predict hospital admission: an observational study of new variants of predictive models for case finding
    • Billings J, Georghiou T, Blunt I, Bardsley M. Choosing a model to predict hospital admission: an observational study of new variants of predictive models for case finding. BMJ Open. 2013;3(8):e003352.
    • (2013) BMJ Open. , vol.3 , Issue.8
    • Billings, J.1    Georghiou, T.2    Blunt, I.3    Bardsley, M.4
  • 24
    • 84858702954 scopus 로고    scopus 로고
    • Accurately predicting bipolar disorder mood outcomes: implications for the use of electronic databases
    • Busch AB, Neelon B, Zelevinsky K, He Y, Normand S-LT. Accurately predicting bipolar disorder mood outcomes: implications for the use of electronic databases. Med Care. 2012;50(4):311-319.
    • (2012) Med Care. , vol.50 , Issue.4 , pp. 311-319
    • Busch, A.B.1    Neelon, B.2    Zelevinsky, K.3    He, Y.4    Normand, S-L.T.5
  • 25
    • 84899472616 scopus 로고    scopus 로고
    • Predicting length of stay from an electronic patient record system: a primary total knee replacement example
    • Carter EM, Potts HWW. Predicting length of stay from an electronic patient record system: a primary total knee replacement example. BMC Med Inform Decis Mak. 2014;14:26.
    • (2014) BMC Med Inform Decis Mak. , vol.14 , pp. 26
    • Carter, E.M.1    Potts, H.W.W.2
  • 26
    • 84861911605 scopus 로고    scopus 로고
    • The art versus science of predicting prognosis: can a prognostic index predict short-term mortality better than experienced nurses do
    • Casarett DJ, Farrington S, Craig T, et al. The art versus science of predicting prognosis: can a prognostic index predict short-term mortality better than experienced nurses do J Palliat Med. 2012;15(6):703-708.
    • (2012) J Palliat Med. , vol.15 , Issue.6 , pp. 703-708
    • Casarett, D.J.1    Farrington, S.2    Craig, T.3
  • 27
    • 80051999222 scopus 로고    scopus 로고
    • Predicting hospital-acquired infections by scoring system with simple parameters
    • Chang Y-J, Yeh M-L, Li Y-C, et al. Predicting hospital-acquired infections by scoring system with simple parameters. PloS One. 2011;6(8):e23137.
    • (2011) PloS One. , vol.6 , Issue.8
    • Chang, Y-J.1    Yeh, M-L.2    Li, Y-C.3
  • 28
    • 79956135076 scopus 로고    scopus 로고
    • Hemoglobin A1c as a predictor of incident diabetes
    • Cheng P, Neugaard B, Foulis P, Conlin PR. Hemoglobin A1c as a predictor of incident diabetes. Diabetes Care. 2011;34(3):610-615.
    • (2011) Diabetes Care. , vol.34 , Issue.3 , pp. 610-615
    • Cheng, P.1    Neugaard, B.2    Foulis, P.3    Conlin, P.R.4
  • 29
    • 84878355148 scopus 로고    scopus 로고
    • Leveraging derived data elements in data analytic models for understanding and predicting hospital readmissions
    • Cholleti S, Post A, Gao J, et al. Leveraging derived data elements in data analytic models for understanding and predicting hospital readmissions. AMIA Annu Symp Proc AMIA Symp AMIA Symp. 2012;2012:103-111.
    • (2012) AMIA Annu Symp Proc AMIA Symp AMIA Symp. , vol.2012 , pp. 103-111
    • Cholleti, S.1    Post, A.2    Gao, J.3
  • 30
    • 84894637209 scopus 로고    scopus 로고
    • A publicprivate partnership develops and externally validates a 30-day hospital readmission risk prediction model
    • Choudhry SA, Li J, Davis D, Erdmann C, Sikka R, Sutariya B. A publicprivate partnership develops and externally validates a 30-day hospital readmission risk prediction model. Online J Public Health Inform. 2013;5(2):219.
    • (2013) Online J Public Health Inform. , vol.5 , Issue.2 , pp. 219
    • Choudhry, S.A.1    Li, J.2    Davis, D.3    Erdmann, C.4    Sikka, R.5    Sutariya, B.6
  • 31
    • 84896630259 scopus 로고    scopus 로고
    • Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards
    • Churpek MM, Yuen TC, Park SY, Gibbons R, Edelson DP. Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards*, Crit Care Med. 2014;42(4):841-848.
    • (2014) Crit Care Med. , vol.42 , Issue.4 , pp. 841-848
    • Churpek, M.M.1    Yuen, T.C.2    Park, S.Y.3    Gibbons, R.4    Edelson, D.P.5
  • 32
    • 78649910740 scopus 로고    scopus 로고
    • Use of an electronic administrative database to identify older community dwelling adults at high-risk for hospitalization or emergency department visits: the elders risk assessment index
    • Crane SJ, Tung EE, Hanson GJ, Cha S, Chaudhry R, Takahashi PY. Use of an electronic administrative database to identify older community dwelling adults at high-risk for hospitalization or emergency department visits: the elders risk assessment index. BMC Health Serv Res. 2010;10: 338.
    • (2010) BMC Health Serv Res. , vol.10 , pp. 338
    • Crane, S.J.1    Tung, E.E.2    Hanson, G.J.3    Cha, S.4    Chaudhry, R.5    Takahashi, P.Y.6
  • 34
    • 84878645318 scopus 로고    scopus 로고
    • Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients
    • Eapen ZJ, Liang L, Fonarow GC, et al. Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients. JACC Heart Fail. 2013;1(3):245-251.
    • (2013) JACC Heart Fail. , vol.1 , Issue.3 , pp. 245-251
    • Eapen, Z.J.1    Liang, L.2    Fonarow, G.C.3
  • 35
    • 84876279048 scopus 로고    scopus 로고
    • Risk-adjusting hospital mortality using a comprehensive electronic record in an integrated health care delivery system
    • Escobar GJ, Gardner MN, Greene JD, Draper D, Kipnis P. Risk-adjusting hospital mortality using a comprehensive electronic record in an integrated health care delivery system. Med Care. 2013;51(5):446-453.
    • (2013) Med Care. , vol.51 , Issue.5 , pp. 446-453
    • Escobar, G.J.1    Gardner, M.N.2    Greene, J.D.3    Draper, D.4    Kipnis, P.5
  • 36
    • 84861960489 scopus 로고    scopus 로고
    • Early detection of impending physiologic deterioration among patients who are not in intensive care: development of predictive models using data from an automated electronic medical record
    • Escobar GJ, LaGuardia JC, Turk BJ, Ragins A, Kipnis P, Draper D. Early detection of impending physiologic deterioration among patients who are not in intensive care: development of predictive models using data from an automated electronic medical record. J Hosp Med Off Publ Soc Hosp Med. 2012;7(5):388-395.
    • (2012) J Hosp Med Off Publ Soc Hosp Med. , vol.7 , Issue.5 , pp. 388-395
    • Escobar, G.J.1    LaGuardia, J.C.2    Turk, B.J.3    Ragins, A.4    Kipnis, P.5    Draper, D.6
  • 37
    • 84891866270 scopus 로고    scopus 로고
    • Near-term prediction of sudden cardiac death in older hemodialysis patients using electronic health records
    • Goldstein BA, Chang TI, Mitani AA, Assimes TL, Winkelmayer WC. Near-term prediction of sudden cardiac death in older hemodialysis patients using electronic health records. Clin J Am Soc Nephrol. 2014;9(1): 82-91.
    • (2014) Clin J Am Soc Nephrol. , vol.9 , Issue.1 , pp. 82-91
    • Goldstein, B.A.1    Chang, T.I.2    Mitani, A.A.3    Assimes, T.L.4    Winkelmayer, W.C.5
  • 38
    • 84894101089 scopus 로고    scopus 로고
    • From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system
    • Gultepe E, Green JP, Nguyen H, Adams J, Albertson T, Tagkopoulos I. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. J Am Med Inform Assoc. 2014;21(2):315-325.
    • (2014) J Am Med Inform Assoc. , vol.21 , Issue.2 , pp. 315-325
    • Gultepe, E.1    Green, J.P.2    Nguyen, H.3    Adams, J.4    Albertson, T.5    Tagkopoulos, I.6
  • 39
    • 84897484693 scopus 로고    scopus 로고
    • Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry
    • Gupta S, Tran T, Luo W, et al. Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry. BMJ Open. 2014;4(3):e004007.
    • (2014) BMJ Open. , vol.4 , Issue.3
    • Gupta, S.1    Tran, T.2    Luo, W.3
  • 40
    • 84911942551 scopus 로고    scopus 로고
    • Risk prediction of emergency department revisit days post discharge: a prospective study
    • Hao S, Jin B, Shin AY, et al. Risk prediction of emergency department revisit days post discharge: a prospective study. PloS One. 2014;9(11): e112944.
    • (2014) PloS One. , vol.9 , Issue.11
    • Hao, S.1    Jin, B.2    Shin, A.Y.3
  • 42
    • 84908258829 scopus 로고    scopus 로고
    • Diagnosis-specific readmission risk prediction using electronic health data: a retrospective cohort study
    • Hebert C, Shivade C, Foraker R, et al. Diagnosis-specific readmission risk prediction using electronic health data: a retrospective cohort study. BMC Med Inform Decis Mak. 2014;14:65.
    • (2014) BMC Med Inform Decis Mak. , vol.14 , pp. 65
    • Hebert, C.1    Shivade, C.2    Foraker, R.3
  • 43
    • 65349143362 scopus 로고    scopus 로고
    • Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records
    • Himes BE, Dai Y, Kohane IS, Weiss ST, Ramoni MF. Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records. J AmMed Inform Assoc. 2009;16(3):371-379.
    • (2009) J AmMed Inform Assoc. , vol.16 , Issue.3 , pp. 371-379
    • Himes, B.E.1    Dai, Y.2    Kohane, I.S.3    Weiss, S.T.4    Ramoni, M.F.5
  • 44
    • 84869081215 scopus 로고    scopus 로고
    • Modified metabolic syndrome criteria for identification of patients at risk of developing diabetes and coronary heart diseases: longitudinal assessment via electronic health records
    • Hivert M-F, Dusseault-Bélanger F, Cohen A, Courteau J, Vanasse A. Modified metabolic syndrome criteria for identification of patients at risk of developing diabetes and coronary heart diseases: longitudinal assessment via electronic health records. Can J Cardiol. 2012;28(6): 744-749.
    • (2012) Can J Cardiol. , vol.28 , Issue.6 , pp. 744-749
    • Hivert, M-F.1    Dusseault-Bélanger, F.2    Cohen, A.3    Courteau, J.4    Vanasse, A.5
  • 45
    • 84869438583 scopus 로고    scopus 로고
    • Development and validation of the excess mortality ratio-based Emergency Severity Index
    • Hong KJ, Shin SD, Ro YS, Song KJ, Singer AJ. Development and validation of the excess mortality ratio-based Emergency Severity Index. Am J Emerg Med. 2012;30(8):1491-1500.
    • (2012) Am J Emerg Med. , vol.30 , Issue.8 , pp. 1491-1500
    • Hong, K.J.1    Shin, S.D.2    Ro, Y.S.3    Song, K.J.4    Singer, A.J.5
  • 47
    • 84930744897 scopus 로고    scopus 로고
    • Patient no-show predictive model development using multiple data sources for an effective overbooking approach
    • Huang Y, Hanauer DA. Patient no-show predictive model development using multiple data sources for an effective overbooking approach. Appl Clin Inform. 2014;5(3):836-860.
    • (2014) Appl Clin Inform. , vol.5 , Issue.3 , pp. 836-860
    • Huang, Y.1    Hanauer, D.A.2
  • 48
    • 84882368833 scopus 로고    scopus 로고
    • A new statistical approach to predict bacteremia using electronic medical records
    • Jin SJ, Kim M, Yoon JH, Song YG. A new statistical approach to predict bacteremia using electronic medical records. Scand J Infect Dis. 2013;45(9):672-680.
    • (2013) Scand J Infect Dis. , vol.45 , Issue.9 , pp. 672-680
    • Jin, S.J.1    Kim, M.2    Yoon, J.H.3    Song, Y.G.4
  • 49
    • 77649217394 scopus 로고    scopus 로고
    • Predicting the risk of hyperkalemia in patients with chronic kidney disease starting lisinopril
    • Johnson ES, Weinstein JR, Thorp ML, et al. Predicting the risk of hyperkalemia in patients with chronic kidney disease starting lisinopril. Pharmacoepidemiol Drug Saf. 2010;19(3):266-272.
    • (2010) Pharmacoepidemiol Drug Saf. , vol.19 , Issue.3 , pp. 266-272
    • Johnson, E.S.1    Weinstein, J.R.2    Thorp, M.L.3
  • 52
    • 84874118623 scopus 로고    scopus 로고
    • Improved cardiovascular risk prediction using nonparametric regression and electronic health record data
    • Kennedy EH, Wiitala WL, Hayward RA, Sussman JB. Improved cardiovascular risk prediction using nonparametric regression and electronic health record data. Med Care. 2013;51(3):251-258.
    • (2013) Med Care. , vol.51 , Issue.3 , pp. 251-258
    • Kennedy, E.H.1    Wiitala, W.L.2    Hayward, R.A.3    Sussman, J.B.4
  • 53
    • 84866123914 scopus 로고    scopus 로고
    • An electronic medical record-derived real-time assessment scale for hospital readmission in the elderly
    • Khan A, Malone ML, Pagel P, Vollbrecht M, Baumgardner DJ. An electronic medical record-derived real-time assessment scale for hospital readmission in the elderly. WMJ Off Publ State Med Soc Wis. 2012;111(3):119-123.
    • (2012) WMJ Off Publ State Med Soc Wis. , vol.111 , Issue.3 , pp. 119-123
    • Khan, A.1    Malone, M.L.2    Pagel, P.3    Vollbrecht, M.4    Baumgardner, D.J.5
  • 54
    • 84908027296 scopus 로고    scopus 로고
    • Predicting patient acuity from electronic patient records
    • Kontio E, Airola A, Pahikkala T, et al. Predicting patient acuity from electronic patient records. J Biomed Inform. 2014;51:35-40.
    • (2014) J Biomed Inform. , vol.51 , pp. 35-40
    • Kontio, E.1    Airola, A.2    Pahikkala, T.3
  • 55
    • 79959513244 scopus 로고    scopus 로고
    • Derivation and diagnostic accuracy of the surgical lung injury prediction model
    • Kor DJ, Warner DO, Alsara A, et al. Derivation and diagnostic accuracy of the surgical lung injury prediction model. Anesthesiology. 2011;115(1):117-128.
    • (2011) Anesthesiology. , vol.115 , Issue.1 , pp. 117-128
    • Kor, D.J.1    Warner, D.O.2    Alsara, A.3
  • 56
    • 77954954080 scopus 로고    scopus 로고
    • Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables
    • Liu V, Kipnis P, Gould MK, Escobar GJ. Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables. Med Care. 2010;48(8):739-744.
    • (2010) Med Care. , vol.48 , Issue.8 , pp. 739-744
    • Liu, V.1    Kipnis, P.2    Gould, M.K.3    Escobar, G.J.4
  • 58
    • 84894094760 scopus 로고    scopus 로고
    • Medical decision support using machine learning for early detection of late-onset neonatal sepsis
    • Mani S, Ozdas A, Aliferis C, et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J Am Med Inform Assoc. 2014;21(2):326-336.
    • (2014) J Am Med Inform Assoc. , vol.21 , Issue.2 , pp. 326-336
    • Mani, S.1    Ozdas, A.2    Aliferis, C.3
  • 59
    • 78650824776 scopus 로고    scopus 로고
    • Development of inpatient risk stratification models of acute kidney injury for use in electronic health records
    • Matheny ME, Miller RA, Ikizler TA, et al. Development of inpatient risk stratification models of acute kidney injury for use in electronic health records. Med Decis Mak Int J Soc Med Decis Mak. 2010;30(6): 639-650.
    • (2010) Med Decis Mak Int J Soc Med Decis Mak. , vol.30 , Issue.6 , pp. 639-650
    • Matheny, M.E.1    Miller, R.A.2    Ikizler, T.A.3
  • 60
    • 84881349743 scopus 로고    scopus 로고
    • Development of a 5 year life expectancy index in older adults using predictive mining of electronic health record data
    • Mathias JS, Agrawal A, Feinglass J, Cooper AJ, Baker DW, Choudhary A. Development of a 5 year life expectancy index in older adults using predictive mining of electronic health record data. J Am Med Inform Assoc. 2013;20(e1):e118-e124.
    • (2013) J Am Med Inform Assoc. , vol.20 , pp. E118-E124
    • Mathias, J.S.1    Agrawal, A.2    Feinglass, J.3    Cooper, A.J.4    Baker, D.W.5    Choudhary, A.6
  • 61
    • 80054859194 scopus 로고    scopus 로고
    • Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model
    • Meyfroidt G, Guïza F, Cottem D, et al. Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model. BMC Med Inform Decis Mak. 2011;11:64.
    • (2011) BMC Med Inform Decis Mak. , vol.11 , pp. 64
    • Meyfroidt, G.1    Guïza, F.2    Cottem, D.3
  • 62
    • 84884478213 scopus 로고    scopus 로고
    • Exploring the value of clinical data standards to predict hospitalization of home care patients
    • Monsen KA, Swanberg HL, Oancea SC, Westra BL. Exploring the value of clinical data standards to predict hospitalization of home care patients. Appl Clin Inform. 2012;3(4):419-436.
    • (2012) Appl Clin Inform. , vol.3 , Issue.4 , pp. 419-436
    • Monsen, K.A.1    Swanberg, H.L.2    Oancea, S.C.3    Westra, B.L.4
  • 63
    • 84868233000 scopus 로고    scopus 로고
    • Identifying risk of hospital readmission among Medicare aged patients: an approach using routinely collected data
    • Navarro AE, Enguidanos S, Wilber KH. Identifying risk of hospital readmission among Medicare aged patients: an approach using routinely collected data. Home Health Care Serv Q. 2012;31(2): 181-195.
    • (2012) Home Health Care Serv Q. , vol.31 , Issue.2 , pp. 181-195
    • Navarro, A.E.1    Enguidanos, S.2    Wilber, K.H.3
  • 64
    • 84865230786 scopus 로고    scopus 로고
    • An electronic medical record-based model to predict 30-day risk of readmission and death among HIV-infected inpatient
    • Nijhawan AE, Clark C, Kaplan R, Moore B, Halm EA, Amarasingham R. An electronic medical record-based model to predict 30-day risk of readmission and death among HIV-infected inpatients. J Acquir Immune Defic Syndr 1999. 2012;61(3):349-358.
    • (2012) J Acquir Immune Defic Syndr 1999. , vol.61 , Issue.3 , pp. 349-358
    • Nijhawan, A.E.1    Clark, C.2    Kaplan, R.3    Moore, B.4    Halm, E.A.5    Amarasingham, R.6
  • 65
    • 84904909086 scopus 로고    scopus 로고
    • Letting the sun set on small bowel obstruction: can a simple risk score tell us when nonoperative care is inappropriate
    • O'Leary EA, Desale SY, Yi WS, et al. Letting the sun set on small bowel obstruction: can a simple risk score tell us when nonoperative care is inappropriate Am Surg. 2014;80(6):572-579.
    • (2014) Am Surg. , vol.80 , Issue.6 , pp. 572-579
    • O'Leary, E.A.1    Desale, S.Y.2    Yi, W.S.3
  • 66
    • 84896589048 scopus 로고    scopus 로고
    • Readmission after hospitalization for heart failure among patients with chronic kidney disease: a prediction model
    • Perkins RM, Rahman A, Bucaloiu ID, et al. Readmission after hospitalization for heart failure among patients with chronic kidney disease: a prediction model. Clin Nephrol. 2013;80(6):433-440.
    • (2013) Clin Nephrol. , vol.80 , Issue.6 , pp. 433-440
    • Perkins, R.M.1    Rahman, A.2    Bucaloiu, I.D.3
  • 67
    • 84911478626 scopus 로고    scopus 로고
    • Development of an electronic medical record based alert for risk of HIV treatment failure in a low-resource setting
    • Puttkammer N, Zeliadt S, Balan JG, et al. Development of an electronic medical record based alert for risk of HIV treatment failure in a low-resource setting. PloS One. 2014;9(11):e112261.
    • (2014) PloS One. , vol.9 , Issue.11
    • Puttkammer, N.1    Zeliadt, S.2    Balan, J.G.3
  • 68
    • 84878017967 scopus 로고    scopus 로고
    • A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record
    • Ramchandran KJ, Shega JW, Von Roenn J, et al. A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record. Cancer. 2013;119(11):2074-2080.
    • (2013) Cancer. , vol.119 , Issue.11 , pp. 2074-2080
    • Ramchandran, K.J.1    Shega, J.W.2    Von Roenn, J.3
  • 69
    • 84906839061 scopus 로고    scopus 로고
    • Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data
    • Rana S, Tran T, Luo W, Phung D, Kennedy RL, Venkatesh S. Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data. Aust Health Rev Publ Aust Hosp Assoc. 2014;38(4):377-382.
    • (2014) Aust Health Rev Publ Aust Hosp Assoc. , vol.38 , Issue.4 , pp. 377-382
    • Rana, S.1    Tran, T.2    Luo, W.3    Phung, D.4    Kennedy, R.L.5    Venkatesh, S.6
  • 70
    • 84898767604 scopus 로고    scopus 로고
    • Prognostic models for stable coronary artery disease based on electronic health record cohort of 102 023 patients
    • Rapsomaniki E, Shah A, Perel P, et al. Prognostic models for stable coronary artery disease based on electronic health record cohort of 102 023 patients. Eur Heart J. 2014;35(13):844-852.
    • (2014) Eur Heart J. , vol.35 , Issue.13 , pp. 844-852
    • Rapsomaniki, E.1    Shah, A.2    Perel, P.3
  • 73
    • 84883746095 scopus 로고    scopus 로고
    • Development and validation of a continuous measure of patient condition using the Electronic Medical Record
    • Rothman MJ, Rothman SI, Beals J. Development and validation of a continuous measure of patient condition using the Electronic Medical Record. J Biomed Inform. 2013;46(5):837-848.
    • (2013) J Biomed Inform. , vol.46 , Issue.5 , pp. 837-848
    • Rothman, M.J.1    Rothman, S.I.2    Beals, J.3
  • 74
    • 84900813389 scopus 로고    scopus 로고
    • Predicting red blood cell transfusion in hospitalized patients: role of hemoglobin level, comorbidities, and illness severity
    • Roubinian NH, Murphy EL, Swain BE, et al.; NHLBI Recipient Epidemiology and Donor Evaluation Study-III (REDS-III), and Northern California Kaiser Permanente DOR Systems Research Initiative. Predicting red blood cell transfusion in hospitalized patients: role of hemoglobin level, comorbidities, and illness severity. BMC Health Serv Res. 2014; 14:213.
    • (2014) BMC Health Serv Res. , vol.14 , pp. 213
    • Roubinian, N.H.1    Murphy, E.L.2    Swain, B.E.3
  • 75
    • 79953768590 scopus 로고    scopus 로고
    • Early warning and risk estimation methods based on unstructured text in electronic medical records to improve patient adherence and care
    • Sairamesh J, Rajagopal R, Nemana R, Argenbright K. Early warning and risk estimation methods based on unstructured text in electronic medical records to improve patient adherence and care. AMIA Annu Symp Proc AMIA Symp AMIA Symp. 2009;2009:553-557.
    • (2009) AMIA Annu Symp Proc AMIA Symp AMIA Symp. , pp. 553-557
    • Sairamesh, J.1    Rajagopal, R.2    Nemana, R.3    Argenbright, K.4
  • 76
    • 84902961861 scopus 로고    scopus 로고
    • A novel scoring system to predict the development of necrotizing enterocolitis totalis in premature infants
    • Sho S, Neal MD, Sperry J, Hackam DJ. A novel scoring system to predict the development of necrotizing enterocolitis totalis in premature infants. J Pediatr Surg. 2014;49(7):1053-1056.
    • (2014) J Pediatr Surg. , vol.49 , Issue.7 , pp. 1053-1056
    • Sho, S.1    Neal, M.D.2    Sperry, J.3    Hackam, D.J.4
  • 77
    • 84884353768 scopus 로고    scopus 로고
    • An automated model using electronic medical record data identifies patients with cirrhosis at high risk for readmission
    • Singal AG, Rahimi RS, Clark C, et al. An automated model using electronic medical record data identifies patients with cirrhosis at high risk for readmission. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2013;11(10):1335-1341.e1.
    • (2013) Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. , vol.11 , Issue.10 , pp. 1335-1341
    • Singal, A.G.1    Rahimi, R.S.2    Clark, C.3
  • 79
    • 85014677492 scopus 로고    scopus 로고
    • Predicting poor outcomes in heart failure
    • Smith DH, Johnson ES, Thorp ML, et al. Predicting poor outcomes in heart failure. Perm J. 2011;15(4):4-11.
    • (2011) Perm J. , vol.15 , Issue.4 , pp. 4-11
    • Smith, D.H.1    Johnson, E.S.2    Thorp, M.L.3
  • 81
    • 84925858493 scopus 로고    scopus 로고
    • Predicting mortality of elderly patients acutely admitted to the Department of Internal Medicine
    • Smolin B, Levy Y, Sabbach-Cohen E, Levi L, Mashiach T. Predicting mortality of elderly patients acutely admitted to the Department of Internal Medicine. Int J Clin Pract. 2015;69(4):501-508.
    • (2015) Int J Clin Pract. , vol.69 , Issue.4 , pp. 501-508
    • Smolin, B.1    Levy, Y.2    Sabbach-Cohen, E.3    Levi, L.4    Mashiach, T.5
  • 82
    • 84890220181 scopus 로고    scopus 로고
    • Preoperative prediction of type diabetes remission after Roux-en-Y gastric bypass surgery: a retrospective cohort study
    • Still CD, Wood GC, Benotti P, et al. Preoperative prediction of type diabetes remission after Roux-en-Y gastric bypass surgery: a retrospective cohort study. Lancet Diabetes Endocrinol. 2014;2(1): 38-45.
    • (2014) Lancet Diabetes Endocrinol. , vol.2 , Issue.1 , pp. 38-45
    • Still, C.D.1    Wood, G.C.2    Benotti, P.3
  • 83
    • 84894077964 scopus 로고    scopus 로고
    • Predicting changes in hypertension control using electronic health records from a chronic disease management program
    • Sun J, McNaughton CD, Zhang P, et al. Predicting changes in hypertension control using electronic health records from a chronic disease management program. J Am Med Inform Assoc. 2014;21(2): 337-344.
    • (2014) J Am Med Inform Assoc. , vol.21 , Issue.2 , pp. 337-344
    • Sun, J.1    McNaughton, C.D.2    Zhang, P.3
  • 84
    • 84876280864 scopus 로고    scopus 로고
    • Using enriched observational data to develop and validate age-specific mortality risk adjustment models for hospitalized pediatric patients
    • Tabak YP, Sun X, Hyde L, Yaitanes A, Derby K, Johannes RS. Using enriched observational data to develop and validate age-specific mortality risk adjustment models for hospitalized pediatric patients. Med Care. 2013;51(5):437-445.
    • (2013) Med Care. , vol.51 , Issue.5 , pp. 437-445
    • Tabak, Y.P.1    Sun, X.2    Hyde, L.3    Yaitanes, A.4    Derby, K.5    Johannes, R.S.6
  • 85
    • 84879889547 scopus 로고    scopus 로고
    • Development and validation of a mortality risk-adjustment model for patients hospitalized for exacerbations of chronic obstructive pulmonary disease
    • Tabak YP, Sun X, Johannes RS, Hyde L, Shorr AF, Lindenauer PK. Development and validation of a mortality risk-adjustment model for patients hospitalized for exacerbations of chronic obstructive pulmonary disease. Med Care. 2013;51(7):597-605.
    • (2013) Med Care. , vol.51 , Issue.7 , pp. 597-605
    • Tabak, Y.P.1    Sun, X.2    Johannes, R.S.3    Hyde, L.4    Shorr, A.F.5    Lindenauer, P.K.6
  • 86
    • 84901819329 scopus 로고    scopus 로고
    • Using electronic health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of Mortality Score (ALaRMS)
    • Tabak YP, Sun X, Nunez CM, Johannes RS. Using electronic health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of Mortality Score (ALaRMS). J Am Med Inform Assoc. 2014;21(3):455-463.
    • (2014) J Am Med Inform Assoc. , vol.21 , Issue.3 , pp. 455-463
    • Tabak, Y.P.1    Sun, X.2    Nunez, C.M.3    Johannes, R.S.4
  • 88
    • 84899564545 scopus 로고    scopus 로고
    • Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments
    • Tran T, Luo W, Phung D, et al. Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments. BMC Psychiatry. 2014;14:76.
    • (2014) BMC Psychiatry. , vol.14 , pp. 76
    • Tran, T.1    Luo, W.2    Phung, D.3
  • 89
    • 85014624206 scopus 로고    scopus 로고
    • Predictive modeling of implantation outcome in an in vitro fertilization setting: an application of machine learning methods.
    • Uyar A, Bener A, Ciray HN. Predictive modeling of implantation outcome in an in vitro fertilization setting: an application of machine learning methods. Med Decis Mak Int J Soc Med Decis Mak. 2014.
    • (2014) Med Decis Mak Int J Soc Med Decis Mak.
    • Uyar, A.1    Bener, A.2    Ciray, H.N.3
  • 90
    • 84867404699 scopus 로고    scopus 로고
    • Predicting risk of hospitalization or death among patients with heart failure in the veterans health administration
    • Wang L, Porter B, Maynard C, et al. Predicting risk of hospitalization or death among patients with heart failure in the veterans health administration. Am J Cardiol. 2012;110(9):1342-1349.
    • (2012) Am J Cardiol. , vol.110 , Issue.9 , pp. 1342-1349
    • Wang, L.1    Porter, B.2    Maynard, C.3
  • 91
    • 84884212470 scopus 로고    scopus 로고
    • Predicting risk of hospitalization or death among patients receiving primary care in the Veterans Health Administration
    • Wang L, Porter B, Maynard C, et al. Predicting risk of hospitalization or death among patients receiving primary care in the Veterans Health Administration. Med Care. 2013;51(4):368-373.
    • (2013) Med Care. , vol.51 , Issue.4 , pp. 368-373
    • Wang, L.1    Porter, B.2    Maynard, C.3
  • 92
    • 84885138050 scopus 로고    scopus 로고
    • Prediction of morbidity and mortality in patients with type 2 diabetes
    • Wells BJ, Roth R, Nowacki AS, et al. Prediction of morbidity and mortality in patients with type 2 diabetes. Peer J. 2013;1:e87.
    • (2013) Peer J. , vol.1
    • Wells, B.J.1    Roth, R.2    Nowacki, A.S.3
  • 94
    • 80053387042 scopus 로고    scopus 로고
    • Derivation and validation of a simple model to identify venous thromboembolism risk in medical patients
    • Woller SC, Stevens SM, Jones JP, et al. Derivation and validation of a simple model to identify venous thromboembolism risk in medical patients. Am J Med. 2011;124(10):947-954.e2.
    • (2011) Am J Med. , vol.124 , Issue.10 , pp. 947-954.e2
    • Woller, S.C.1    Stevens, S.M.2    Jones, J.P.3
  • 95
    • 77953635924 scopus 로고    scopus 로고
    • Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
    • Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med Care. 2010;48(6 Suppl):S106-S113.
    • (2010) Med Care. , vol.48 , Issue.6 , pp. S106-S113
    • Wu, J.1    Roy, J.2    Stewart, W.F.3
  • 96
    • 84903775133 scopus 로고    scopus 로고
    • Developing and evaluating a machine learning based algorithm to predict the need of pediatric intensive care unit transfer for newly hospitalized children
    • Zhai H, Brady P, Li Q, et al. Developing and evaluating a machine learning based algorithm to predict the need of pediatric intensive care unit transfer for newly hospitalized children. Resuscitation. 2014;85(8): 1065-1071.
    • (2014) Resuscitation. , vol.85 , Issue.8 , pp. 1065-1071
    • Zhai, H.1    Brady, P.2    Li, Q.3
  • 97
    • 80052891202 scopus 로고    scopus 로고
    • Combining PubMed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction
    • Zhao D, Weng C. Combining PubMed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction. J Biomed. Inform. 2011;44(5):859-868.
    • (2011) J Biomed. Inform. , vol.44 , Issue.5 , pp. 859-868
    • Zhao, D.1    Weng, C.2
  • 98
    • 84876718735 scopus 로고    scopus 로고
    • Predicting clinical deterioration in the hospital: the impact of outcome selection
    • ChurpekMM, Yuen TC, Edelson DP. Predicting clinical deterioration in the hospital: the impact of outcome selection. Resuscitation. 2013;84(5): 564-568.
    • (2013) Resuscitation. , vol.84 , Issue.5 , pp. 564-568
    • Churpek, M.M.1    Yuen, T.C.2    Edelson, D.P.3
  • 100
    • 84921697939 scopus 로고    scopus 로고
    • Multicenter development and validation of a risk stratification tool for ward patients
    • Churpek MM, Yuen TC, Winslow C, et al. Multicenter development and validation of a risk stratification tool for ward patients. Am J Respir Crit Care Med. 2014;190(6):649-655.
    • (2014) Am J Respir Crit Care Med. , vol.190 , Issue.6 , pp. 649-655
    • Churpek, M.M.1    Yuen, T.C.2    Winslow, C.3
  • 101
  • 102
    • 77955879942 scopus 로고    scopus 로고
    • Predicting bacteremia among patients hospitalized for skin and skin-structure infections: derivation and validation of a risk score
    • Lipsky BA, Kollef MH, Miller LG, Sun X, Johannes RS, Tabak YP. Predicting bacteremia among patients hospitalized for skin and skin-structure infections: derivation and validation of a risk score. Infect Control Hosp Epidemiol. 2010;31(8):828-837.
    • (2010) Infect Control Hosp Epidemiol. , vol.31 , Issue.8 , pp. 828-837
    • Lipsky, B.A.1    Kollef, M.H.2    Miller, L.G.3    Sun, X.4    Johannes, R.S.5    Tabak, Y.P.6
  • 103
    • 84862833632 scopus 로고    scopus 로고
    • Developing and validating a risk score for lower-extremity amputation in patients hospitalized for a diabetic foot infection
    • Lipsky BA, Weigelt JA, Sun X, Johannes RS, Derby KG, Tabak YP. Developing and validating a risk score for lower-extremity amputation in patients hospitalized for a diabetic foot infection. Diabetes Care. 2011;34(8):1695-1700.
    • (2011) Diabetes Care. , vol.34 , Issue.8 , pp. 1695-1700
    • Lipsky, B.A.1    Weigelt, J.A.2    Sun, X.3    Johannes, R.S.4    Derby, K.G.5    Tabak, Y.P.6
  • 104
    • 77954954080 scopus 로고    scopus 로고
    • Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables
    • Liu V, Kipnis P, Gould MK, Escobar GJ. Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables. Med Care. 2010;48(8):739-744.
    • (2010) Med Care. , vol.48 , Issue.8 , pp. 739-744
    • Liu, V.1    Kipnis, P.2    Gould, M.K.3    Escobar, G.J.4
  • 105
    • 80355131199 scopus 로고    scopus 로고
    • Estimating the probability of neonatal early-onset infection on the basis of maternal risk factors
    • Puopolo KM, Draper D, Wi S, et al. Estimating the probability of neonatal early-onset infection on the basis of maternal risk factors. Pediatrics. 2011;128(5):e1155-e1163.
    • (2011) Pediatrics. , vol.128 , Issue.5 , pp. E1155-E1163
    • Puopolo, K.M.1    Draper, D.2    Wi, S.3
  • 106
    • 82755197751 scopus 로고    scopus 로고
    • A simple risk score accurately predicts in-hospital mortality, length of stay, and cost in acute upper GI bleeding
    • Saltzman JR, Tabak YP, Hyett BH, Sun X, Travis AC, Johannes RS. A simple risk score accurately predicts in-hospital mortality, length of stay, and cost in acute upper GI bleeding. Gastrointest Endosc. 2011;74(6): 1215-1224.
    • (2011) Gastrointest Endosc. , vol.74 , Issue.6 , pp. 1215-1224
    • Saltzman, J.R.1    Tabak, Y.P.2    Hyett, B.H.3    Sun, X.4    Travis, A.C.5    Johannes, R.S.6
  • 107
    • 77958503857 scopus 로고    scopus 로고
    • Development and validation of a disease-specific risk adjustment system using automated clinical data
    • Tabak YP, Sun X, Derby KG, Kurtz SG, Johannes RS. Development and validation of a disease-specific risk adjustment system using automated clinical data. Health Serv Res. 2010;45(6 Pt 1):1815-1835.
    • (2010) Health Serv Res. , vol.45 , Issue.6 , pp. 1815-1835
    • Tabak, Y.P.1    Sun, X.2    Derby, K.G.3    Kurtz, S.G.4    Johannes, R.S.5
  • 108
    • 84878596968 scopus 로고    scopus 로고
    • Derivation and validation of QStroke score for predicting risk of ischaemic stroke in primary care and comparison with other risk scores: a prospective open cohort study
    • Hippisley-Cox J, Coupland C, Brindle P. Derivation and validation of QStroke score for predicting risk of ischaemic stroke in primary care and comparison with other risk scores: a prospective open cohort study. BMJ. 2013;346:f2573.
    • (2013) BMJ. , vol.346 , pp. F2573
    • Hippisley-Cox, J.1    Coupland, C.2    Brindle, P.3
  • 109
    • 78651392469 scopus 로고    scopus 로고
    • Derivation, validation, and evaluation of a new QRISK model to estimate lifetime risk of cardiovascular disease: cohort study using QResearch database
    • Hippisley-Cox J, Coupland C, Robson J, Brindle P. Derivation, validation, and evaluation of a new QRISK model to estimate lifetime risk of cardiovascular disease: cohort study using QResearch database. BMJ. 2010;341:c6624.
    • (2010) BMJ. , vol.341 , pp. C6624
    • Hippisley-Cox, J.1    Coupland, C.2    Robson, J.3    Brindle, P.4
  • 110
    • 66849095444 scopus 로고    scopus 로고
    • Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore
    • Hippisley-Cox J, Coupland C, Robson J, Sheikh A, Brindle P. Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ. 2009;338:b880.
    • (2009) BMJ. , vol.338 , pp. B880
    • Hippisley-Cox, J.1    Coupland, C.2    Robson, J.3    Sheikh, A.4    Brindle, P.5
  • 111
    • 71749092363 scopus 로고    scopus 로고
    • Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores
    • Hippisley-Cox J, Coupland C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ. 2009;339:b4229.
    • (2009) BMJ. , vol.339 , pp. B4229
    • Hippisley-Cox, J.1    Coupland, C.2
  • 112
    • 77953671501 scopus 로고    scopus 로고
    • Predicting the risk of chronic Kidney Disease in men and women in England and Wales: prospective derivation and external validation of theQKidney Scores
    • Hippisley-Cox J, Coupland C. Predicting the risk of chronic Kidney Disease in men and women in England and Wales: prospective derivation and external validation of theQKidney Scores. BMC FamPract. 2010;11:49.
    • (2010) BMC FamPract. , vol.11 , pp. 49
    • Hippisley-Cox, J.1    Coupland, C.2
  • 113
    • 84859005063 scopus 로고    scopus 로고
    • Development and validation of risk prediction algorithm (QThrombosis) to estimate future risk of venous thromboembolism: prospective cohort study
    • Hippisley-Cox J, Coupland C. Development and validation of risk prediction algorithm (QThrombosis) to estimate future risk of venous thromboembolism: prospective cohort study. BMJ. 2011;343:d4656.
    • (2011) BMJ. , vol.343 , pp. D4656
    • Hippisley-Cox, J.1    Coupland, C.2
  • 114
    • 83355174129 scopus 로고    scopus 로고
    • Identifying patients with suspected gastro- oesophageal cancer in primary care: derivation and validation of an algorithm
    • Hippisley-Cox J, Coupland C. Identifying patients with suspected gastro- oesophageal cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract J R Coll Gen Pract. 2011;61(592):e707-e714.
    • (2011) Br J Gen Pract J R Coll Gen Pract. , vol.61 , Issue.592 , pp. E707-E714
    • Hippisley-Cox, J.1    Coupland, C.2
  • 115
    • 83355174133 scopus 로고    scopus 로고
    • Identifying patients with suspected lung cancer in primary care: derivation and validation of an algorithm
    • Hippisley-Cox J, Coupland C. Identifying patients with suspected lung cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract J R Coll Gen Pract. 2011;61(592):e715-e723.
    • (2011) Br J Gen Pract J R Coll Gen Pract. , vol.61 , Issue.592 , pp. E715-E723
    • Hippisley-Cox, J.1    Coupland, C.2
  • 116
    • 84863558979 scopus 로고    scopus 로고
    • Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study
    • Hippisley-Cox J, Coupland C. Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ. 2012;344:e3427.
    • (2012) BMJ. , vol.344
    • Hippisley-Cox, J.1    Coupland, C.2
  • 117
    • 84856237897 scopus 로고    scopus 로고
    • Identifying women with suspected ovarian cancer in primary care: derivation and validation of algorithm
    • Hippisley-Cox J, Coupland C. Identifying women with suspected ovarian cancer in primary care: derivation and validation of algorithm. BMJ. 2012;344:d8009.
    • (2012) BMJ. , vol.344 , pp. D8009
    • Hippisley-Cox, J.1    Coupland, C.2
  • 118
    • 84855678651 scopus 로고    scopus 로고
    • Identifying patients with suspected colorectal cancer in primary care: derivation and validation of an algorithm
    • Hippisley-Cox J, Coupland C. Identifying patients with suspected colorectal cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract J R Coll Gen Pract. 2012;62(594):e29-e37.
    • (2012) Br J Gen Pract J R Coll Gen Pract. , vol.62 , Issue.594 , pp. E29-E37
    • Hippisley-Cox, J.1    Coupland, C.2
  • 119
    • 84855663436 scopus 로고    scopus 로고
    • Identifying patients with suspected pancreatic cancer in primary care: derivation and validation of an algorithm
    • Hippisley-Cox J, Coupland C. Identifying patients with suspected pancreatic cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract J R Coll Gen Pract. 2012;62(594):e38-e45.
    • (2012) Br J Gen Pract J R Coll Gen Pract. , vol.62 , Issue.594 , pp. E38-E45
    • Hippisley-Cox, J.1    Coupland, C.2
  • 120
    • 84859449957 scopus 로고    scopus 로고
    • Identifying patients with suspected renal tract cancer in primary care: derivation and validation of an algorithm
    • Hippisley-Cox J, Coupland C. Identifying patients with suspected renal tract cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract J R Coll Gen Pract. 2012;62(597):e251-e260.
    • (2012) Br J Gen Pract J R Coll Gen Pract. , vol.62 , Issue.597 , pp. E251-E260
    • Hippisley-Cox, J.1    Coupland, C.2
  • 121
    • 84884584280 scopus 로고    scopus 로고
    • Predicting risk of emergency admission to hospital using primary care data: derivation and validation of QAdmissions score
    • Hippisley-Cox J, Coupland C. Predicting risk of emergency admission to hospital using primary care data: derivation and validation of QAdmissions score. BMJ Open. 2013;3(8):e003482.
    • (2013) BMJ Open. , vol.3 , Issue.8
    • Hippisley-Cox, J.1    Coupland, C.2
  • 122
    • 84873874670 scopus 로고    scopus 로고
    • Symptoms and risk factors to identify men with suspected cancer in primary care: derivation and validation of an algorithm
    • Hippisley-Cox J, Coupland C. Symptoms and risk factors to identify men with suspected cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract J R Coll Gen Pract. 2013;63(606):e1-e10.
    • (2013) Br J Gen Pract J R Coll Gen Pract. , vol.63 , Issue.606 , pp. E1-E10
    • Hippisley-Cox, J.1    Coupland, C.2
  • 123
    • 84873874430 scopus 로고    scopus 로고
    • Symptoms and risk factors to identify women with suspected cancer in primary care: derivation and validation of an algorithm
    • Hippisley-Cox J, Coupland C. Symptoms and risk factors to identify women with suspected cancer in primary care: derivation and validation of an algorithm. Br J Gen Pract J R Coll Gen Pract. 2013; 63(606):e11-e21.
    • (2013) Br J Gen Pract J R Coll Gen Pract. , vol.63 , Issue.606 , pp. E11-E21
    • Hippisley-Cox, J.1    Coupland, C.2
  • 124
    • 84904877971 scopus 로고    scopus 로고
    • Predicting risk of upper gastrointestinal bleed and intracranial bleed with anticoagulants: cohort study to derive and validate the QBleed scores
    • Hippisley-Cox J, Coupland C. Predicting risk of upper gastrointestinal bleed and intracranial bleed with anticoagulants: cohort study to derive and validate the QBleed scores. BMJ. 2014;349:g4606.
    • (2014) BMJ. , vol.349 , pp. G4606
    • Hippisley-Cox, J.1    Coupland, C.2
  • 125
    • 84915818745 scopus 로고    scopus 로고
    • External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination
    • Siontis GCM, Tzoulaki I, Castaldi PJ, Ioannidis JPA. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J Clin Epidemiol. 2015;68(1):25-34.
    • (2015) J Clin Epidemiol. , vol.68 , Issue.1 , pp. 25-34
    • Siontis, G.C.M.1    Tzoulaki, I.2    Castaldi, P.J.3    Ioannidis, J.P.A.4
  • 126
    • 84902385087 scopus 로고    scopus 로고
    • A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions
    • Wiens J, Guttag J, Horvitz E. A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions. J Am Med Inform Assoc. 2014;21(4):699-706.
    • (2014) J Am Med Inform Assoc. , vol.21 , Issue.4 , pp. 699-706
    • Wiens, J.1    Guttag, J.2    Horvitz, E.3
  • 127
    • 2542437775 scopus 로고    scopus 로고
    • Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study
    • Liu J, Hong Y, D'Agostino RB, et al. Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study. JAMA. 2004;291(21): 2591-2599.
    • (2004) JAMA. , vol.291 , Issue.21 , pp. 2591-2599
    • Liu, J.1    Hong, Y.2    D'Agostino, R.B.3
  • 129
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostat Oxf Engl. 2000;1(4):465-480.
    • (2000) Biostat Oxf Engl. , vol.1 , Issue.4 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 130
    • 84903895133 scopus 로고    scopus 로고
    • Prospective EHR-based clinical trials: the challenge of missing data
    • Kharrazi H, Wang C, Scharfstein D. Prospective EHR-based clinical trials: the challenge of missing data. J Gen Intern Med. 2014;29(7): 976-978.
    • (2014) J Gen Intern Med. , vol.29 , Issue.7 , pp. 976-978
    • Kharrazi, H.1    Wang, C.2    Scharfstein, D.3
  • 131
    • 84903315871 scopus 로고    scopus 로고
    • Hidden in plain sight: bias towards sick patients when sampling patients with sufficient electronic health record data for research.
    • Rusanov A,WeiskopfNG, Wang S, Weng C. Hidden in plain sight: bias towards sick patients when sampling patients with sufficient electronic health record data for research.BMCMed InformDecisMak. 2014;14:51.
    • (2014) BMC Med Inform DecisMak. , vol.14 , pp. 51
    • Rusanov, A.1    Weiskopf, N.G.2    Wang, S.3    Weng, C.4
  • 132
    • 85014692396 scopus 로고    scopus 로고
    • Controlling for informed presence bias due to the number of health encounters in an Electronic Health Record.
    • (in press).
    • Goldstein BA, Bhavsar NA, Phelan M, Pencina MJ. Controlling for informed presence bias due to the number of health encounters in an Electronic Health Record. Am J Epidemiol. (in press).
    • Am J Epidemiol.
    • Goldstein, B.A.1    Bhavsar, N.A.2    Phelan, M.3    Pencina, M.J.4
  • 133
    • 38749137358 scopus 로고    scopus 로고
    • Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve
    • Cook NR. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem. 2008;54(1):17-23.
    • (2008) Clin Chem. , vol.54 , Issue.1 , pp. 17-23
    • Cook, N.R.1
  • 135
    • 84880059657 scopus 로고    scopus 로고
    • The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future
    • Gottesman O, Kuivaniemi H, Tromp G, et al.; eMERGE Network. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med Off J Am Coll Med Genet. 2013;15(10): 761-771.
    • (2013) Genet Med Off J Am Coll Med Genet. , vol.15 , Issue.10 , pp. 761-771
    • Gottesman, O.1    Kuivaniemi, H.2    Tromp, G.3
  • 136
    • 84906222392 scopus 로고    scopus 로고
    • Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example
    • Goldstein BA, Knowles JW, Salfati E, Ioannidis JPA, Assimes TL. Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example. Front Genet. 2014;5:254.
    • (2014) Front Genet. , vol.5 , pp. 254
    • Goldstein, B.A.1    Knowles, J.W.2    Salfati, E.3    Ioannidis, J.P.A.4    Assimes, T.L.5
  • 137
    • 84885167900 scopus 로고    scopus 로고
    • Practical challenges in integrating genomic data into the electronic health record
    • Kho AN, Rasmussen LV, Connolly JJ, et al. Practical challenges in integrating genomic data into the electronic health record. Genet Med Off J Am Coll Med Genet. 2013;15(10):772-778.
    • (2013) Genet Med Off J Am Coll Med Genet. , vol.15 , Issue.10 , pp. 772-778
    • Kho, A.N.1    Rasmussen, L.V.2    Connolly, J.J.3
  • 138
    • 84885151712 scopus 로고    scopus 로고
    • Storing and interpreting genomic information in widely deployed electronic health record systems
    • Ury AG. Storing and interpreting genomic information in widely deployed electronic health record systems. Genet Med Off J Am Coll Med Genet. 2013;15(10):779-785.
    • (2013) Genet Med Off J Am Coll Med Genet. , vol.15 , Issue.10 , pp. 779-785
    • Ury, A.G.1
  • 139
    • 84953297333 scopus 로고    scopus 로고
    • Association of arrhythmia-related genetic variants with phenotypes documented in electronic medical records
    • Van Driest SL, Wells QS, Stallings S, et al. Association of arrhythmia-related genetic variants with phenotypes documented in electronic medical records. JAMA. 2016;315(1):47-57.
    • (2016) JAMA. , vol.315 , Issue.1 , pp. 47-57
    • Driest, V.S.L.1    Wells, Q.S.2    Stallings, S.3
  • 140
    • 84953218076 scopus 로고    scopus 로고
    • Establishing the clinical validity of arrhythmia-related genetic variations using the electronic medical record: a valid take on precision medicine
    • Feero WG. Establishing the clinical validity of arrhythmia-related genetic variations using the electronic medical record: a valid take on precision medicine JAMA. 2016;315(1):33-35.
    • (2016) JAMA. , vol.315 , Issue.1 , pp. 33-35
    • Feero, W.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.