메뉴 건너뛰기




Volumn 18, Issue 1, 2019, Pages

Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis

Author keywords

Cas12a; CRISPR; Genome engineering; In situ mutagenesis; Lactate; ssDNA recombineering; Zymomonas mobilis

Indexed keywords

ALCOHOL; CRISPR ASSOCIATED PROTEIN; ENDONUCLEASE; GUIDE RNA;

EID: 85072922690     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-019-1219-5     Document Type: Article
Times cited : (57)

References (52)
  • 1
    • 85045238084 scopus 로고    scopus 로고
    • Advances and prospects in metabolic engineering of Zymomonas mobilis
    • 1:CAS:528:DC%2BC1cXnsFCltL4%3D 29627506
    • Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, et al. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng. 2018;50:57-73.
    • (2018) Metab Eng , vol.50 , pp. 57-73
    • Wang, X.1    He, Q.2    Yang, Y.3    Wang, J.4    Haning, K.5    Hu, Y.6    Wu, B.7    He, M.8    Zhang, Y.9    Bao, J.10
  • 3
    • 33646237812 scopus 로고    scopus 로고
    • Zymomonas mobilis: An alternative ethanol producer
    • 1:CAS:528:DC%2BD28XjvFyjsLw%3D
    • Panesar PS, Marwaha SS, Kennedy JF. Zymomonas mobilis: an alternative ethanol producer. J Chem Technol Biot. 2006;81(4):623-35.
    • (2006) J Chem Technol Biot , vol.81 , Issue.4 , pp. 623-635
    • Panesar, P.S.1    Marwaha, S.S.2    Kennedy, J.F.3
  • 4
    • 85059676946 scopus 로고    scopus 로고
    • Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis
    • 30627218 6321654
    • Wu B, Qin H, Yang Y, Duan G, Yang S, Xin F, Zhao C, Shao H, Wang Y, Zhu Q, et al. Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis. Biotechnol Biofuels. 2019;12:10.
    • (2019) Biotechnol Biofuels , vol.12 , pp. 10
    • Wu, B.1    Qin, H.2    Yang, Y.3    Duan, G.4    Yang, S.5    Xin, F.6    Zhao, C.7    Shao, H.8    Wang, Y.9    Zhu, Q.10
  • 5
    • 0028953195 scopus 로고
    • Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis
    • 1:CAS:528:DyaK2MXjt1ensbw%3D 17791346
    • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science. 1995;267(5195):240-3.
    • (1995) Science , vol.267 , Issue.5195 , pp. 240-243
    • Zhang, M.1    Eddy, C.2    Deanda, K.3    Finkelstein, M.4    Picataggio, S.5
  • 6
    • 85062720442 scopus 로고    scopus 로고
    • Engineering Zymomonas mobilis for robust cellulosic ethanol production
    • 1:CAS:528:DC%2BC1MXjs1Ggs7w%3D 30876702
    • Xia J, Yang Y, Liu CG, Yang S, Bai FW. Engineering Zymomonas mobilis for robust cellulosic ethanol production. Trends Biotechnol. 2019;37(9):960-72.
    • (2019) Trends Biotechnol , vol.37 , Issue.9 , pp. 960-972
    • Xia, J.1    Yang, Y.2    Liu, C.G.3    Yang, S.4    Bai, F.W.5
  • 7
    • 85027946740 scopus 로고    scopus 로고
    • Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations
    • 22669340
    • Agrawal M, Wang Y, Chen RR. Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations. Biotechnol Lett. 2012;34(10):1825-32.
    • (2012) Biotechnol Lett , vol.34 , Issue.10 , pp. 1825-1832
    • Agrawal, M.1    Wang, Y.2    Chen, R.R.3
  • 9
    • 85046401337 scopus 로고    scopus 로고
    • Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032
    • 1:CAS:528:DC%2BC1MXhtFWhtL7I 29743953 5930841
    • Yang S, Vera JM, Grass J, Savvakis G, Moskvin OV, Yang Y, McIlwain SJ, Lyu Y, Zinonos I, Hebert AS, et al. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol Biofuels. 2018;11:125.
    • (2018) Biotechnol Biofuels , vol.11 , pp. 125
    • Yang, S.1    Vera, J.M.2    Grass, J.3    Savvakis, G.4    Moskvin, O.V.5    Yang, Y.6    McIlwain, S.J.7    Lyu, Y.8    Zinonos, I.9    Hebert, A.S.10
  • 10
    • 85045904766 scopus 로고    scopus 로고
    • Genome comparison of different Zymomonas mobilis strains provides insights on conservation of the evolution
    • 29694430 5919020
    • Chen C, Wu L, Cao Q, Shao H, Li X, Zhang Y, Wang H, Tan X. Genome comparison of different Zymomonas mobilis strains provides insights on conservation of the evolution. PLoS ONE. 2018;13(4):e0195994.
    • (2018) PLoS ONE , vol.13 , Issue.4 , pp. e0195994
    • Chen, C.1    Wu, L.2    Cao, Q.3    Shao, H.4    Li, X.5    Zhang, Y.6    Wang, H.7    Tan, X.8
  • 11
    • 85010203583 scopus 로고    scopus 로고
    • Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823)
    • 27056218 4824251
    • Zhao N, Pan Y, Liu H, Cheng Z. Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823). Genome Announc. 2016;4(2):e00193.
    • (2016) Genome Announc , vol.4 , Issue.2 , pp. e00193
    • Zhao, N.1    Pan, Y.2    Liu, H.3    Cheng, Z.4
  • 13
    • 84870704302 scopus 로고    scopus 로고
    • Draft genome sequence of the flocculating Zymomonas mobilis strain ZM401 (ATCC 31822)
    • 1:CAS:528:DC%2BC38XhvVahtb3I 23209250 3510618
    • Zhao N, Bai Y, Zhao XQ, Yang ZY, Bai FW. Draft genome sequence of the flocculating Zymomonas mobilis strain ZM401 (ATCC 31822). J Bacteriol. 2012;194(24):7008-9.
    • (2012) J Bacteriol , vol.194 , Issue.24 , pp. 7008-7009
    • Zhao, N.1    Bai, Y.2    Zhao, X.Q.3    Yang, Z.Y.4    Bai, F.W.5
  • 16
    • 0030907584 scopus 로고    scopus 로고
    • Transposon mutagenesis and strain construction in Zymomonas mobilis
    • 1:CAS:528:DyaK2sXitlartrs%3D 12455903
    • Pappas KM, Galani I, Typas MA. Transposon mutagenesis and strain construction in Zymomonas mobilis. J Appl Microbiol. 1997;82(3):379-88.
    • (1997) J Appl Microbiol , vol.82 , Issue.3 , pp. 379-388
    • Pappas, K.M.1    Galani, I.2    Typas, M.A.3
  • 17
    • 85034055122 scopus 로고    scopus 로고
    • RecET recombination system driving chromosomal target gene replacement in Zymomonas mobilis
    • 1:CAS:528:DC%2BC1cXhtVehtb4%3D
    • Wu Y, Li T, Cao Q, Li X, Zhang Y, Tan X. RecET recombination system driving chromosomal target gene replacement in Zymomonas mobilis. Electron J Biotechnol. 2017;30:118-24.
    • (2017) Electron J Biotechnol , vol.30 , pp. 118-124
    • Wu, Y.1    Li, T.2    Cao, Q.3    Li, X.4    Zhang, Y.5    Tan, X.6
  • 19
    • 85051024596 scopus 로고    scopus 로고
    • Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system
    • 1:CAS:528:DC%2BC1cXhsVKrtL3L 30081040
    • Zhang J, Hong W, Zong W, Wang P, Wang Y. Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system. J Biotechnol. 2018;284:27-30.
    • (2018) J Biotechnol , vol.284 , pp. 27-30
    • Zhang, J.1    Hong, W.2    Zong, W.3    Wang, P.4    Wang, Y.5
  • 20
    • 84986898390 scopus 로고    scopus 로고
    • Applications of CRISPR technologies in research and beyond
    • 1:CAS:528:DC%2BC28XhsVyhtrvF 27606440 27606440
    • Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34(9):933-41.
    • (2016) Nat Biotechnol , vol.34 , Issue.9 , pp. 933-941
    • Barrangou, R.1    Doudna, J.A.2
  • 21
    • 79953238744 scopus 로고    scopus 로고
    • CRISPR-Cas: An adaptive immunity system in prokaryotes
    • 20556198 2884157
    • Koonin EV, Makarova KS. CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep. 2009;1:95.
    • (2009) F1000 Biol Rep , vol.1 , pp. 95
    • Koonin, E.V.1    Makarova, K.S.2
  • 22
    • 84943160849 scopus 로고    scopus 로고
    • CRISPR-Cas immunity in prokaryotes
    • 1:CAS:528:DC%2BC2MXhs1SitLjL
    • Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature. 2015;526(7571):55-61.
    • (2015) Nature , vol.526 , Issue.7571 , pp. 55-61
    • Marraffini, L.A.1
  • 23
    • 84878936806 scopus 로고    scopus 로고
    • CRISPR-mediated adaptive immune systems in bacteria and archaea
    • 1:CAS:528:DC%2BC3sXhtFOqsrzK 23495939
    • Sorek R, Lawrence CM, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem. 2013;82:237-66.
    • (2013) Annu Rev Biochem , vol.82 , pp. 237-266
    • Sorek, R.1    Lawrence, C.M.2    Wiedenheft, B.3
  • 24
    • 85054124456 scopus 로고    scopus 로고
    • CRISPR-Cas9/Cas12a biotechnology and application in bacteria
    • 30345399 6190536
    • Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol. 2018;3(3):135-49.
    • (2018) Synth Syst Biotechnol , vol.3 , Issue.3 , pp. 135-149
    • Yao, R.1    Liu, D.2    Jia, X.3    Zheng, Y.4    Liu, W.5    Xiao, Y.6
  • 25
    • 85035805931 scopus 로고    scopus 로고
    • The conspicuity of CRISPR-Cpf1 system as a significant breakthrough in genome editing
    • 1:CAS:528:DC%2BC2sXhvV2lurbN 29189942
    • Bayat H, Modarressi MH, Rahimpour A. The conspicuity of CRISPR-Cpf1 system as a significant breakthrough in genome editing. Curr Microbiol. 2018;75(1):107-15.
    • (2018) Curr Microbiol , vol.75 , Issue.1 , pp. 107-115
    • Bayat, H.1    Modarressi, M.H.2    Rahimpour, A.3
  • 27
    • 85036534804 scopus 로고    scopus 로고
    • CRISPR-Cas type II-based synthetic biology applications in eukaryotic cells
    • 28136159 5711462
    • Marchisio MA, Huang Z. CRISPR-Cas type II-based synthetic biology applications in eukaryotic cells. RNA Biol. 2017;14(10):1286-93.
    • (2017) RNA Biol , vol.14 , Issue.10 , pp. 1286-1293
    • Marchisio, M.A.1    Huang, Z.2
  • 28
    • 84997272235 scopus 로고    scopus 로고
    • A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome
    • 1:CAS:528:DC%2BC28XitFSmtbbN 27883076 5121644
    • Su T, Liu F, Gu P, Jin H, Chang Y, Wang Q, Liang Q, Qi Q. A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci Rep. 2016;6:37895.
    • (2016) Sci Rep , vol.6 , pp. 37895
    • Su, T.1    Liu, F.2    Gu, P.3    Jin, H.4    Chang, Y.5    Wang, Q.6    Liang, Q.7    Qi, Q.8
  • 32
    • 85006870225 scopus 로고    scopus 로고
    • Cpf1 is a versatile tool for CRISPR genome editing across diverse species of Cyanobacteria
    • 1:CAS:528:DC%2BC28XitFGju7rE 28000776 5175191
    • Ungerer J, Pakrasi HB. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of Cyanobacteria. Sci Rep. 2016;6:39681.
    • (2016) Sci Rep , vol.6 , pp. 39681
    • Ungerer, J.1    Pakrasi, H.B.2
  • 33
    • 85012254087 scopus 로고    scopus 로고
    • Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4
    • 1:CAS:528:DC%2BC28XitVSms7zN 27900888
    • Cao QH, Shao HH, Qiu H, Li T, Zhang YZ, Tan XM. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4. Biosci Biotechnol Biochem. 2017;81(3):453-9.
    • (2017) Biosci Biotechnol Biochem , vol.81 , Issue.3 , pp. 453-459
    • Cao, Q.H.1    Shao, H.H.2    Qiu, H.3    Li, T.4    Zhang, Y.Z.5    Tan, X.M.6
  • 36
    • 84979224039 scopus 로고    scopus 로고
    • Type v CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition
    • 1:CAS:528:DC%2BC28XhtlSmsbvI 27444870 4973337
    • Gao P, Yang H, Rajashankar KR, Huang Z, Patel DJ. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 2016;26(8):901-13.
    • (2016) Cell Res , vol.26 , Issue.8 , pp. 901-913
    • Gao, P.1    Yang, H.2    Rajashankar, K.R.3    Huang, Z.4    Patel, D.J.5
  • 38
    • 85018632551 scopus 로고    scopus 로고
    • Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a
    • 1:CAS:528:DC%2BC2sXmsValsrY%3D 28431230
    • Swarts DC, van der Oost J, Jinek M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell. 2017;66(2):221-33.
    • (2017) Mol Cell , vol.66 , Issue.2 , pp. 221-233
    • Swarts, D.C.1    Van Der Oost, J.2    Jinek, M.3
  • 39
    • 85049079035 scopus 로고    scopus 로고
    • Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi)
    • 1:CAS:528:DC%2BC1cXht1CntrrE 29906505
    • Woolston BM, Emerson DF, Currie DH, Stephanopoulos G. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metab Eng. 2018;48:243-53.
    • (2018) Metab Eng , vol.48 , pp. 243-253
    • Woolston, B.M.1    Emerson, D.F.2    Currie, D.H.3    Stephanopoulos, G.4
  • 40
    • 85022113341 scopus 로고    scopus 로고
    • Multiplex gene regulation by CRISPR-ddCpf1
    • 1:CAS:528:DC%2BC2sXptlSksLw%3D 28607761 5460296
    • Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov. 2017;3:17018.
    • (2017) Cell Discov , vol.3 , pp. 17018
    • Zhang, X.1    Wang, J.2    Cheng, Q.3    Zheng, X.4    Zhao, G.5    Wang, J.6
  • 41
    • 85063034761 scopus 로고    scopus 로고
    • Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era
    • 30911332 6417218
    • Yang Y, Shen W, Huang J, Li R, Xiao Y, Wei H, Chou YC, Zhang M, Himmel ME, Chen S, et al. Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. Biotechnol Biofuels. 2019;12:52.
    • (2019) Biotechnol Biofuels , vol.12 , pp. 52
    • Yang, Y.1    Shen, W.2    Huang, J.3    Li, R.4    Xiao, Y.5    Wei, H.6    Chou, Y.C.7    Zhang, M.8    Himmel, M.E.9    Chen, S.10
  • 42
    • 0021745810 scopus 로고
    • Transformation of Zymomonas mobilis by a hybrid plasmid
    • 1:CAS:528:DyaL2MXlvFWiug%3D%3D 6098907
    • Browne GM, Skotnicki ML, Goodman AE, Rogers PL. Transformation of Zymomonas mobilis by a hybrid plasmid. Plasmid. 1984;12(3):211-4.
    • (1984) Plasmid , vol.12 , Issue.3 , pp. 211-214
    • Browne, G.M.1    Skotnicki, M.L.2    Goodman, A.E.3    Rogers, P.L.4
  • 43
    • 85030696088 scopus 로고    scopus 로고
    • A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a 'self-cleaving' GFP-expression plasmid
    • 1:CAS:528:DC%2BC1cXhtFajt7vK 28679166 5726473
    • Talas A, Kulcsar PI, Weinhardt N, Borsy A, Toth E, Szebenyi K, Krausz SL, Huszar K, Vida I, Sturm A, et al. A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a 'self-cleaving' GFP-expression plasmid. DNA Res. 2017;24(6):609-21.
    • (2017) DNA Res , vol.24 , Issue.6 , pp. 609-621
    • Talas, A.1    Kulcsar, P.I.2    Weinhardt, N.3    Borsy, A.4    Toth, E.5    Szebenyi, K.6    Krausz, S.L.7    Huszar, K.8    Vida, I.9    Sturm, A.10
  • 44
    • 79251568288 scopus 로고    scopus 로고
    • DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4
    • 1:CAS:528:DC%2BC3MXnsVWktA%3D%3D 20957358
    • Kerr AL, Jeon YJ, Svenson CJ, Rogers PL, Neilan BA. DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4. Appl Microbiol Biotechnol. 2011;89(3):761-9.
    • (2011) Appl Microbiol Biotechnol , vol.89 , Issue.3 , pp. 761-769
    • Kerr, A.L.1    Jeon, Y.J.2    Svenson, C.J.3    Rogers, P.L.4    Neilan, B.A.5
  • 45
    • 85045238084 scopus 로고    scopus 로고
    • Advances and prospects in metabolic engineering of Zymomonas mobilis
    • 1:CAS:528:DC%2BC1cXnsFCltL4%3D 29627506
    • Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, et al. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng. 2018;50:57-73.
    • (2018) Metab Eng , vol.50 , pp. 57-73
    • Wang, X.1    He, Q.2    Yang, Y.3    Wang, J.4    Haning, K.5    Hu, Y.6    Wu, B.7    He, M.8    Zhang, Y.9    Bao, J.10
  • 46
    • 85028122323 scopus 로고    scopus 로고
    • The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors
    • Yang S, Pelletier DA, Lu TY, Brown SD. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol. 2010;10(1):1-11.
    • (2010) BMC Microbiol , vol.10 , Issue.1 , pp. 1-11
    • Yang, S.1    Pelletier, D.A.2    Lu, T.Y.3    Brown, S.D.4
  • 48
    • 84984996817 scopus 로고    scopus 로고
    • Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars
    • 27594916 5010730
    • Yang S, Mohagheghi A, Franden MA, Chou YC, Chen X, Dowe N, Himmel ME, Zhang M. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol Biofuels. 2016;9(1):189.
    • (2016) Biotechnol Biofuels , vol.9 , Issue.1 , pp. 189
    • Yang, S.1    Mohagheghi, A.2    Franden, M.A.3    Chou, Y.C.4    Chen, X.5    Dowe, N.6    Himmel, M.E.7    Zhang, M.8
  • 49
    • 0038404541 scopus 로고    scopus 로고
    • Monitoring promoter activity in a single bacterial cell by using green and red fluorescent proteins
    • 1:CAS:528:DC%2BD3sXjsVWmtLo%3D 12732423
    • Hakkila K, Maksimow M, Rosengren A, Karp M, Virta M. Monitoring promoter activity in a single bacterial cell by using green and red fluorescent proteins. J Microbiol Methods. 2003;54(1):75-9.
    • (2003) J Microbiol Methods , vol.54 , Issue.1 , pp. 75-79
    • Hakkila, K.1    Maksimow, M.2    Rosengren, A.3    Karp, M.4    Virta, M.5
  • 50
    • 77955640606 scopus 로고    scopus 로고
    • Fluorescent proteins and their applications in imaging living cells and tissues
    • 1:CAS:528:DC%2BC3cXhtVyku7rJ 20664080
    • Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010;90(3):1103-63.
    • (2010) Physiol Rev , vol.90 , Issue.3 , pp. 1103-1163
    • Chudakov, D.M.1    Matz, M.V.2    Lukyanov, S.3    Lukyanov, K.A.4
  • 51
    • 11144267737 scopus 로고    scopus 로고
    • Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein
    • 1:CAS:528:DC%2BD2cXhtVCkurfK 15558047
    • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004;22(12):1567-72.
    • (2004) Nat Biotechnol , vol.22 , Issue.12 , pp. 1567-1572
    • Shaner, N.C.1    Campbell, R.E.2    Steinbach, P.A.3    Giepmans, B.N.4    Palmer, A.E.5    Tsien, R.Y.6
  • 52


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.