-
1
-
-
85045238084
-
Advances and prospects in metabolic engineering of Zymomonas mobilis
-
1:CAS:528:DC%2BC1cXnsFCltL4%3D 29627506
-
Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, et al. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng. 2018;50:57-73.
-
(2018)
Metab Eng
, vol.50
, pp. 57-73
-
-
Wang, X.1
He, Q.2
Yang, Y.3
Wang, J.4
Haning, K.5
Hu, Y.6
Wu, B.7
He, M.8
Zhang, Y.9
Bao, J.10
-
2
-
-
84987760520
-
Zymomonas mobilis as a model system for production of biofuels and biochemicals
-
1:CAS:528:DC%2BC28Xhs12lt7rL 27629544 5072187
-
Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol. 2016;9(6):699-717.
-
(2016)
Microb Biotechnol
, vol.9
, Issue.6
, pp. 699-717
-
-
Yang, S.1
Fei, Q.2
Zhang, Y.3
Contreras, L.M.4
Utturkar, S.M.5
Brown, S.D.6
Himmel, M.E.7
Zhang, M.8
-
3
-
-
33646237812
-
Zymomonas mobilis: An alternative ethanol producer
-
1:CAS:528:DC%2BD28XjvFyjsLw%3D
-
Panesar PS, Marwaha SS, Kennedy JF. Zymomonas mobilis: an alternative ethanol producer. J Chem Technol Biot. 2006;81(4):623-35.
-
(2006)
J Chem Technol Biot
, vol.81
, Issue.4
, pp. 623-635
-
-
Panesar, P.S.1
Marwaha, S.S.2
Kennedy, J.F.3
-
4
-
-
85059676946
-
Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis
-
30627218 6321654
-
Wu B, Qin H, Yang Y, Duan G, Yang S, Xin F, Zhao C, Shao H, Wang Y, Zhu Q, et al. Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis. Biotechnol Biofuels. 2019;12:10.
-
(2019)
Biotechnol Biofuels
, vol.12
, pp. 10
-
-
Wu, B.1
Qin, H.2
Yang, Y.3
Duan, G.4
Yang, S.5
Xin, F.6
Zhao, C.7
Shao, H.8
Wang, Y.9
Zhu, Q.10
-
5
-
-
0028953195
-
Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis
-
1:CAS:528:DyaK2MXjt1ensbw%3D 17791346
-
Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science. 1995;267(5195):240-3.
-
(1995)
Science
, vol.267
, Issue.5195
, pp. 240-243
-
-
Zhang, M.1
Eddy, C.2
Deanda, K.3
Finkelstein, M.4
Picataggio, S.5
-
6
-
-
85062720442
-
Engineering Zymomonas mobilis for robust cellulosic ethanol production
-
1:CAS:528:DC%2BC1MXjs1Ggs7w%3D 30876702
-
Xia J, Yang Y, Liu CG, Yang S, Bai FW. Engineering Zymomonas mobilis for robust cellulosic ethanol production. Trends Biotechnol. 2019;37(9):960-72.
-
(2019)
Trends Biotechnol
, vol.37
, Issue.9
, pp. 960-972
-
-
Xia, J.1
Yang, Y.2
Liu, C.G.3
Yang, S.4
Bai, F.W.5
-
7
-
-
85027946740
-
Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations
-
22669340
-
Agrawal M, Wang Y, Chen RR. Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations. Biotechnol Lett. 2012;34(10):1825-32.
-
(2012)
Biotechnol Lett
, vol.34
, Issue.10
, pp. 1825-1832
-
-
Agrawal, M.1
Wang, Y.2
Chen, R.R.3
-
8
-
-
85026473151
-
Genome sequence of Zymomonas mobilis subsp. mobilis NRRL B-1960
-
28751381 5532819
-
Chacon-Vargas K, Chirino AA, Davis MM, Debler SA, Haimer WR, Wilbur JJ, Mo X, Worthing BW, Wainblat EG, Zhao S, et al. Genome sequence of Zymomonas mobilis subsp. mobilis NRRL B-1960. Genome Announc. 2017;5(30):e00562.
-
(2017)
Genome Announc
, vol.5
, Issue.30
, pp. e00562
-
-
Chacon-Vargas, K.1
Chirino, A.A.2
Davis, M.M.3
Debler, S.A.4
Haimer, W.R.5
Wilbur, J.J.6
Mo, X.7
Worthing, B.W.8
Wainblat, E.G.9
Zhao, S.10
-
9
-
-
85046401337
-
Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032
-
1:CAS:528:DC%2BC1MXhtFWhtL7I 29743953 5930841
-
Yang S, Vera JM, Grass J, Savvakis G, Moskvin OV, Yang Y, McIlwain SJ, Lyu Y, Zinonos I, Hebert AS, et al. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol Biofuels. 2018;11:125.
-
(2018)
Biotechnol Biofuels
, vol.11
, pp. 125
-
-
Yang, S.1
Vera, J.M.2
Grass, J.3
Savvakis, G.4
Moskvin, O.V.5
Yang, Y.6
McIlwain, S.J.7
Lyu, Y.8
Zinonos, I.9
Hebert, A.S.10
-
10
-
-
85045904766
-
Genome comparison of different Zymomonas mobilis strains provides insights on conservation of the evolution
-
29694430 5919020
-
Chen C, Wu L, Cao Q, Shao H, Li X, Zhang Y, Wang H, Tan X. Genome comparison of different Zymomonas mobilis strains provides insights on conservation of the evolution. PLoS ONE. 2018;13(4):e0195994.
-
(2018)
PLoS ONE
, vol.13
, Issue.4
, pp. e0195994
-
-
Chen, C.1
Wu, L.2
Cao, Q.3
Shao, H.4
Li, X.5
Zhang, Y.6
Wang, H.7
Tan, X.8
-
11
-
-
85010203583
-
Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823)
-
27056218 4824251
-
Zhao N, Pan Y, Liu H, Cheng Z. Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823). Genome Announc. 2016;4(2):e00193.
-
(2016)
Genome Announc
, vol.4
, Issue.2
, pp. e00193
-
-
Zhao, N.1
Pan, Y.2
Liu, H.3
Cheng, Z.4
-
12
-
-
84998673632
-
Finished genome of Zymomonas mobilis subsp. mobilis strain CP4, an applied ethanol producer
-
24407627 3886940
-
Kouvelis VN, Teshima H, Bruce D, Detter C, Tapia R, Han C, Tampakopoulou VO, Goodwin L, Woyke T, Kyrpides NC, et al. Finished genome of Zymomonas mobilis subsp. mobilis strain CP4, an applied ethanol producer. Genome Announc. 2014;2(1):e00845.
-
(2014)
Genome Announc
, vol.2
, Issue.1
, pp. e00845
-
-
Kouvelis, V.N.1
Teshima, H.2
Bruce, D.3
Detter, C.4
Tapia, R.5
Han, C.6
Tampakopoulou, V.O.7
Goodwin, L.8
Woyke, T.9
Kyrpides, N.C.10
-
13
-
-
84870704302
-
Draft genome sequence of the flocculating Zymomonas mobilis strain ZM401 (ATCC 31822)
-
1:CAS:528:DC%2BC38XhvVahtb3I 23209250 3510618
-
Zhao N, Bai Y, Zhao XQ, Yang ZY, Bai FW. Draft genome sequence of the flocculating Zymomonas mobilis strain ZM401 (ATCC 31822). J Bacteriol. 2012;194(24):7008-9.
-
(2012)
J Bacteriol
, vol.194
, Issue.24
, pp. 7008-7009
-
-
Zhao, N.1
Bai, Y.2
Zhao, X.Q.3
Yang, Z.Y.4
Bai, F.W.5
-
14
-
-
70349959827
-
Improved genome annotation for Zymomonas mobilis
-
1:CAS:528:DC%2BD1MXht1Cisb%2FJ 19816441
-
Yang S, Pappas KM, Hauser LJ, Land ML, Chen GL, Hurst GB, Pan C, Kouvelis VN, Typas MA, Pelletier DA, et al. Improved genome annotation for Zymomonas mobilis. Nat Biotechnol. 2009;27(10):893-4.
-
(2009)
Nat Biotechnol
, vol.27
, Issue.10
, pp. 893-894
-
-
Yang, S.1
Pappas, K.M.2
Hauser, L.J.3
Land, M.L.4
Chen, G.L.5
Hurst, G.B.6
Pan, C.7
Kouvelis, V.N.8
Typas, M.A.9
Pelletier, D.A.10
-
15
-
-
85018853205
-
Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening
-
1:CAS:528:DC%2BC2sXmtlaks7k%3D 28333914 5526071
-
Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, Zhang F. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 2017;12(4):828-63.
-
(2017)
Nat Protoc
, vol.12
, Issue.4
, pp. 828-863
-
-
Joung, J.1
Konermann, S.2
Gootenberg, J.S.3
Abudayyeh, O.O.4
Platt, R.J.5
Brigham, M.D.6
Sanjana, N.E.7
Zhang, F.8
-
16
-
-
0030907584
-
Transposon mutagenesis and strain construction in Zymomonas mobilis
-
1:CAS:528:DyaK2sXitlartrs%3D 12455903
-
Pappas KM, Galani I, Typas MA. Transposon mutagenesis and strain construction in Zymomonas mobilis. J Appl Microbiol. 1997;82(3):379-88.
-
(1997)
J Appl Microbiol
, vol.82
, Issue.3
, pp. 379-388
-
-
Pappas, K.M.1
Galani, I.2
Typas, M.A.3
-
17
-
-
85034055122
-
RecET recombination system driving chromosomal target gene replacement in Zymomonas mobilis
-
1:CAS:528:DC%2BC1cXhtVehtb4%3D
-
Wu Y, Li T, Cao Q, Li X, Zhang Y, Tan X. RecET recombination system driving chromosomal target gene replacement in Zymomonas mobilis. Electron J Biotechnol. 2017;30:118-24.
-
(2017)
Electron J Biotechnol
, vol.30
, pp. 118-124
-
-
Wu, Y.1
Li, T.2
Cao, Q.3
Li, X.4
Zhang, Y.5
Tan, X.6
-
18
-
-
85027463310
-
CRISPR-Cas12a-Assisted recombineering in bacteria
-
1:CAS:528:DC%2BC2sXitVWrt73F 28646112 5561284
-
Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC. CRISPR-Cas12a-Assisted recombineering in bacteria. Appl Environ Microbiol. 2017;83(17):e00947.
-
(2017)
Appl Environ Microbiol
, vol.83
, Issue.17
, pp. e00947
-
-
Yan, M.Y.1
Yan, H.Q.2
Ren, G.X.3
Zhao, J.P.4
Guo, X.P.5
Sun, Y.C.6
-
19
-
-
85051024596
-
Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system
-
1:CAS:528:DC%2BC1cXhsVKrtL3L 30081040
-
Zhang J, Hong W, Zong W, Wang P, Wang Y. Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system. J Biotechnol. 2018;284:27-30.
-
(2018)
J Biotechnol
, vol.284
, pp. 27-30
-
-
Zhang, J.1
Hong, W.2
Zong, W.3
Wang, P.4
Wang, Y.5
-
20
-
-
84986898390
-
Applications of CRISPR technologies in research and beyond
-
1:CAS:528:DC%2BC28XhsVyhtrvF 27606440 27606440
-
Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34(9):933-41.
-
(2016)
Nat Biotechnol
, vol.34
, Issue.9
, pp. 933-941
-
-
Barrangou, R.1
Doudna, J.A.2
-
21
-
-
79953238744
-
CRISPR-Cas: An adaptive immunity system in prokaryotes
-
20556198 2884157
-
Koonin EV, Makarova KS. CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep. 2009;1:95.
-
(2009)
F1000 Biol Rep
, vol.1
, pp. 95
-
-
Koonin, E.V.1
Makarova, K.S.2
-
22
-
-
84943160849
-
CRISPR-Cas immunity in prokaryotes
-
1:CAS:528:DC%2BC2MXhs1SitLjL
-
Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature. 2015;526(7571):55-61.
-
(2015)
Nature
, vol.526
, Issue.7571
, pp. 55-61
-
-
Marraffini, L.A.1
-
23
-
-
84878936806
-
CRISPR-mediated adaptive immune systems in bacteria and archaea
-
1:CAS:528:DC%2BC3sXhtFOqsrzK 23495939
-
Sorek R, Lawrence CM, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem. 2013;82:237-66.
-
(2013)
Annu Rev Biochem
, vol.82
, pp. 237-266
-
-
Sorek, R.1
Lawrence, C.M.2
Wiedenheft, B.3
-
24
-
-
85054124456
-
CRISPR-Cas9/Cas12a biotechnology and application in bacteria
-
30345399 6190536
-
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol. 2018;3(3):135-49.
-
(2018)
Synth Syst Biotechnol
, vol.3
, Issue.3
, pp. 135-149
-
-
Yao, R.1
Liu, D.2
Jia, X.3
Zheng, Y.4
Liu, W.5
Xiao, Y.6
-
25
-
-
85035805931
-
The conspicuity of CRISPR-Cpf1 system as a significant breakthrough in genome editing
-
1:CAS:528:DC%2BC2sXhvV2lurbN 29189942
-
Bayat H, Modarressi MH, Rahimpour A. The conspicuity of CRISPR-Cpf1 system as a significant breakthrough in genome editing. Curr Microbiol. 2018;75(1):107-15.
-
(2018)
Curr Microbiol
, vol.75
, Issue.1
, pp. 107-115
-
-
Bayat, H.1
Modarressi, M.H.2
Rahimpour, A.3
-
26
-
-
84982855973
-
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
-
Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 2016;353(6299):5147.
-
(2016)
Science
, vol.353
, Issue.6299
, pp. 5147
-
-
Mohanraju, P.1
Makarova, K.S.2
Zetsche, B.3
Zhang, F.4
Koonin, E.V.5
Van Der Oost, J.6
-
27
-
-
85036534804
-
CRISPR-Cas type II-based synthetic biology applications in eukaryotic cells
-
28136159 5711462
-
Marchisio MA, Huang Z. CRISPR-Cas type II-based synthetic biology applications in eukaryotic cells. RNA Biol. 2017;14(10):1286-93.
-
(2017)
RNA Biol
, vol.14
, Issue.10
, pp. 1286-1293
-
-
Marchisio, M.A.1
Huang, Z.2
-
28
-
-
84997272235
-
A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome
-
1:CAS:528:DC%2BC28XitFSmtbbN 27883076 5121644
-
Su T, Liu F, Gu P, Jin H, Chang Y, Wang Q, Liang Q, Qi Q. A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci Rep. 2016;6:37895.
-
(2016)
Sci Rep
, vol.6
, pp. 37895
-
-
Su, T.1
Liu, F.2
Gu, P.3
Jin, H.4
Chang, Y.5
Wang, Q.6
Liang, Q.7
Qi, Q.8
-
29
-
-
85010207605
-
Diversity and evolution of class 2 CRISPR-Cas systems
-
1:CAS:528:DC%2BC2sXhtlens78%3D 28111461 5851899
-
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017;15(3):169-82.
-
(2017)
Nat Rev Microbiol
, vol.15
, Issue.3
, pp. 169-182
-
-
Shmakov, S.1
Smargon, A.2
Scott, D.3
Cox, D.4
Pyzocha, N.5
Yan, W.6
Abudayyeh, O.O.7
Gootenberg, J.S.8
Makarova, K.S.9
Wolf, Y.I.10
-
30
-
-
84969916078
-
A comprehensive, CRISPR-based functional analysis of essential genes in bacteria
-
1:STN:280:DC%2BC2s%2Fks1Sksw%3D%3D 27238023 4894308
-
Peters Jason M, Colavin A, Shi H, Czarny Tomasz L, Larson Matthew H, Wong S, Hawkins John S, Lu Candy HS, Koo B-M, Marta E, et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell. 2016;165(6):1493-506.
-
(2016)
Cell
, vol.165
, Issue.6
, pp. 1493-1506
-
-
Peters Jason, M.1
Colavin, A.2
Shi, H.3
Czarny Tomasz, L.4
Larson Matthew, H.5
Wong, S.6
Hawkins John, S.7
Lu Candy, H.S.8
Koo, B.-M.9
Marta, E.10
-
31
-
-
85020726978
-
CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum
-
28469274 5418603
-
Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179.
-
(2017)
Nat Commun
, vol.8
, pp. 15179
-
-
Jiang, Y.1
Qian, F.2
Yang, J.3
Liu, Y.4
Dong, F.5
Xu, C.6
Sun, B.7
Chen, B.8
Xu, X.9
Li, Y.10
-
32
-
-
85006870225
-
Cpf1 is a versatile tool for CRISPR genome editing across diverse species of Cyanobacteria
-
1:CAS:528:DC%2BC28XitFGju7rE 28000776 5175191
-
Ungerer J, Pakrasi HB. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of Cyanobacteria. Sci Rep. 2016;6:39681.
-
(2016)
Sci Rep
, vol.6
, pp. 39681
-
-
Ungerer, J.1
Pakrasi, H.B.2
-
33
-
-
85012254087
-
Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4
-
1:CAS:528:DC%2BC28XitVSms7zN 27900888
-
Cao QH, Shao HH, Qiu H, Li T, Zhang YZ, Tan XM. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4. Biosci Biotechnol Biochem. 2017;81(3):453-9.
-
(2017)
Biosci Biotechnol Biochem
, vol.81
, Issue.3
, pp. 453-459
-
-
Cao, Q.H.1
Shao, H.H.2
Qiu, H.3
Li, T.4
Zhang, Y.Z.5
Tan, X.M.6
-
34
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
1:CAS:528:DC%2BC2MXhsFKqtLvI 4638220 4638220
-
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759-71.
-
(2015)
Cell
, vol.163
, Issue.3
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
Volz, S.E.7
Joung, J.8
Van Der Oost, J.9
Regev, A.10
-
35
-
-
84963973892
-
Crystal structure of Cpf1 in complex with guide RNA and target DNA
-
1:CAS:528:DC%2BC28XmslSjsLk%3D 4899970 4899970
-
Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell. 2016;165(4):949-62.
-
(2016)
Cell
, vol.165
, Issue.4
, pp. 949-962
-
-
Yamano, T.1
Nishimasu, H.2
Zetsche, B.3
Hirano, H.4
Slaymaker, I.M.5
Li, Y.6
Fedorova, I.7
Nakane, T.8
Makarova, K.S.9
Koonin, E.V.10
-
36
-
-
84979224039
-
Type v CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition
-
1:CAS:528:DC%2BC28XhtlSmsbvI 27444870 4973337
-
Gao P, Yang H, Rajashankar KR, Huang Z, Patel DJ. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 2016;26(8):901-13.
-
(2016)
Cell Res
, vol.26
, Issue.8
, pp. 901-913
-
-
Gao, P.1
Yang, H.2
Rajashankar, K.R.3
Huang, Z.4
Patel, D.J.5
-
37
-
-
84979464834
-
Identifying and visualizing functional PAM diversity across CRISPR-Cas systems
-
1:CAS:528:DC%2BC28XlsVWitro%3D 27041224 4826307
-
Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE, Barrangou R, Beisel CL. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol Cell. 2016;62(1):137-47.
-
(2016)
Mol Cell
, vol.62
, Issue.1
, pp. 137-147
-
-
Leenay, R.T.1
Maksimchuk, K.R.2
Slotkowski, R.A.3
Agrawal, R.N.4
Gomaa, A.A.5
Briner, A.E.6
Barrangou, R.7
Beisel, C.L.8
-
38
-
-
85018632551
-
Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a
-
1:CAS:528:DC%2BC2sXmsValsrY%3D 28431230
-
Swarts DC, van der Oost J, Jinek M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell. 2017;66(2):221-33.
-
(2017)
Mol Cell
, vol.66
, Issue.2
, pp. 221-233
-
-
Swarts, D.C.1
Van Der Oost, J.2
Jinek, M.3
-
39
-
-
85049079035
-
Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi)
-
1:CAS:528:DC%2BC1cXht1CntrrE 29906505
-
Woolston BM, Emerson DF, Currie DH, Stephanopoulos G. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metab Eng. 2018;48:243-53.
-
(2018)
Metab Eng
, vol.48
, pp. 243-253
-
-
Woolston, B.M.1
Emerson, D.F.2
Currie, D.H.3
Stephanopoulos, G.4
-
40
-
-
85022113341
-
Multiplex gene regulation by CRISPR-ddCpf1
-
1:CAS:528:DC%2BC2sXptlSksLw%3D 28607761 5460296
-
Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov. 2017;3:17018.
-
(2017)
Cell Discov
, vol.3
, pp. 17018
-
-
Zhang, X.1
Wang, J.2
Cheng, Q.3
Zheng, X.4
Zhao, G.5
Wang, J.6
-
41
-
-
85063034761
-
Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era
-
30911332 6417218
-
Yang Y, Shen W, Huang J, Li R, Xiao Y, Wei H, Chou YC, Zhang M, Himmel ME, Chen S, et al. Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. Biotechnol Biofuels. 2019;12:52.
-
(2019)
Biotechnol Biofuels
, vol.12
, pp. 52
-
-
Yang, Y.1
Shen, W.2
Huang, J.3
Li, R.4
Xiao, Y.5
Wei, H.6
Chou, Y.C.7
Zhang, M.8
Himmel, M.E.9
Chen, S.10
-
42
-
-
0021745810
-
Transformation of Zymomonas mobilis by a hybrid plasmid
-
1:CAS:528:DyaL2MXlvFWiug%3D%3D 6098907
-
Browne GM, Skotnicki ML, Goodman AE, Rogers PL. Transformation of Zymomonas mobilis by a hybrid plasmid. Plasmid. 1984;12(3):211-4.
-
(1984)
Plasmid
, vol.12
, Issue.3
, pp. 211-214
-
-
Browne, G.M.1
Skotnicki, M.L.2
Goodman, A.E.3
Rogers, P.L.4
-
43
-
-
85030696088
-
A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a 'self-cleaving' GFP-expression plasmid
-
1:CAS:528:DC%2BC1cXhtFajt7vK 28679166 5726473
-
Talas A, Kulcsar PI, Weinhardt N, Borsy A, Toth E, Szebenyi K, Krausz SL, Huszar K, Vida I, Sturm A, et al. A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a 'self-cleaving' GFP-expression plasmid. DNA Res. 2017;24(6):609-21.
-
(2017)
DNA Res
, vol.24
, Issue.6
, pp. 609-621
-
-
Talas, A.1
Kulcsar, P.I.2
Weinhardt, N.3
Borsy, A.4
Toth, E.5
Szebenyi, K.6
Krausz, S.L.7
Huszar, K.8
Vida, I.9
Sturm, A.10
-
44
-
-
79251568288
-
DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4
-
1:CAS:528:DC%2BC3MXnsVWktA%3D%3D 20957358
-
Kerr AL, Jeon YJ, Svenson CJ, Rogers PL, Neilan BA. DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4. Appl Microbiol Biotechnol. 2011;89(3):761-9.
-
(2011)
Appl Microbiol Biotechnol
, vol.89
, Issue.3
, pp. 761-769
-
-
Kerr, A.L.1
Jeon, Y.J.2
Svenson, C.J.3
Rogers, P.L.4
Neilan, B.A.5
-
45
-
-
85045238084
-
Advances and prospects in metabolic engineering of Zymomonas mobilis
-
1:CAS:528:DC%2BC1cXnsFCltL4%3D 29627506
-
Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, et al. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng. 2018;50:57-73.
-
(2018)
Metab Eng
, vol.50
, pp. 57-73
-
-
Wang, X.1
He, Q.2
Yang, Y.3
Wang, J.4
Haning, K.5
Hu, Y.6
Wu, B.7
He, M.8
Zhang, Y.9
Bao, J.10
-
46
-
-
85028122323
-
The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors
-
Yang S, Pelletier DA, Lu TY, Brown SD. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol. 2010;10(1):1-11.
-
(2010)
BMC Microbiol
, vol.10
, Issue.1
, pp. 1-11
-
-
Yang, S.1
Pelletier, D.A.2
Lu, T.Y.3
Brown, S.D.4
-
47
-
-
61949193780
-
Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations
-
19154596 2651186
-
Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez M Jr, Brown SD. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics. 2009;10:34.
-
(2009)
BMC Genomics
, vol.10
, pp. 34
-
-
Yang, S.1
Tschaplinski, T.J.2
Engle, N.L.3
Carroll, S.L.4
Martin, S.L.5
Davison, B.H.6
Palumbo, A.V.7
Rodriguez, M.8
Brown, S.D.9
-
48
-
-
84984996817
-
Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars
-
27594916 5010730
-
Yang S, Mohagheghi A, Franden MA, Chou YC, Chen X, Dowe N, Himmel ME, Zhang M. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol Biofuels. 2016;9(1):189.
-
(2016)
Biotechnol Biofuels
, vol.9
, Issue.1
, pp. 189
-
-
Yang, S.1
Mohagheghi, A.2
Franden, M.A.3
Chou, Y.C.4
Chen, X.5
Dowe, N.6
Himmel, M.E.7
Zhang, M.8
-
49
-
-
0038404541
-
Monitoring promoter activity in a single bacterial cell by using green and red fluorescent proteins
-
1:CAS:528:DC%2BD3sXjsVWmtLo%3D 12732423
-
Hakkila K, Maksimow M, Rosengren A, Karp M, Virta M. Monitoring promoter activity in a single bacterial cell by using green and red fluorescent proteins. J Microbiol Methods. 2003;54(1):75-9.
-
(2003)
J Microbiol Methods
, vol.54
, Issue.1
, pp. 75-79
-
-
Hakkila, K.1
Maksimow, M.2
Rosengren, A.3
Karp, M.4
Virta, M.5
-
50
-
-
77955640606
-
Fluorescent proteins and their applications in imaging living cells and tissues
-
1:CAS:528:DC%2BC3cXhtVyku7rJ 20664080
-
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010;90(3):1103-63.
-
(2010)
Physiol Rev
, vol.90
, Issue.3
, pp. 1103-1163
-
-
Chudakov, D.M.1
Matz, M.V.2
Lukyanov, S.3
Lukyanov, K.A.4
-
51
-
-
11144267737
-
Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein
-
1:CAS:528:DC%2BD2cXhtVCkurfK 15558047
-
Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 2004;22(12):1567-72.
-
(2004)
Nat Biotechnol
, vol.22
, Issue.12
, pp. 1567-1572
-
-
Shaner, N.C.1
Campbell, R.E.2
Steinbach, P.A.3
Giepmans, B.N.4
Palmer, A.E.5
Tsien, R.Y.6
-
52
-
-
84865585678
-
Flow cytometry of fluorescent proteins
-
1:CAS:528:DC%2BC38XjtVWgtLw%3D 22293036
-
Telford WG, Hawley T, Subach F, Verkhusha V, Hawley RG. Flow cytometry of fluorescent proteins. Methods. 2012;57(3):318-30.
-
(2012)
Methods
, vol.57
, Issue.3
, pp. 318-330
-
-
Telford, W.G.1
Hawley, T.2
Subach, F.3
Verkhusha, V.4
Hawley, R.G.5
|