-
1
-
-
78649452309
-
Comparative evaluations of cellulosic raw materials for second generation bioethanol production
-
1:CAS:528:DC%2BC3cXhsFaitbbL
-
Jeon YJ, Xun Z, Rogers PL. Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Lett Appl Microbiol. 2010;51:518-24.
-
(2010)
Lett Appl Microbiol
, vol.51
, pp. 518-524
-
-
Jeon, Y.J.1
Xun, Z.2
Rogers, P.L.3
-
2
-
-
84856239135
-
Fermentation of reactive-membrane-extracted and ammonium-hydroxide-conditioned dilute-acid-pretreated corn stover
-
1:CAS:528:DC%2BC38XosFOhug%3D%3D
-
Grzenia DL, Wickramasinghe SR, Schell DJ. Fermentation of reactive-membrane-extracted and ammonium-hydroxide-conditioned dilute-acid-pretreated corn stover. Appl Biochem Biotechnol. 2012;166:470-8.
-
(2012)
Appl Biochem Biotechnol
, vol.166
, pp. 470-478
-
-
Grzenia, D.L.1
Wickramasinghe, S.R.2
Schell, D.J.3
-
3
-
-
0038754897
-
Cellulosic fuel ethanol: Alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis
-
Lawford HG, Rousseau JD. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis. Appl Biochem Biotechnol. 2003;105-108:457-69.
-
(2003)
Appl Biochem Biotechnol
, vol.105-108
, pp. 457-469
-
-
Lawford, H.G.1
Rousseau, J.D.2
-
4
-
-
0343183325
-
Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification
-
1:CAS:528:DC%2BD3cXjt1Kgtbk%3D
-
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol. 2000;74:17-24.
-
(2000)
Bioresour Technol
, vol.74
, pp. 17-24
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
5
-
-
1342265594
-
Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review
-
1:CAS:528:DC%2BD2cXhsFeltLo%3D
-
Mussatto SI, Roberto IC. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol. 2004;93:1-10.
-
(2004)
Bioresour Technol
, vol.93
, pp. 1-10
-
-
Mussatto, S.I.1
Roberto, I.C.2
-
6
-
-
36349013043
-
Ethanol fermentation technologies from sugar and starch feedstocks. Zymomonas mobilis: A bacterium for ethanol production
-
1:CAS:528:DC%2BD2sXhtlGnsrfJ
-
Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Zymomonas mobilis: a bacterium for ethanol production. Biotechnol Adv. 2008;26:89-105.
-
(2008)
Biotechnol Adv
, vol.26
, pp. 89-105
-
-
Bai, F.W.1
Anderson, W.A.2
Moo-Young, M.3
-
7
-
-
0030589557
-
Carbohydrate metabolism in Zymomonas mobilis: A catabolic highway with some scenic routes
-
1:CAS:528:DyaK28XntlOju7Y%3D
-
Sprenger GA. Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol Lett. 1996;145:301-7.
-
(1996)
FEMS Microbiol Lett
, vol.145
, pp. 301-307
-
-
Sprenger, G.A.1
-
8
-
-
33749137318
-
Physiology of Zymomonas mobilis: Some unanswered questions
-
1:CAS:528:DC%2BD1cXktVSiu7g%3D
-
Kalnenieks U. Physiology of Zymomonas mobilis: some unanswered questions. Adv Microb Physiol. 2006;51:73-117.
-
(2006)
Adv Microb Physiol
, vol.51
, pp. 73-117
-
-
Kalnenieks, U.1
-
9
-
-
0027335032
-
Zymomonas mobilis - Science and industrial application
-
1:CAS:528:DyaK3sXkslSgurc%3D
-
Doelle HW, Kirk L, Crittenden R, Toh H, Doelle MB. Zymomonas mobilis - science and industrial application. Crit Rev Biotechnol. 1993;13:57-98.
-
(1993)
Crit Rev Biotechnol
, vol.13
, pp. 57-98
-
-
Doelle, H.W.1
Kirk, L.2
Crittenden, R.3
Toh, H.4
Doelle, M.B.5
-
10
-
-
61949193780
-
Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations
-
Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez M Jr, Brown SD. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genom. 2009;10:34.
-
(2009)
BMC Genom
, vol.10
, pp. 34
-
-
Yang, S.1
Tschaplinski, T.J.2
Engle, N.L.3
Carroll, S.L.4
Martin, S.L.5
Davison, B.H.6
Palumbo, A.V.7
Rodriguez, M.8
Brown, S.D.9
-
11
-
-
84903421930
-
Zymomonas mobilis: A novel platform for future biorefineries
-
1:CAS:528:DC%2BC2cXhs12gsLfK
-
He M-X, Wu B, Qin H, Ruan Z-Y, Tan F-R, Wang JL, Shui ZX, Dai LC, Zhu QL, Pan K, Tang XY, Wang W-G, Hu Q-C. Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol Biofuels. 2014;7:101.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 101
-
-
He, M.-X.1
Wu, B.2
Qin, H.3
Ruan, Z.-Y.4
Tan, F.-R.5
Wang, J.L.6
Shui, Z.X.7
Dai, L.C.8
Zhu, Q.L.9
Pan, K.10
Tang, X.Y.11
Wang, W.-G.12
Hu, Q.-C.13
-
12
-
-
84987760520
-
Zymomonas mobilis as a model system for production of biofuels and biochemicals
-
1:CAS:528:DC%2BC28Xhs12lt7rL
-
Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol. 2016;9:699-717.
-
(2016)
Microb Biotechnol
, vol.9
, pp. 699-717
-
-
Yang, S.1
Fei, Q.2
Zhang, Y.3
Contreras, L.M.4
Utturkar, S.M.5
Brown, S.D.6
Himmel, M.E.7
Zhang, M.8
-
13
-
-
85045238084
-
Advances and prospects in metabolic engineering of Zymomonas mobilis
-
(in press)
-
Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, Contreras LM, Yang S. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng. 2018. (in press).
-
(2018)
Metab Eng.
-
-
Wang, X.1
He, Q.2
Yang, Y.3
Wang, J.4
Haning, K.5
Hu, Y.6
Wu, B.7
He, M.8
Zhang, Y.9
Bao, J.10
Contreras, L.M.11
Yang, S.12
-
14
-
-
85035055621
-
Advances in cellulosic conversion to fuels: Engineering yeasts for cellulosic bioethanol and biodiesel production
-
1:CAS:528:DC%2BC2sXhvVOrsLvF
-
Ko JK, Lee SM. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production. Curr Opin Biotechnol. 2018;50:72-80.
-
(2018)
Curr Opin Biotechnol
, vol.50
, pp. 72-80
-
-
Ko, J.K.1
Lee, S.M.2
-
15
-
-
70449413186
-
Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli
-
Mills TY, Sandoval NR, Gill RT. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels. 2009;2:26.
-
(2009)
Biotechnol Biofuels
, vol.2
, pp. 26
-
-
Mills, T.Y.1
Sandoval, N.R.2
Gill, R.T.3
-
16
-
-
33746948929
-
Ehancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide
-
1:CAS:528:DC%2BD28XntFWhsLw%3D
-
Baumler DJ, Hung KF, Bose JL, Vykhodets BM, Cheng CM, Jeong K-C, Kaspar CW. Ehancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide. Appl Biochem Biotechnol. 2006;134:15-26.
-
(2006)
Appl Biochem Biotechnol
, vol.134
, pp. 15-26
-
-
Baumler, D.J.1
Hung, K.F.2
Bose, J.L.3
Vykhodets, B.M.4
Cheng, C.M.5
Jeong, K.-C.6
Kaspar, C.W.7
-
17
-
-
85028122323
-
The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors
-
Yang S, Pelletier DA, Lu TY, Brown SD. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol. 2010;10:135.
-
(2010)
BMC Microbiol
, vol.10
, pp. 135
-
-
Yang, S.1
Pelletier, D.A.2
Lu, T.Y.3
Brown, S.D.4
-
18
-
-
84930765100
-
Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors
-
1:CAS:528:DC%2BC2MXnvFSmsro%3D
-
Shui ZX, Qin H, Wu B, Ruan ZY, Wang LS, Tan FR, Wang JL, Tang XY, Dai LC, Hu GQ, He MX. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl Microbiol Biotechnol. 2015;99:5739-48.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 5739-5748
-
-
Shui, Z.X.1
Qin, H.2
Wu, B.3
Ruan, Z.Y.4
Wang, L.S.5
Tan, F.R.6
Wang, J.L.7
Tang, X.Y.8
Dai, L.C.9
Hu, G.Q.10
He, M.X.11
-
19
-
-
84952683004
-
Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis
-
1:CAS:528:DC%2BC2MXitVyqt7rJ
-
Ma K, Ruan Z, Shui Z, Wang Y, Hu G, He M. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. Bioresour Technol. 2016;203:295-302.
-
(2016)
Bioresour Technol
, vol.203
, pp. 295-302
-
-
Ma, K.1
Ruan, Z.2
Shui, Z.3
Wang, Y.4
Hu, G.5
He, M.6
-
20
-
-
0031909350
-
A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations
-
Joachinsthal E, Haggett KD, Jang J-H, Rogers PL. A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol Lett. 1998;20:137-42.
-
(1998)
Biotechnol Lett
, vol.20
, pp. 137-142
-
-
Joachinsthal, E.1
Haggett, K.D.2
Jang, J.-H.3
Rogers, P.L.4
-
21
-
-
0020335418
-
Kinetic studies on a flocculent strain of Zymomonas mobilis
-
1:CAS:528:DyaL38XlvFKkurY%3D
-
Lee JH, Skotnicki ML, Rogers PL. Kinetic studies on a flocculent strain of Zymomonas mobilis. Biotechnol Lett. 1982;4:615-20.
-
(1982)
Biotechnol Lett
, vol.4
, pp. 615-620
-
-
Lee, J.H.1
Skotnicki, M.L.2
Rogers, P.L.3
-
22
-
-
85059675424
-
Recent progress on atmospheric and room temperature plasma (ARTP) biobreeding technology, instrumentation and its industrialization
-
(in Chinese)
-
Wu Y-N, Xing X-H, Zhang C, Lin H-P, Wang L-Y. Recent progress on atmospheric and room temperature plasma (ARTP) biobreeding technology, instrumentation and its industrialization. Biotechnol Econ (Sheng Wu Chan Ye Ji Shu). 2017;1:37-45 (in Chinese).
-
(2017)
Biotechnol Econ (Sheng Wu Chan Ye Ji Shu)
, vol.1
, pp. 37-45
-
-
Wu, Y.-N.1
Xing, X.-H.2
Zhang, C.3
Lin, H.-P.4
Wang, L.-Y.5
-
23
-
-
84903816810
-
Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool
-
1:CAS:528:DC%2BC2cXntVert70%3D
-
Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, Bao CY. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol. 2014;98:5387-96.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 5387-5396
-
-
Zhang, X.1
Zhang, X.F.2
Li, H.P.3
Wang, L.Y.4
Zhang, C.5
Xing, X.H.6
Bao, C.Y.7
-
24
-
-
84995767472
-
Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization
-
Ma Y, Shen W, Chen X, Liu L, Zhou Z, Xu F, Yang H. Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization. J Biol Eng. 2016;10:13.
-
(2016)
J Biol Eng
, vol.10
, pp. 13
-
-
Ma, Y.1
Shen, W.2
Chen, X.3
Liu, L.4
Zhou, Z.5
Xu, F.6
Yang, H.7
-
25
-
-
85028376200
-
Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization
-
1:CAS:528:DC%2BC2sXhtlCns77P
-
Dong TT, Gong JS, Gu BC, Zhang Q, Li H, Lu ZM, Lu ML, Shi JS, Xu ZH. Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization. Bioresour Technol. 2017;244:1104-10.
-
(2017)
Bioresour Technol
, vol.244
, pp. 1104-1110
-
-
Dong, T.T.1
Gong, J.S.2
Gu, B.C.3
Zhang, Q.4
Li, H.5
Lu, Z.M.6
Lu, M.L.7
Shi, J.S.8
Xu, Z.H.9
-
26
-
-
85052969365
-
Utilization of rare codon-rich markers for screening amino acid overproducers
-
Zheng B, Ma X, Wang N, Ding T, Guo L, Zhang X, Yang Y, Li C, Huo YX. Utilization of rare codon-rich markers for screening amino acid overproducers. Nat Commun. 2018;9:3616.
-
(2018)
Nat Commun
, vol.9
, pp. 3616
-
-
Zheng, B.1
Ma, X.2
Wang, N.3
Ding, T.4
Guo, L.5
Zhang, X.6
Yang, Y.7
Li, C.8
Huo, Y.X.9
-
27
-
-
85052122101
-
Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering
-
Jin J, Wang Y, Yao M, Gu X, Li B, Liu H, Ding M, Xiao W, Yuan Y. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering. Biotechnol Biofuels. 2018;11:230.
-
(2018)
Biotechnol Biofuels
, vol.11
, pp. 230
-
-
Jin, J.1
Wang, Y.2
Yao, M.3
Gu, X.4
Li, B.5
Liu, H.6
Ding, M.7
Xiao, W.8
Yuan, Y.9
-
28
-
-
84897577909
-
Novel mutant strains of Rhodosporidium toruloides by plasma mutagenesis approach and their tolerance for inhibitors in lignocellulosic hydrolyzate
-
1:CAS:528:DC%2BC3sXhtlCnsL3P
-
Qi F, Kitahara Y, Wang Z, Zhao X, Du W, Liu D. Novel mutant strains of Rhodosporidium toruloides by plasma mutagenesis approach and their tolerance for inhibitors in lignocellulosic hydrolyzate. J Chem Technol Biotechnol. 2014;89:735-42.
-
(2014)
J Chem Technol Biotechnol
, vol.89
, pp. 735-742
-
-
Qi, F.1
Kitahara, Y.2
Wang, Z.3
Zhao, X.4
Du, W.5
Liu, D.6
-
29
-
-
84930752572
-
Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis
-
1:CAS:528:DC%2BC2MXptlOrt7g%3D
-
Zhang X, Zhang C, Zhou QQ, Zhang XF, Wang LY, Chang HB, Li HP, Oda Y, Xing XH. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl Microbiol Biotechnol. 2015;99:5639-46.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 5639-5646
-
-
Zhang, X.1
Zhang, C.2
Zhou, Q.Q.3
Zhang, X.F.4
Wang, L.Y.5
Chang, H.B.6
Li, H.P.7
Oda, Y.8
Xing, X.H.9
-
30
-
-
85050385662
-
Enhancing transglutaminase production of Streptomyces mobaraensis by iterative mutagenesis breeding with atmospheric and room-temperature plasma (ARTP)
-
Jiang Y, Shang YP, Li H, Zhang C, Pan J, Bai YP, Li CX, Xu JH. Enhancing transglutaminase production of Streptomyces mobaraensis by iterative mutagenesis breeding with atmospheric and room-temperature plasma (ARTP). Bioresour Bioprocess. 2017;4:37.
-
(2017)
Bioresour Bioprocess
, vol.4
, pp. 37
-
-
Jiang, Y.1
Shang, Y.P.2
Li, H.3
Zhang, C.4
Pan, J.5
Bai, Y.P.6
Li, C.X.7
Xu, J.H.8
-
31
-
-
84861999245
-
Transcriptome profiling of Zymomonas mobilis under furfural stress
-
1:CAS:528:DC%2BC38XotVShtL4%3D
-
He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH. Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl Microbiol Biotechnol. 2012;95:189-99.
-
(2012)
Appl Microbiol Biotechnol
, vol.95
, pp. 189-199
-
-
He, M.X.1
Wu, B.2
Shui, Z.X.3
Hu, Q.C.4
Wang, W.G.5
Tan, F.R.6
Tang, X.Y.7
Zhu, Q.L.8
Pan, K.9
Li, Q.10
Su, X.H.11
-
32
-
-
84907690081
-
Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates
-
Yang S, Franden MA, Brown SD, Chou Y-C, Pienkos PT, Zhang M. Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates. Biotechnol Biofues. 2014;7:140.
-
(2014)
Biotechnol Biofues
, vol.7
, pp. 140
-
-
Yang, S.1
Franden, M.A.2
Brown, S.D.3
Chou, Y.-C.4
Pienkos, P.T.5
Zhang, M.6
-
33
-
-
84984629805
-
Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae
-
Narayanan V, Sanchez INV, van Niel EWJ, Gorwa-Grauslund MF. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae. AMB Express. 2016;6:59.
-
(2016)
AMB Express
, vol.6
, pp. 59
-
-
Narayanan, V.1
Sanchez, I.N.V.2
Van Niel, E.W.J.3
Gorwa-Grauslund, M.F.4
-
34
-
-
84897591238
-
Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass
-
1:CAS:528:DC%2BC3sXhvFGrsbjO
-
Zhao N, Bai Y, Liu CG, Zhao XQ, Xu JF, Bai FW. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol J. 2014;9:362-71.
-
(2014)
Biotechnol J
, vol.9
, pp. 362-371
-
-
Zhao, N.1
Bai, Y.2
Liu, C.G.3
Zhao, X.Q.4
Xu, J.F.5
Bai, F.W.6
-
35
-
-
84922985148
-
Coupled ARTP and ALE strategy to improve anaerobic cell growth and succinic acid production by Escherichia coli
-
1:CAS:528:DC%2BC2MXkvVaitLk%3D
-
Ma J-F, Wu M-K, Zhang C-Q, He A-Y, Kong X-P, Li G-L, Wei C, Jiang M. Coupled ARTP and ALE strategy to improve anaerobic cell growth and succinic acid production by Escherichia coli. J Chem Technol Biotechnol. 2016;91:711-7.
-
(2016)
J Chem Technol Biotechnol
, vol.91
, pp. 711-717
-
-
Ma, J.-F.1
Wu, M.-K.2
Zhang, C.-Q.3
He, A.-Y.4
Kong, X.-P.5
Li, G.-L.6
Wei, C.7
Jiang, M.8
-
36
-
-
85009211712
-
ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production
-
1:CAS:528:DC%2BC2sXnvVSgtg%3D%3D
-
Gu C, Wang G, Mai S, Wu P, Wu J, Wang G, Liu H, Zhang J. ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Appl Microbiol Biotechnol. 2017;101:2189-99.
-
(2017)
Appl Microbiol Biotechnol
, vol.101
, pp. 2189-2199
-
-
Gu, C.1
Wang, G.2
Mai, S.3
Wu, P.4
Wu, J.5
Wang, G.6
Liu, H.7
Zhang, J.8
-
37
-
-
77953738245
-
Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC3cXnvVCiurw%3D
-
Yang S, Land ML, Klingeman DM, Pelletier DA, Lu TY, Martin SL, Guo HB, Smith JC, Brown SD. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2010;107:10395-400.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 10395-10400
-
-
Yang, S.1
Land, M.L.2
Klingeman, D.M.3
Pelletier, D.A.4
Lu, T.Y.5
Martin, S.L.6
Guo, H.B.7
Smith, J.C.8
Brown, S.D.9
-
38
-
-
85026634870
-
Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation
-
Liu YF, Hsieh CW, Chang YS, Wung BS. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. BMC Biotechnol. 2017;17:63.
-
(2017)
BMC Biotechnol
, vol.17
, pp. 63
-
-
Liu, Y.F.1
Hsieh, C.W.2
Chang, Y.S.3
Wung, B.S.4
-
39
-
-
84947588183
-
Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid
-
1:CAS:528:DC%2BC2MXhvVOru7nF
-
Zhai Z, An H, Wang G, Luo Y, Hao Y. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid. Sci Rep. 2015;5:17024.
-
(2015)
Sci Rep
, vol.5
, pp. 17024
-
-
Zhai, Z.1
An, H.2
Wang, G.3
Luo, Y.4
Hao, Y.5
-
40
-
-
2942593979
-
Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance
-
1:CAS:528:DC%2BD2cXktlOlsLw%3D
-
Len AC, Harty DW, Jacques NA. Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology. 2004;150:1353-66.
-
(2004)
Microbiology
, vol.150
, pp. 1353-1366
-
-
Len, A.C.1
Harty, D.W.2
Jacques, N.A.3
-
41
-
-
84871860184
-
Functional gamma-aminobutyrate shunt in Listeria monocytogenes: Role in acid tolerance and succinate biosynthesis
-
1:CAS:528:DC%2BC3sXkvVKjs7o%3D
-
Feehily C, O'Byrne CP, Karatzas KA. Functional gamma-aminobutyrate shunt in Listeria monocytogenes: role in acid tolerance and succinate biosynthesis. Appl Environ Microbiol. 2013;79:74-80.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 74-80
-
-
Feehily, C.1
O'Byrne, C.P.2
Karatzas, K.A.3
-
42
-
-
84861214431
-
The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans
-
1:CAS:528:DC%2BC38Xls1Slu7g%3D
-
Santiago B, MacGilvray M, Faustoferri RC, Quivey RG Jr. The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans. J Bacteriol. 2012;194:2010-9.
-
(2012)
J Bacteriol
, vol.194
, pp. 2010-2019
-
-
Santiago, B.1
Macgilvray, M.2
Faustoferri, R.C.3
Quivey, R.G.4
-
43
-
-
0029117343
-
GlmS of Thermus thermophilus HB8: An essential gene for cell-wall synthesis identified immediately upstream of the S-layer gene
-
Fernández-Herrero LA, Badet-Denisot M-A, Badet B, Berenguer J. glmS of Thermus thermophilus HB8: an essential gene for cell-wall synthesis identified immediately upstream of the S-layer gene. Mol Microbiol. 1995;17:1-12.
-
(1995)
Mol Microbiol
, vol.17
, pp. 1-12
-
-
Fernández-Herrero, L.A.1
Badet-Denisot, M.-A.2
Badet, B.3
Berenguer, J.4
-
44
-
-
0029565269
-
Low pH adaptation and the acid tolerance response of Salmonella typhimurium
-
1:CAS:528:DyaK28Xmt1WhsA%3D%3D
-
Foster JW. Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit Rev Microbiol. 1995;21:215-37.
-
(1995)
Crit Rev Microbiol
, vol.21
, pp. 215-237
-
-
Foster, J.W.1
-
45
-
-
57049124285
-
Acid stress damage of DNA is prevented by Dps binding in Escherichia coli O157:H7
-
Jeong KC, Hung KF, Baumler DJ, Byrd JJ, Kaspar CW. Acid stress damage of DNA is prevented by Dps binding in Escherichia coli O157:H7. BMC Microbiol. 2008;8:181.
-
(2008)
BMC Microbiol
, vol.8
, pp. 181
-
-
Jeong, K.C.1
Hung, K.F.2
Baumler, D.J.3
Byrd, J.J.4
Kaspar, C.W.5
-
46
-
-
33644890216
-
Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors
-
1:CAS:528:DC%2BD28XhvFKrsbo%3D
-
Yokoyama K, Ishijima SA, Clowney L, Koike H, Aramaki H, Tanaka C, Makino K, Suzuki M. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors. FEMS Microbiol Rev. 2006;30:89-108.
-
(2006)
FEMS Microbiol Rev
, vol.30
, pp. 89-108
-
-
Yokoyama, K.1
Ishijima, S.A.2
Clowney, L.3
Koike, H.4
Aramaki, H.5
Tanaka, C.6
Makino, K.7
Suzuki, M.8
-
47
-
-
79251623822
-
Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to NaCl, sucrose and desiccation, and in biofilm formation
-
1:CAS:528:DC%2BC3MXnsVOntw%3D%3D
-
Velazquez-Hernandez ML, Baizabal-Aguirre VM, Cruz-Vazquez F, Trejo-Contreras MJ, Fuentes-Ramirez LE, Bravo-Patino A, Cajero-Juarez M, Chavez-Moctezuma MP, Valdez-Alarcon JJ. Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to NaCl, sucrose and desiccation, and in biofilm formation. Arch Microbiol. 2011;193:137-49.
-
(2011)
Arch Microbiol
, vol.193
, pp. 137-149
-
-
Velazquez-Hernandez, M.L.1
Baizabal-Aguirre, V.M.2
Cruz-Vazquez, F.3
Trejo-Contreras, M.J.4
Fuentes-Ramirez, L.E.5
Bravo-Patino, A.6
Cajero-Juarez, M.7
Chavez-Moctezuma, M.P.8
Valdez-Alarcon, J.J.9
-
49
-
-
84994050008
-
Overexpression of a water-forming NADH oxidase improves the metabolism and stress tolerance of Saccharomyces cerevisiae in aerobic fermentation
-
27679617 5020133
-
Shi X, Zou Y, Chen Y, Zheng C, Ying H. Overexpression of a water-forming NADH oxidase improves the metabolism and stress tolerance of Saccharomyces cerevisiae in aerobic fermentation. Front Microbiol. 2016;7:1427.
-
(2016)
Front Microbiol
, vol.7
, pp. 1427
-
-
Shi, X.1
Zou, Y.2
Chen, Y.3
Zheng, C.4
Ying, H.5
-
50
-
-
85031694804
-
Replacing process water and nitrogen sources with biogas slurry during cellulosic ethanol production
-
You Y, Wu B, Yang YW, Wang YW, Liu S, Zhu QL, Qin H, Tan FR, Ruan ZY, Ma KD, Dai LC, Zhang M, Hu GQ, He MX. Replacing process water and nitrogen sources with biogas slurry during cellulosic ethanol production. Biotechnol Biofuels. 2017;10:236.
-
(2017)
Biotechnol Biofuels
, vol.10
, pp. 236
-
-
You, Y.1
Wu, B.2
Yang, Y.W.3
Wang, Y.W.4
Liu, S.5
Zhu, Q.L.6
Qin, H.7
Tan, F.R.8
Ruan, Z.Y.9
Ma, K.D.10
Dai, L.C.11
Zhang, M.12
Hu, G.Q.13
He, M.X.14
|