메뉴 건너뛰기




Volumn 37, Issue 9, 2019, Pages 960-972

Engineering Zymomonas mobilis for Robust Cellulosic Ethanol Production

Author keywords

cellulosic ethanol production; lignocellulosic biomass; pentose metabolism; Saccharomyces cerevisiae; self flocculation of microbial cells; Zymomonas mobilis

Indexed keywords

BIOETHANOL; CELL ENGINEERING; ETHANOL; FLOCCULATION; METABOLIC ENGINEERING; METABOLISM; OSTWALD RIPENING; PHYSIOLOGY; YEAST;

EID: 85062720442     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2019.02.002     Document Type: Review
Times cited : (100)

References (64)
  • 1
    • 84976587210 scopus 로고    scopus 로고
    • Benefits and perspectives on the use of biofuels
    • Ramos, J.L., et al. Benefits and perspectives on the use of biofuels. Microb. Biotechnol. 9 (2016), 436–440.
    • (2016) Microb. Biotechnol. , vol.9 , pp. 436-440
    • Ramos, J.L.1
  • 2
    • 84907616799 scopus 로고    scopus 로고
    • Sustainable bio-ethanol production from agro-residues: a review
    • Gupta, A., Verma, J.P., Sustainable bio-ethanol production from agro-residues: a review. Renew. Sust. Energy Rev. 41 (2015), 550–567.
    • (2015) Renew. Sust. Energy Rev. , vol.41 , pp. 550-567
    • Gupta, A.1    Verma, J.P.2
  • 3
    • 84909606170 scopus 로고    scopus 로고
    • Bioenergy and biofuels: history, status, and perspective
    • Guo, M.X., et al. Bioenergy and biofuels: history, status, and perspective. Renew. Sust. Energy Rev. 42 (2015), 712–725.
    • (2015) Renew. Sust. Energy Rev. , vol.42 , pp. 712-725
    • Guo, M.X.1
  • 4
    • 85019592584 scopus 로고    scopus 로고
    • Cellulosic ethanol: status and innovation
    • Lynd, L.R., et al. Cellulosic ethanol: status and innovation. Curr. Opin. Biotechnol. 45 (2017), 202–211.
    • (2017) Curr. Opin. Biotechnol. , vol.45 , pp. 202-211
    • Lynd, L.R.1
  • 5
    • 84920729256 scopus 로고    scopus 로고
    • Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes
    • Gombert, A.K., van Maris, A.J.A., Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Curr. Opin. Biotechnol. 33 (2015), 81–86.
    • (2015) Curr. Opin. Biotechnol. , vol.33 , pp. 81-86
    • Gombert, A.K.1    van Maris, A.J.A.2
  • 6
    • 84953838860 scopus 로고    scopus 로고
    • Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization
    • Guerriero, G., et al. Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng. Life Sci. 16 (2016), 1–16.
    • (2016) Eng. Life Sci. , vol.16 , pp. 1-16
    • Guerriero, G.1
  • 7
    • 85019083029 scopus 로고    scopus 로고
    • Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective
    • Kwak, S., Jin, Y.S., Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb. Cell Fact., 16, 2017, 82.
    • (2017) Microb. Cell Fact. , vol.16 , pp. 82
    • Kwak, S.1    Jin, Y.S.2
  • 8
    • 84960406322 scopus 로고    scopus 로고
    • Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipites
    • Okonkwo, C.C., et al. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipites. Bioprocess Biosyst. Eng. 39 (2016), 1023–1032.
    • (2016) Bioprocess Biosyst. Eng. , vol.39 , pp. 1023-1032
    • Okonkwo, C.C.1
  • 9
    • 85053526123 scopus 로고    scopus 로고
    • Pentose metabolism in Saccharomyces cerevisiae: the need to engineer global regulatory systems
    • Gopinarayanan, V.E., Nair, N.U., Pentose metabolism in Saccharomyces cerevisiae: the need to engineer global regulatory systems. Biotechnol. J., 14, 2019, 1800364.
    • (2019) Biotechnol. J. , vol.14 , pp. 1800364
    • Gopinarayanan, V.E.1    Nair, N.U.2
  • 10
    • 84960927374 scopus 로고    scopus 로고
    • Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway
    • Ko, J.K., et al. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresour. Technol. 209 (2016), 290–296.
    • (2016) Bioresour. Technol. , vol.209 , pp. 290-296
    • Ko, J.K.1
  • 11
    • 0017361914 scopus 로고
    • The biology of Zymomonas
    • Swings, J., DeLey, J., The biology of Zymomonas. Bacteriol. Rev. 41 (1977), 1–46.
    • (1977) Bacteriol. Rev. , vol.41 , pp. 1-46
    • Swings, J.1    DeLey, J.2
  • 12
    • 0023142272 scopus 로고
    • Pyruvate decarboxylase of Zymomonas mobilis: isolation, properties, and genetic expression in Escherichia coli
    • Neale, A.D., et al. Pyruvate decarboxylase of Zymomonas mobilis: isolation, properties, and genetic expression in Escherichia coli. J. Bacteriol. 169 (1987), 1024–1028.
    • (1987) J. Bacteriol. , vol.169 , pp. 1024-1028
    • Neale, A.D.1
  • 13
    • 0023039990 scopus 로고
    • The two alcohol dehydrogenases of Zymomonas mobilis: purification, molecular characterization and physiological roles
    • Neale, A.D., et al. The two alcohol dehydrogenases of Zymomonas mobilis: purification, molecular characterization and physiological roles. Eur. J. Biochem. 154 (1986), 119–124.
    • (1986) Eur. J. Biochem. , vol.154 , pp. 119-124
    • Neale, A.D.1
  • 14
    • 0001795936 scopus 로고
    • Ethanol production by Zymomonas mobilis
    • Rogers, P.L., et al. Ethanol production by Zymomonas mobilis. Adv. Biochem. Eng. 23 (1982), 37–84.
    • (1982) Adv. Biochem. Eng. , vol.23 , pp. 37-84
    • Rogers, P.L.1
  • 15
    • 0030589557 scopus 로고    scopus 로고
    • Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes
    • Sprenger, G.A., Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol. Lett. 145 (1996), 301–307.
    • (1996) FEMS Microbiol. Lett. , vol.145 , pp. 301-307
    • Sprenger, G.A.1
  • 16
    • 84964883276 scopus 로고    scopus 로고
    • The low energy-coupling respiration in Zymomonas mobilis accelerates flux in the Entner-Doudoroff pathway
    • Rutkis, R., et al. The low energy-coupling respiration in Zymomonas mobilis accelerates flux in the Entner-Doudoroff pathway. PLoS One, 11, 2016, e0153866.
    • (2016) PLoS One , vol.11
    • Rutkis, R.1
  • 17
    • 84897591238 scopus 로고    scopus 로고
    • Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass
    • Zhao, N., et al. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol. J. 9 (2014), 362–371.
    • (2014) Biotechnol. J. , vol.9 , pp. 362-371
    • Zhao, N.1
  • 18
    • 34250238329 scopus 로고
    • Continuous ethanol production using cell recycle with a settler
    • De Boks, P.A., van Eybergen, G.C., Continuous ethanol production using cell recycle with a settler. Biotechnol. Lett. 3 (1981), 577–582.
    • (1981) Biotechnol. Lett. , vol.3 , pp. 577-582
    • De Boks, P.A.1    van Eybergen, G.C.2
  • 19
    • 70349781700 scopus 로고    scopus 로고
    • Yeast flocculation: new story in fuel ethanol production
    • Zhao, X.Q., Bai, F.W., Yeast flocculation: new story in fuel ethanol production. Biotechnol. Adv. 27 (2009), 849–856.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 849-856
    • Zhao, X.Q.1    Bai, F.W.2
  • 20
    • 84982121502 scopus 로고    scopus 로고
    • Quorum sensing signal-response systems in gram negative bacteria
    • Papenfort, K., Bassler, B.L., Quorum sensing signal-response systems in gram negative bacteria. Nat. Rev. Microbiol. 14 (2016), 576–588.
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 576-588
    • Papenfort, K.1    Bassler, B.L.2
  • 21
    • 84951112599 scopus 로고    scopus 로고
    • Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects
    • Jönsson, L.J., Martín, C., Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199 (2016), 103–112.
    • (2016) Bioresour. Technol. , vol.199 , pp. 103-112
    • Jönsson, L.J.1    Martín, C.2
  • 22
    • 25144494777 scopus 로고    scopus 로고
    • Intragenic tandem repeats generate functional variability
    • Verstrepen, K.J., et al. Intragenic tandem repeats generate functional variability. Nat. Genet. 37 (2005), 986–990.
    • (2005) Nat. Genet. , vol.37 , pp. 986-990
    • Verstrepen, K.J.1
  • 23
    • 85053466901 scopus 로고    scopus 로고
    • Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis
    • Xia, J., et al. Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis. Biotechnol. Bioeng. 115 (2018), 2714–2725.
    • (2018) Biotechnol. Bioeng. , vol.115 , pp. 2714-2725
    • Xia, J.1
  • 24
    • 0028953195 scopus 로고
    • Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis
    • Zhang, M., et al. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267 (1995), 240–243.
    • (1995) Science , vol.267 , pp. 240-243
    • Zhang, M.1
  • 25
    • 0029910097 scopus 로고    scopus 로고
    • Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering
    • Deanda, K., et al. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62 (1996), 4465–4470.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 4465-4470
    • Deanda, K.1
  • 26
    • 84904998972 scopus 로고    scopus 로고
    • Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis
    • Dunn, K.L., Rao, C.V., Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 98 (2014), 6897–6905.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 6897-6905
    • Dunn, K.L.1    Rao, C.V.2
  • 27
    • 84995790462 scopus 로고    scopus 로고
    • Genetic engineering and improvement of a Zymomonas mobilis for arabinose utilization and its performance on pretreated corn stover hydrolyzate
    • Chou, Y.C., et al. Genetic engineering and improvement of a Zymomonas mobilis for arabinose utilization and its performance on pretreated corn stover hydrolyzate. J. Biotechnol. Biomater. 139 (2015), 71–81.
    • (2015) J. Biotechnol. Biomater. , vol.139 , pp. 71-81
    • Chou, Y.C.1
  • 28
    • 79952601863 scopus 로고    scopus 로고
    • Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain
    • Agrawal, M., et al. Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol. Bioeng. 108 (2011), 777–785.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 777-785
    • Agrawal, M.1
  • 29
    • 84893176388 scopus 로고    scopus 로고
    • Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose
    • Mohagheghi, A., et al. Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose. Biotechnol. Biofuels, 7, 2014, 19.
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 19
    • Mohagheghi, A.1
  • 30
    • 84942373869 scopus 로고    scopus 로고
    • High-throughput sequencing reveals adaption-induced mutations in pentose-fermenting strains of Zymomonas mobilis
    • Dunn, K.L., Rao, C.V., High-throughput sequencing reveals adaption-induced mutations in pentose-fermenting strains of Zymomonas mobilis. Biotechnol. Bioeng. 112 (2015), 2228–2239.
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 2228-2239
    • Dunn, K.L.1    Rao, C.V.2
  • 31
    • 85045904766 scopus 로고    scopus 로고
    • Genome comparison of different Zymomonas mobilis strains provides insights on conservation of the evolution
    • Chen, C., et al. Genome comparison of different Zymomonas mobilis strains provides insights on conservation of the evolution. PLoS One, 13, 2018, 4.
    • (2018) PLoS One , vol.13 , pp. 4
    • Chen, C.1
  • 32
    • 84923308098 scopus 로고    scopus 로고
    • 2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis
    • 2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 2222–2226.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 2222-2226
    • Kremer, T.A.1
  • 33
    • 84954516494 scopus 로고    scopus 로고
    • Scaling up and benchmarking of ethanol production from pelletized pilot scale AFEX treated corn stover using Zymomonas mobilis 8b
    • 353–262
    • Sarks, C.S., et al. Scaling up and benchmarking of ethanol production from pelletized pilot scale AFEX treated corn stover using Zymomonas mobilis 8b. Biofuels, 7, 2016 353–262.
    • (2016) Biofuels , vol.7
    • Sarks, C.S.1
  • 34
    • 84964796105 scopus 로고    scopus 로고
    • Next-generation ammonia pretreatment enhances cellulosic biofuel production
    • Sousa, L.C., et al. Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ. Sci. 9 (2016), 1215–1223.
    • (2016) Energy Environ. Sci. , vol.9 , pp. 1215-1223
    • Sousa, L.C.1
  • 35
    • 21144437397 scopus 로고    scopus 로고
    • The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4
    • Seo, J.S., et al. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 23 (2005), 63–68.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 63-68
    • Seo, J.S.1
  • 36
    • 84946062939 scopus 로고    scopus 로고
    • The cytosolic pH of individual Saccharomyces cerevisiae cells is a key factor in acetic acid tolerance
    • 7813–1821
    • Fernández-Niňo, M., et al. The cytosolic pH of individual Saccharomyces cerevisiae cells is a key factor in acetic acid tolerance. Appl. Environ. Microbiol., 81, 2015 7813–1821.
    • (2015) Appl. Environ. Microbiol. , vol.81
    • Fernández-Niňo, M.1
  • 37
    • 84907690081 scopus 로고    scopus 로고
    • Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates
    • Yang, S., et al. Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates. Biotechnol. Biofuels, 7, 2014, 140.
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 140
    • Yang, S.1
  • 38
    • 84926032612 scopus 로고    scopus 로고
    • Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate
    • Mohagheghi, A., et al. Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate. Biotechnol. Biofuels, 8, 2015, 55.
    • (2015) Biotechnol. Biofuels , vol.8 , pp. 55
    • Mohagheghi, A.1
  • 39
    • 84938809242 scopus 로고    scopus 로고
    • Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae
    • Unrean, P., Franzen, C.J., Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae. Biotechnol. J. 10 (2015), 1248–1258.
    • (2015) Biotechnol. J. , vol.10 , pp. 1248-1258
    • Unrean, P.1    Franzen, C.J.2
  • 40
    • 85006511799 scopus 로고    scopus 로고
    • Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural
    • Jung, Y.H., et al. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural. Microbial. Biotechnol. 10 (2017), 395–404.
    • (2017) Microbial. Biotechnol. , vol.10 , pp. 395-404
    • Jung, Y.H.1
  • 41
    • 85046452594 scopus 로고    scopus 로고
    • Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds
    • Liu, Z.L., Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl. Microbiol. Biotechnol. 102 (2018), 5369–5390.
    • (2018) Appl. Microbiol. Biotechnol. , vol.102 , pp. 5369-5390
    • Liu, Z.L.1
  • 42
    • 85027245670 scopus 로고    scopus 로고
    • Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration
    • Wang, X., et al. Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. Biotechnol. Biofuels, 10, 2017, 24.
    • (2017) Biotechnol. Biofuels , vol.10 , pp. 24
    • Wang, X.1
  • 43
    • 85029478418 scopus 로고    scopus 로고
    • Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase
    • Yee, K.L., et al. Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase. Enzyme Microb. Technol. 108 (2018), 59–65.
    • (2018) Enzyme Microb. Technol. , vol.108 , pp. 59-65
    • Yee, K.L.1
  • 44
    • 85038013523 scopus 로고    scopus 로고
    • Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution
    • Janusz, G., et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 41 (2017), 941–962.
    • (2017) FEMS Microbiol. Rev. , vol.41 , pp. 941-962
    • Janusz, G.1
  • 45
    • 84930765100 scopus 로고    scopus 로고
    • Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors
    • Shui, Z.X., et al. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl. Microbiol. Biotechnol. 99 (2015), 5739–5748.
    • (2015) Appl. Microbiol. Biotechnol. , vol.99 , pp. 5739-5748
    • Shui, Z.X.1
  • 46
    • 85042233453 scopus 로고    scopus 로고
    • Furfural-tolerant Zymomonas mobilis derived from error-prone PCR-based whole genome shuffling and their tolerant mechanism
    • Huang, S.Z., et al. Furfural-tolerant Zymomonas mobilis derived from error-prone PCR-based whole genome shuffling and their tolerant mechanism. Appl. Microbiol. Biotechnol. 102 (2018), 3337–3347.
    • (2018) Appl. Microbiol. Biotechnol. , vol.102 , pp. 3337-3347
    • Huang, S.Z.1
  • 47
    • 84900453510 scopus 로고    scopus 로고
    • Lignin valorization: improving lignin processing in the biorefinery
    • Ragauskas, A.J., et al. Lignin valorization: improving lignin processing in the biorefinery. Science, 344, 2014, 709.
    • (2014) Science , vol.344 , pp. 709
    • Ragauskas, A.J.1
  • 48
    • 84960390972 scopus 로고    scopus 로고
    • Opportunities and challenges in biological lignin valorization
    • Beckham, G.T., et al. Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42 (2016), 40–53.
    • (2016) Curr. Opin. Biotechnol. , vol.42 , pp. 40-53
    • Beckham, G.T.1
  • 49
    • 84947022296 scopus 로고    scopus 로고
    • The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates
    • Adeboye, P.T., et al. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Exp., 4, 2014, 46.
    • (2014) AMB Exp. , vol.4 , pp. 46
    • Adeboye, P.T.1
  • 50
    • 84959110976 scopus 로고    scopus 로고
    • Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products
    • Adeboye, P.T., Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products. Microb. Cell Fact., 14, 2015, 149.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 149
    • Adeboye, P.T.1
  • 51
    • 85013350246 scopus 로고    scopus 로고
    • ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae
    • Adeboye, P.T., et al. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae. Sci. Rep., 7, 2017, 42635.
    • (2017) Sci. Rep. , vol.7 , pp. 42635
    • Adeboye, P.T.1
  • 52
    • 84937731519 scopus 로고    scopus 로고
    • High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue
    • Gu, H.Q., et al. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Biotechnol. Bioeng. 112 (2015), 1770–1782.
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 1770-1782
    • Gu, H.Q.1
  • 53
    • 84959557202 scopus 로고    scopus 로고
    • Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment
    • Yi, X., et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol. Biofuels, 8, 2015, 153.
    • (2015) Biotechnol. Biofuels , vol.8 , pp. 153
    • Yi, X.1
  • 54
    • 70349959827 scopus 로고    scopus 로고
    • Improved genome annotation for Zymomonas mobilis
    • Yang, S.H., et al. Improved genome annotation for Zymomonas mobilis. Nat. Biotechnol. 27 (2009), 893–894.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 893-894
    • Yang, S.H.1
  • 55
    • 78751658356 scopus 로고    scopus 로고
    • Genome-scale modeling and in silico analysis of ethanologenic bacteriium Zymomonas mobilis
    • Widiastuti, H., et al. Genome-scale modeling and in silico analysis of ethanologenic bacteriium Zymomonas mobilis. Biotechnol. Bioeng. 108 (2011), 655–665.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 655-665
    • Widiastuti, H.1
  • 56
    • 84880487156 scopus 로고    scopus 로고
    • Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses
    • Yang, S.H., et al. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS One, 7, 2013, e68886.
    • (2013) PLoS One , vol.7
    • Yang, S.H.1
  • 57
    • 85055587727 scopus 로고    scopus 로고
    • Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in Zymomonas mobilis ZM4
    • Chang, D.D., et al. Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in Zymomonas mobilis ZM4. Biotechnol. Biofuels, 11, 2018, 283.
    • (2018) Biotechnol. Biofuels , vol.11 , pp. 283
    • Chang, D.D.1
  • 58
    • 85060330747 scopus 로고    scopus 로고
    • New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis
    • Published online January 19, 2019
    • Zhang, et al. New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Appl. Microb. Biotechnol., 2019, 10.1007/s00253-019-09620-6 Published online January 19, 2019.
    • (2019) Appl. Microb. Biotechnol.
    • Zhang1
  • 59
    • 78549287163 scopus 로고    scopus 로고
    • The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies
    • Lee, et al. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb. Cell Fact., 9, 2010, 94.
    • (2010) Microb. Cell Fact. , vol.9 , pp. 94
    • Lee1
  • 60
    • 84875644160 scopus 로고    scopus 로고
    • Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism
    • Pentjuss, et al. Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism. J. Biotechnol. 165 (2013), 1–10.
    • (2013) J. Biotechnol. , vol.165 , pp. 1-10
    • Pentjuss1
  • 61
    • 84987760520 scopus 로고    scopus 로고
    • Zymomonas mobilis as a model system for production of biofuels and biochemicals
    • Yang, S., et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb. Biotechnol. 9 (2016), 699–717.
    • (2016) Microb. Biotechnol. , vol.9 , pp. 699-717
    • Yang, S.1
  • 62
    • 84955185848 scopus 로고    scopus 로고
    • Lignocellulosic ethanol: technology design and its impact on process efficiency
    • Paulova, L., et al. Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol. Adv. 33 (2015), 1091–1107.
    • (2015) Biotechnol. Adv. , vol.33 , pp. 1091-1107
    • Paulova, L.1
  • 63
    • 84921305890 scopus 로고    scopus 로고
    • Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products
    • Maitan-Alfenas, G.P., et al. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr. Opin. Food Sci. 1 (2015), 44–49.
    • (2015) Curr. Opin. Food Sci. , vol.1 , pp. 44-49
    • Maitan-Alfenas, G.P.1
  • 64
    • 84890786451 scopus 로고    scopus 로고
    • Lignocellulosic ethanol production at high-gravity: challenges and perspectives
    • Koppram, R., et al. Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol. 32 (2014), 46–53.
    • (2014) Trends Biotechnol. , vol.32 , pp. 46-53
    • Koppram, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.