-
1
-
-
84976587210
-
Benefits and perspectives on the use of biofuels
-
Ramos, J.L., et al. Benefits and perspectives on the use of biofuels. Microb. Biotechnol. 9 (2016), 436–440.
-
(2016)
Microb. Biotechnol.
, vol.9
, pp. 436-440
-
-
Ramos, J.L.1
-
2
-
-
84907616799
-
Sustainable bio-ethanol production from agro-residues: a review
-
Gupta, A., Verma, J.P., Sustainable bio-ethanol production from agro-residues: a review. Renew. Sust. Energy Rev. 41 (2015), 550–567.
-
(2015)
Renew. Sust. Energy Rev.
, vol.41
, pp. 550-567
-
-
Gupta, A.1
Verma, J.P.2
-
3
-
-
84909606170
-
Bioenergy and biofuels: history, status, and perspective
-
Guo, M.X., et al. Bioenergy and biofuels: history, status, and perspective. Renew. Sust. Energy Rev. 42 (2015), 712–725.
-
(2015)
Renew. Sust. Energy Rev.
, vol.42
, pp. 712-725
-
-
Guo, M.X.1
-
4
-
-
85019592584
-
Cellulosic ethanol: status and innovation
-
Lynd, L.R., et al. Cellulosic ethanol: status and innovation. Curr. Opin. Biotechnol. 45 (2017), 202–211.
-
(2017)
Curr. Opin. Biotechnol.
, vol.45
, pp. 202-211
-
-
Lynd, L.R.1
-
5
-
-
84920729256
-
Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes
-
Gombert, A.K., van Maris, A.J.A., Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Curr. Opin. Biotechnol. 33 (2015), 81–86.
-
(2015)
Curr. Opin. Biotechnol.
, vol.33
, pp. 81-86
-
-
Gombert, A.K.1
van Maris, A.J.A.2
-
6
-
-
84953838860
-
Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization
-
Guerriero, G., et al. Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng. Life Sci. 16 (2016), 1–16.
-
(2016)
Eng. Life Sci.
, vol.16
, pp. 1-16
-
-
Guerriero, G.1
-
7
-
-
85019083029
-
Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective
-
Kwak, S., Jin, Y.S., Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb. Cell Fact., 16, 2017, 82.
-
(2017)
Microb. Cell Fact.
, vol.16
, pp. 82
-
-
Kwak, S.1
Jin, Y.S.2
-
8
-
-
84960406322
-
Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipites
-
Okonkwo, C.C., et al. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipites. Bioprocess Biosyst. Eng. 39 (2016), 1023–1032.
-
(2016)
Bioprocess Biosyst. Eng.
, vol.39
, pp. 1023-1032
-
-
Okonkwo, C.C.1
-
9
-
-
85053526123
-
Pentose metabolism in Saccharomyces cerevisiae: the need to engineer global regulatory systems
-
Gopinarayanan, V.E., Nair, N.U., Pentose metabolism in Saccharomyces cerevisiae: the need to engineer global regulatory systems. Biotechnol. J., 14, 2019, 1800364.
-
(2019)
Biotechnol. J.
, vol.14
, pp. 1800364
-
-
Gopinarayanan, V.E.1
Nair, N.U.2
-
10
-
-
84960927374
-
Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway
-
Ko, J.K., et al. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresour. Technol. 209 (2016), 290–296.
-
(2016)
Bioresour. Technol.
, vol.209
, pp. 290-296
-
-
Ko, J.K.1
-
11
-
-
0017361914
-
The biology of Zymomonas
-
Swings, J., DeLey, J., The biology of Zymomonas. Bacteriol. Rev. 41 (1977), 1–46.
-
(1977)
Bacteriol. Rev.
, vol.41
, pp. 1-46
-
-
Swings, J.1
DeLey, J.2
-
12
-
-
0023142272
-
Pyruvate decarboxylase of Zymomonas mobilis: isolation, properties, and genetic expression in Escherichia coli
-
Neale, A.D., et al. Pyruvate decarboxylase of Zymomonas mobilis: isolation, properties, and genetic expression in Escherichia coli. J. Bacteriol. 169 (1987), 1024–1028.
-
(1987)
J. Bacteriol.
, vol.169
, pp. 1024-1028
-
-
Neale, A.D.1
-
13
-
-
0023039990
-
The two alcohol dehydrogenases of Zymomonas mobilis: purification, molecular characterization and physiological roles
-
Neale, A.D., et al. The two alcohol dehydrogenases of Zymomonas mobilis: purification, molecular characterization and physiological roles. Eur. J. Biochem. 154 (1986), 119–124.
-
(1986)
Eur. J. Biochem.
, vol.154
, pp. 119-124
-
-
Neale, A.D.1
-
14
-
-
0001795936
-
Ethanol production by Zymomonas mobilis
-
Rogers, P.L., et al. Ethanol production by Zymomonas mobilis. Adv. Biochem. Eng. 23 (1982), 37–84.
-
(1982)
Adv. Biochem. Eng.
, vol.23
, pp. 37-84
-
-
Rogers, P.L.1
-
15
-
-
0030589557
-
Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes
-
Sprenger, G.A., Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol. Lett. 145 (1996), 301–307.
-
(1996)
FEMS Microbiol. Lett.
, vol.145
, pp. 301-307
-
-
Sprenger, G.A.1
-
16
-
-
84964883276
-
The low energy-coupling respiration in Zymomonas mobilis accelerates flux in the Entner-Doudoroff pathway
-
Rutkis, R., et al. The low energy-coupling respiration in Zymomonas mobilis accelerates flux in the Entner-Doudoroff pathway. PLoS One, 11, 2016, e0153866.
-
(2016)
PLoS One
, vol.11
-
-
Rutkis, R.1
-
17
-
-
84897591238
-
Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass
-
Zhao, N., et al. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol. J. 9 (2014), 362–371.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 362-371
-
-
Zhao, N.1
-
18
-
-
34250238329
-
Continuous ethanol production using cell recycle with a settler
-
De Boks, P.A., van Eybergen, G.C., Continuous ethanol production using cell recycle with a settler. Biotechnol. Lett. 3 (1981), 577–582.
-
(1981)
Biotechnol. Lett.
, vol.3
, pp. 577-582
-
-
De Boks, P.A.1
van Eybergen, G.C.2
-
19
-
-
70349781700
-
Yeast flocculation: new story in fuel ethanol production
-
Zhao, X.Q., Bai, F.W., Yeast flocculation: new story in fuel ethanol production. Biotechnol. Adv. 27 (2009), 849–856.
-
(2009)
Biotechnol. Adv.
, vol.27
, pp. 849-856
-
-
Zhao, X.Q.1
Bai, F.W.2
-
20
-
-
84982121502
-
Quorum sensing signal-response systems in gram negative bacteria
-
Papenfort, K., Bassler, B.L., Quorum sensing signal-response systems in gram negative bacteria. Nat. Rev. Microbiol. 14 (2016), 576–588.
-
(2016)
Nat. Rev. Microbiol.
, vol.14
, pp. 576-588
-
-
Papenfort, K.1
Bassler, B.L.2
-
21
-
-
84951112599
-
Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects
-
Jönsson, L.J., Martín, C., Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199 (2016), 103–112.
-
(2016)
Bioresour. Technol.
, vol.199
, pp. 103-112
-
-
Jönsson, L.J.1
Martín, C.2
-
22
-
-
25144494777
-
Intragenic tandem repeats generate functional variability
-
Verstrepen, K.J., et al. Intragenic tandem repeats generate functional variability. Nat. Genet. 37 (2005), 986–990.
-
(2005)
Nat. Genet.
, vol.37
, pp. 986-990
-
-
Verstrepen, K.J.1
-
23
-
-
85053466901
-
Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis
-
Xia, J., et al. Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis. Biotechnol. Bioeng. 115 (2018), 2714–2725.
-
(2018)
Biotechnol. Bioeng.
, vol.115
, pp. 2714-2725
-
-
Xia, J.1
-
24
-
-
0028953195
-
Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis
-
Zhang, M., et al. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267 (1995), 240–243.
-
(1995)
Science
, vol.267
, pp. 240-243
-
-
Zhang, M.1
-
25
-
-
0029910097
-
Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering
-
Deanda, K., et al. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62 (1996), 4465–4470.
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, pp. 4465-4470
-
-
Deanda, K.1
-
26
-
-
84904998972
-
Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis
-
Dunn, K.L., Rao, C.V., Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 98 (2014), 6897–6905.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 6897-6905
-
-
Dunn, K.L.1
Rao, C.V.2
-
27
-
-
84995790462
-
Genetic engineering and improvement of a Zymomonas mobilis for arabinose utilization and its performance on pretreated corn stover hydrolyzate
-
Chou, Y.C., et al. Genetic engineering and improvement of a Zymomonas mobilis for arabinose utilization and its performance on pretreated corn stover hydrolyzate. J. Biotechnol. Biomater. 139 (2015), 71–81.
-
(2015)
J. Biotechnol. Biomater.
, vol.139
, pp. 71-81
-
-
Chou, Y.C.1
-
28
-
-
79952601863
-
Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain
-
Agrawal, M., et al. Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol. Bioeng. 108 (2011), 777–785.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 777-785
-
-
Agrawal, M.1
-
29
-
-
84893176388
-
Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose
-
Mohagheghi, A., et al. Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose. Biotechnol. Biofuels, 7, 2014, 19.
-
(2014)
Biotechnol. Biofuels
, vol.7
, pp. 19
-
-
Mohagheghi, A.1
-
30
-
-
84942373869
-
High-throughput sequencing reveals adaption-induced mutations in pentose-fermenting strains of Zymomonas mobilis
-
Dunn, K.L., Rao, C.V., High-throughput sequencing reveals adaption-induced mutations in pentose-fermenting strains of Zymomonas mobilis. Biotechnol. Bioeng. 112 (2015), 2228–2239.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 2228-2239
-
-
Dunn, K.L.1
Rao, C.V.2
-
31
-
-
85045904766
-
Genome comparison of different Zymomonas mobilis strains provides insights on conservation of the evolution
-
Chen, C., et al. Genome comparison of different Zymomonas mobilis strains provides insights on conservation of the evolution. PLoS One, 13, 2018, 4.
-
(2018)
PLoS One
, vol.13
, pp. 4
-
-
Chen, C.1
-
32
-
-
84923308098
-
2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis
-
2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 2222–2226.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 2222-2226
-
-
Kremer, T.A.1
-
33
-
-
84954516494
-
Scaling up and benchmarking of ethanol production from pelletized pilot scale AFEX treated corn stover using Zymomonas mobilis 8b
-
353–262
-
Sarks, C.S., et al. Scaling up and benchmarking of ethanol production from pelletized pilot scale AFEX treated corn stover using Zymomonas mobilis 8b. Biofuels, 7, 2016 353–262.
-
(2016)
Biofuels
, vol.7
-
-
Sarks, C.S.1
-
34
-
-
84964796105
-
Next-generation ammonia pretreatment enhances cellulosic biofuel production
-
Sousa, L.C., et al. Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ. Sci. 9 (2016), 1215–1223.
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 1215-1223
-
-
Sousa, L.C.1
-
35
-
-
21144437397
-
The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4
-
Seo, J.S., et al. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 23 (2005), 63–68.
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 63-68
-
-
Seo, J.S.1
-
36
-
-
84946062939
-
The cytosolic pH of individual Saccharomyces cerevisiae cells is a key factor in acetic acid tolerance
-
7813–1821
-
Fernández-Niňo, M., et al. The cytosolic pH of individual Saccharomyces cerevisiae cells is a key factor in acetic acid tolerance. Appl. Environ. Microbiol., 81, 2015 7813–1821.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
-
-
Fernández-Niňo, M.1
-
37
-
-
84907690081
-
Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates
-
Yang, S., et al. Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates. Biotechnol. Biofuels, 7, 2014, 140.
-
(2014)
Biotechnol. Biofuels
, vol.7
, pp. 140
-
-
Yang, S.1
-
38
-
-
84926032612
-
Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate
-
Mohagheghi, A., et al. Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate. Biotechnol. Biofuels, 8, 2015, 55.
-
(2015)
Biotechnol. Biofuels
, vol.8
, pp. 55
-
-
Mohagheghi, A.1
-
39
-
-
84938809242
-
Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae
-
Unrean, P., Franzen, C.J., Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae. Biotechnol. J. 10 (2015), 1248–1258.
-
(2015)
Biotechnol. J.
, vol.10
, pp. 1248-1258
-
-
Unrean, P.1
Franzen, C.J.2
-
40
-
-
85006511799
-
Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural
-
Jung, Y.H., et al. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural. Microbial. Biotechnol. 10 (2017), 395–404.
-
(2017)
Microbial. Biotechnol.
, vol.10
, pp. 395-404
-
-
Jung, Y.H.1
-
41
-
-
85046452594
-
Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds
-
Liu, Z.L., Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl. Microbiol. Biotechnol. 102 (2018), 5369–5390.
-
(2018)
Appl. Microbiol. Biotechnol.
, vol.102
, pp. 5369-5390
-
-
Liu, Z.L.1
-
42
-
-
85027245670
-
Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration
-
Wang, X., et al. Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. Biotechnol. Biofuels, 10, 2017, 24.
-
(2017)
Biotechnol. Biofuels
, vol.10
, pp. 24
-
-
Wang, X.1
-
43
-
-
85029478418
-
Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase
-
Yee, K.L., et al. Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase. Enzyme Microb. Technol. 108 (2018), 59–65.
-
(2018)
Enzyme Microb. Technol.
, vol.108
, pp. 59-65
-
-
Yee, K.L.1
-
44
-
-
85038013523
-
Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution
-
Janusz, G., et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 41 (2017), 941–962.
-
(2017)
FEMS Microbiol. Rev.
, vol.41
, pp. 941-962
-
-
Janusz, G.1
-
45
-
-
84930765100
-
Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors
-
Shui, Z.X., et al. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl. Microbiol. Biotechnol. 99 (2015), 5739–5748.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 5739-5748
-
-
Shui, Z.X.1
-
46
-
-
85042233453
-
Furfural-tolerant Zymomonas mobilis derived from error-prone PCR-based whole genome shuffling and their tolerant mechanism
-
Huang, S.Z., et al. Furfural-tolerant Zymomonas mobilis derived from error-prone PCR-based whole genome shuffling and their tolerant mechanism. Appl. Microbiol. Biotechnol. 102 (2018), 3337–3347.
-
(2018)
Appl. Microbiol. Biotechnol.
, vol.102
, pp. 3337-3347
-
-
Huang, S.Z.1
-
47
-
-
84900453510
-
Lignin valorization: improving lignin processing in the biorefinery
-
Ragauskas, A.J., et al. Lignin valorization: improving lignin processing in the biorefinery. Science, 344, 2014, 709.
-
(2014)
Science
, vol.344
, pp. 709
-
-
Ragauskas, A.J.1
-
48
-
-
84960390972
-
Opportunities and challenges in biological lignin valorization
-
Beckham, G.T., et al. Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42 (2016), 40–53.
-
(2016)
Curr. Opin. Biotechnol.
, vol.42
, pp. 40-53
-
-
Beckham, G.T.1
-
49
-
-
84947022296
-
The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates
-
Adeboye, P.T., et al. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Exp., 4, 2014, 46.
-
(2014)
AMB Exp.
, vol.4
, pp. 46
-
-
Adeboye, P.T.1
-
50
-
-
84959110976
-
Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products
-
Adeboye, P.T., Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products. Microb. Cell Fact., 14, 2015, 149.
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 149
-
-
Adeboye, P.T.1
-
51
-
-
85013350246
-
ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae
-
Adeboye, P.T., et al. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae. Sci. Rep., 7, 2017, 42635.
-
(2017)
Sci. Rep.
, vol.7
, pp. 42635
-
-
Adeboye, P.T.1
-
52
-
-
84937731519
-
High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue
-
Gu, H.Q., et al. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Biotechnol. Bioeng. 112 (2015), 1770–1782.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 1770-1782
-
-
Gu, H.Q.1
-
53
-
-
84959557202
-
Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment
-
Yi, X., et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol. Biofuels, 8, 2015, 153.
-
(2015)
Biotechnol. Biofuels
, vol.8
, pp. 153
-
-
Yi, X.1
-
54
-
-
70349959827
-
Improved genome annotation for Zymomonas mobilis
-
Yang, S.H., et al. Improved genome annotation for Zymomonas mobilis. Nat. Biotechnol. 27 (2009), 893–894.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 893-894
-
-
Yang, S.H.1
-
55
-
-
78751658356
-
Genome-scale modeling and in silico analysis of ethanologenic bacteriium Zymomonas mobilis
-
Widiastuti, H., et al. Genome-scale modeling and in silico analysis of ethanologenic bacteriium Zymomonas mobilis. Biotechnol. Bioeng. 108 (2011), 655–665.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 655-665
-
-
Widiastuti, H.1
-
56
-
-
84880487156
-
Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses
-
Yang, S.H., et al. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS One, 7, 2013, e68886.
-
(2013)
PLoS One
, vol.7
-
-
Yang, S.H.1
-
57
-
-
85055587727
-
Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in Zymomonas mobilis ZM4
-
Chang, D.D., et al. Proteomic and metabolomic analysis of the cellular biomarkers related to inhibitors tolerance in Zymomonas mobilis ZM4. Biotechnol. Biofuels, 11, 2018, 283.
-
(2018)
Biotechnol. Biofuels
, vol.11
, pp. 283
-
-
Chang, D.D.1
-
58
-
-
85060330747
-
New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis
-
Published online January 19, 2019
-
Zhang, et al. New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Appl. Microb. Biotechnol., 2019, 10.1007/s00253-019-09620-6 Published online January 19, 2019.
-
(2019)
Appl. Microb. Biotechnol.
-
-
Zhang1
-
59
-
-
78549287163
-
The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies
-
Lee, et al. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb. Cell Fact., 9, 2010, 94.
-
(2010)
Microb. Cell Fact.
, vol.9
, pp. 94
-
-
Lee1
-
60
-
-
84875644160
-
Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism
-
Pentjuss, et al. Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism. J. Biotechnol. 165 (2013), 1–10.
-
(2013)
J. Biotechnol.
, vol.165
, pp. 1-10
-
-
Pentjuss1
-
61
-
-
84987760520
-
Zymomonas mobilis as a model system for production of biofuels and biochemicals
-
Yang, S., et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb. Biotechnol. 9 (2016), 699–717.
-
(2016)
Microb. Biotechnol.
, vol.9
, pp. 699-717
-
-
Yang, S.1
-
62
-
-
84955185848
-
Lignocellulosic ethanol: technology design and its impact on process efficiency
-
Paulova, L., et al. Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol. Adv. 33 (2015), 1091–1107.
-
(2015)
Biotechnol. Adv.
, vol.33
, pp. 1091-1107
-
-
Paulova, L.1
-
63
-
-
84921305890
-
Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products
-
Maitan-Alfenas, G.P., et al. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr. Opin. Food Sci. 1 (2015), 44–49.
-
(2015)
Curr. Opin. Food Sci.
, vol.1
, pp. 44-49
-
-
Maitan-Alfenas, G.P.1
-
64
-
-
84890786451
-
Lignocellulosic ethanol production at high-gravity: challenges and perspectives
-
Koppram, R., et al. Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol. 32 (2014), 46–53.
-
(2014)
Trends Biotechnol.
, vol.32
, pp. 46-53
-
-
Koppram, R.1
|