메뉴 건너뛰기




Volumn 8, Issue 4, 2019, Pages 292-301.e3

End-to-End Differentiable Learning of Protein Structure

Author keywords

biophysics; co evolution; deep learning; geometric deep learning; homology modeling; machine learning; protein design; protein folding; protein structure prediction; structural biology

Indexed keywords

AMINO ACID SEQUENCE; ARTICLE; DEEP LEARNING; MACHINE LEARNING; MECHANICAL TORSION; MOLECULAR DYNAMICS; PRIORITY JOURNAL; PROTEIN CONFORMATION; PROTEIN FOLDING; PROTEIN SECONDARY STRUCTURE; PROTEIN STRUCTURE; SEQUENCE ALIGNMENT; MOLECULAR EVOLUTION; PROCEDURES; SEQUENCE ANALYSIS; SOFTWARE;

EID: 85064397545     PISSN: 24054712     EISSN: 24054720     Source Type: Journal    
DOI: 10.1016/j.cels.2019.03.006     Document Type: Article
Times cited : (308)

References (52)
  • 1
    • 85075670920 scopus 로고    scopus 로고
    • TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
    • Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283.
    • (2016) , pp. 265-283
    • Abadi, M.1    Barham, P.2    Chen, J.3    Chen, Z.4    Davis, A.5    Dean, J.6    Devin, M.7    Ghemawat, S.8    Irving, G.9    Isard, M.10
  • 2
    • 84937727830 scopus 로고    scopus 로고
    • CONFOLD: residue-residue contact-guided ab initio protein folding
    • Adhikari, B., Bhattacharya, D., Cao, R., Cheng, J., CONFOLD: residue-residue contact-guided ab initio protein folding. Proteins 83 (2015), 1436–1449.
    • (2015) Proteins , vol.83 , pp. 1436-1449
    • Adhikari, B.1    Bhattacharya, D.2    Cao, R.3    Cheng, J.4
  • 3
    • 85009898495 scopus 로고    scopus 로고
    • Understanding intermediate layers using linear classifier probes
    • arXiv:1610.01644v4
    • Alain, G., Bengio, Y., Understanding intermediate layers using linear classifier probes. Arxiv, 2016 arXiv:1610.01644v4 https://arxiv.org/abs/1610.01644.
    • (2016) Arxiv
    • Alain, G.1    Bengio, Y.2
  • 4
    • 85059623845 scopus 로고    scopus 로고
    • Parallelized natural extension reference frame: parallelized conversion from internal to Cartesian coordinates
    • AlQuraishi, M., Parallelized natural extension reference frame: parallelized conversion from internal to Cartesian coordinates. J. Comp. Chem. 40 (2019), 885–892.
    • (2019) J. Comp. Chem. , vol.40 , pp. 885-892
    • AlQuraishi, M.1
  • 5
    • 85064394003 scopus 로고    scopus 로고
    • ProteinNet: a standardized data set for machine learning of protein structure
    • arXiv:1902.00249v1
    • AlQuraishi, M., ProteinNet: a standardized data set for machine learning of protein structure. Arxiv, 2019 arXiv:1902.00249v1 https://arxiv.org/abs/1902.00249.
    • (2019) Arxiv
    • AlQuraishi, M.1
  • 6
    • 84982245607 scopus 로고    scopus 로고
    • A vocabulary of ancient peptides at the origin of folded proteins
    • Alva, V., Söding, J., Lupas, A.N., A vocabulary of ancient peptides at the origin of folded proteins. Elife, 4, 2015, e09410.
    • (2015) Elife , vol.4 , pp. e09410
    • Alva, V.1    Söding, J.2    Lupas, A.N.3
  • 7
    • 85064393615 scopus 로고    scopus 로고
    • Protein torsion angle class prediction by a hybrid architecture of Bayesian and neural networks. In 13th International Conference on Bioinformatics and Computational Biology
    • Aydin, Z., Thompson, J., Bilmes, J., Baker, D., and Noble, W.S. (2012). Protein torsion angle class prediction by a hybrid architecture of Bayesian and neural networks. In 13th International Conference on Bioinformatics and Computational Biology, pp 2012–2018.
    • (2012) , pp. 2012-2018
    • Aydin, Z.1    Thompson, J.2    Bilmes, J.3    Baker, D.4    Noble, W.S.5
  • 9
    • 0004204457 scopus 로고    scopus 로고
    • Introduction to Protein Structure
    • Garland Publishing Science
    • Branden, C., Tooze, J., Introduction to Protein Structure. 1999, Garland Publishing Science.
    • (1999)
    • Branden, C.1    Tooze, J.2
  • 10
    • 13844300063 scopus 로고    scopus 로고
    • Empirical limits for template-based protein structure prediction: the CASP5 example
    • Contreras-Moreira, B., Ezkurdia, I., Tress, M.L., Valencia, A., Empirical limits for template-based protein structure prediction: the CASP5 example. FEBS Lett. 579 (2005), 1203–1207.
    • (2005) FEBS Lett. , vol.579 , pp. 1203-1207
    • Contreras-Moreira, B.1    Ezkurdia, I.2    Tress, M.L.3    Valencia, A.4
  • 12
    • 0025370815 scopus 로고
    • Dominant forces in protein folding
    • Dill, K.A., Dominant forces in protein folding. Biochemistry 29 (1990), 7133–7155.
    • (1990) Biochemistry , vol.29 , pp. 7133-7155
    • Dill, K.A.1
  • 13
    • 84869761071 scopus 로고    scopus 로고
    • The protein-folding problem, 50 years on
    • Dill, K.A., MacCallum, J.L., The protein-folding problem, 50 years on. Science 338 (2012), 1042–1046.
    • (2012) Science , vol.338 , pp. 1042-1046
    • Dill, K.A.1    MacCallum, J.L.2
  • 14
    • 84919849298 scopus 로고    scopus 로고
    • Protein structure prediction: from recognition of matches with known structures to recombination of fragments
    • A. Kolinski Springer
    • Gajda, M.J., Pawlowski, M., Bujnicki, J.M., Protein structure prediction: from recognition of matches with known structures to recombination of fragments. Kolinski, A., (eds.) Multiscale Approaches to Protein Modeling, 2011, Springer, 231–254.
    • (2011) Multiscale Approaches to Protein Modeling , pp. 231-254
    • Gajda, M.J.1    Pawlowski, M.2    Bujnicki, J.M.3
  • 15
    • 84856692375 scopus 로고    scopus 로고
    • Multiscale Approaches to Protein Modeling
    • Springer
    • Gajda, M.J., Pawlowski, M., Bujnicki, J.M., Multiscale Approaches to Protein Modeling. 2011, Springer.
    • (2011)
    • Gajda, M.J.1    Pawlowski, M.2    Bujnicki, J.M.3
  • 16
    • 85064384912 scopus 로고    scopus 로고
    • Real-value and confidence prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning
    • arXiv:1712.07244v1
    • Gao, Y., Wang, S., Deng, M., Xu, J., Real-value and confidence prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning. Arxiv, 2017 arXiv:1712.07244v1 https://arxiv.org/abs/1712.07244v1.
    • (2017) Arxiv
    • Gao, Y.1    Wang, S.2    Deng, M.3    Xu, J.4
  • 21
    • 84875225476 scopus 로고    scopus 로고
    • Emerging methods in protein co-evolution
    • Juan, D., de Pazos, F., Valencia, A., Emerging methods in protein co-evolution. Nat. Rev. Genet. 14 (2013), 249–261.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 249-261
    • Juan, D.1    de Pazos, F.2    Valencia, A.3
  • 22
    • 85114138873 scopus 로고    scopus 로고
    • Understanding Black-box predictions via influence functions
    • arXiv:1703.04730v2
    • Koh, P.W., Liang, P., Understanding Black-box predictions via influence functions. Arxiv, 2017 arXiv:1703.04730v2 https://arxiv.org/abs/1703.04730.
    • (2017) Arxiv
    • Koh, P.W.1    Liang, P.2
  • 23
    • 84960355584 scopus 로고    scopus 로고
    • CASP11 statistics and the prediction center evaluation system
    • Kryshtafovych, A., Monastyrskyy, B., Fidelis, K., CASP11 statistics and the prediction center evaluation system. Proteins 84 (2016), 15–19.
    • (2016) Proteins , vol.84 , pp. 15-19
    • Kryshtafovych, A.1    Monastyrskyy, B.2    Fidelis, K.3
  • 27
    • 85029659778 scopus 로고    scopus 로고
    • Deep learning methods for protein torsion angle prediction
    • Li, H., Hou, J., Adhikari, B., Lyu, Q., Cheng, J., Deep learning methods for protein torsion angle prediction. BMC Bioinformatics, 18, 2017, 417.
    • (2017) BMC Bioinformatics , vol.18 , pp. 417
    • Li, H.1    Hou, J.2    Adhikari, B.3    Lyu, Q.4    Cheng, J.5
  • 29
    • 85038903223 scopus 로고    scopus 로고
    • Enhancing evolutionary couplings with deep convolutional neural networks
    • Liu, Y., Palmedo, P., Ye, Q., Berger, B., Peng, J., Enhancing evolutionary couplings with deep convolutional neural networks. Cell Syst 6 (2018), 65–74.
    • (2018) Cell Syst , vol.6 , pp. 65-74
    • Liu, Y.1    Palmedo, P.2    Ye, Q.3    Berger, B.4    Peng, J.5
  • 30
    • 84927770389 scopus 로고    scopus 로고
    • Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network
    • Lyons, J., Dehzangi, A., Heffernan, R., Sharma, A., Paliwal, K., Sattar, A., Zhou, Y., Yang, Y., Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J. Comput. Chem. 35 (2014), 2040–2046.
    • (2014) J. Comput. Chem. , vol.35 , pp. 2040-2046
    • Lyons, J.1    Dehzangi, A.2    Heffernan, R.3    Sharma, A.4    Paliwal, K.5    Sattar, A.6    Zhou, Y.7    Yang, Y.8
  • 32
    • 84925190208 scopus 로고    scopus 로고
    • Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
    • Cambridge University Press
    • Marx, D., Hutter, J., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. 2012, Cambridge University Press.
    • (2012)
    • Marx, D.1    Hutter, J.2
  • 33
    • 84995046262 scopus 로고
    • A large-scale experiment to assess protein structure prediction methods
    • ii–iv
    • Moult, J., Pedersen, J.T., Judson, R., Fidelis, K., A large-scale experiment to assess protein structure prediction methods. Proteins, 23, 1995 ii–iv.
    • (1995) Proteins , vol.23
    • Moult, J.1    Pedersen, J.T.2    Judson, R.3    Fidelis, K.4
  • 34
    • 85037523874 scopus 로고    scopus 로고
    • Critical assessment of methods of protein structure prediction (CASP)-round XII
    • Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., Tramontano, A., Critical assessment of methods of protein structure prediction (CASP)-round XII. Proteins 86 (2018), 7–15.
    • (2018) Proteins , vol.86 , pp. 7-15
    • Moult, J.1    Fidelis, K.2    Kryshtafovych, A.3    Schwede, T.4    Tramontano, A.5
  • 35
    • 84988351612 scopus 로고    scopus 로고
    • Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks
    • arXiv:1602.03616v2
    • Nguyen, A., Yosinski, J., Clune, J., Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. Arxiv, 2016 arXiv:1602.03616v2 https://arxiv.org/abs/1602.03616.
    • (2016) Arxiv
    • Nguyen, A.1    Yosinski, J.2    Clune, J.3
  • 36
    • 84959378045 scopus 로고    scopus 로고
    • Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta
    • Ovchinnikov, S., Kim, D.E., Wang, R.Y.-R., Liu, Y., DiMaio, F., Baker, D., Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta. Proteins 84 (2016), 67–75.
    • (2016) Proteins , vol.84 , pp. 67-75
    • Ovchinnikov, S.1    Kim, D.E.2    Wang, R.Y.-R.3    Liu, Y.4    DiMaio, F.5    Baker, D.6
  • 38
    • 23144448764 scopus 로고    scopus 로고
    • Practical conversion from torsion space to Cartesian space for in silico protein synthesis
    • Parsons, J., Holmes, J.B., Rojas, J.M., Tsai, J., Strauss, C.E.M., Practical conversion from torsion space to Cartesian space for in silico protein synthesis. J. Comput. Chem. 26 (2005), 1063–1068.
    • (2005) J. Comput. Chem. , vol.26 , pp. 1063-1068
    • Parsons, J.1    Holmes, J.B.2    Rojas, J.M.3    Tsai, J.4    Strauss, C.E.M.5
  • 39
    • 85018198432 scopus 로고    scopus 로고
    • Blind protein structure prediction using accelerated free-energy simulations
    • Perez, A., Morrone, J.A., Brini, E., MacCallum, J.L., Dill, K.A., Blind protein structure prediction using accelerated free-energy simulations. Sci. Adv, 2, 2016, e1601274.
    • (2016) Sci. Adv , vol.2 , pp. e1601274
    • Perez, A.1    Morrone, J.A.2    Brini, E.3    MacCallum, J.L.4    Dill, K.A.5
  • 42
    • 85041767953 scopus 로고    scopus 로고
    • Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age
    • Schaarschmidt, J., Monastyrskyy, B., Kryshtafovych, A., Bonvin, A.M.J.J., Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age. Proteins 86 (2018), 51–66.
    • (2018) Proteins , vol.86 , pp. 51-66
    • Schaarschmidt, J.1    Monastyrskyy, B.2    Kryshtafovych, A.3    Bonvin, A.M.J.J.4
  • 43
    • 85031924228 scopus 로고    scopus 로고
    • Learning important features through propagating activation differences. In ICML'17 Proceedings of the 34th International Conference on Machine Learning-Volume 70
    • Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through propagating activation differences. In ICML'17 Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3145–3153.
    • (2017) , pp. 3145-3153
    • Shrikumar, A.1    Greenside, P.2    Kundaje, A.3
  • 44
    • 85027522167 scopus 로고    scopus 로고
    • Deep inside convolutional networks: visualising image classification models and saliency maps
    • arXiv:1312.6034v2
    • Simonyan, K., Vedaldi, A., Zisserman, A., Deep inside convolutional networks: visualising image classification models and saliency maps. Arxiv, 2013 arXiv:1312.6034v2 https://arxiv.org/abs/1312.6034.
    • (2013) Arxiv
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 45
    • 85011370897 scopus 로고    scopus 로고
    • Accurate de novo prediction of protein contact map by ultra-deep learning model
    • Wang, S., Sun, S., Li, Z., Zhang, R., Xu, J., Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13, 2017, e1005324.
    • (2017) PLoS Comput. Biol. , vol.13 , pp. e1005324
    • Wang, S.1    Sun, S.2    Li, Z.3    Zhang, R.4    Xu, J.5
  • 46
    • 84862225232 scopus 로고    scopus 로고
    • Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field
    • Xu, D., Zhang, Y., Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80 (2012), 1715–1735.
    • (2012) Proteins , vol.80 , pp. 1715-1735
    • Xu, D.1    Zhang, Y.2
  • 47
    • 77951961719 scopus 로고    scopus 로고
    • How significant is a protein structure similarity with TM-score = 0.5?
    • Xu, J., Zhang, Y., How significant is a protein structure similarity with TM-score = 0.5?. Bioinformatics 26 (2010), 889–895.
    • (2010) Bioinformatics , vol.26 , pp. 889-895
    • Xu, J.1    Zhang, Y.2
  • 48
    • 84925156346 scopus 로고    scopus 로고
    • The I-TASSER suite: protein structure and function prediction
    • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., The I-TASSER suite: protein structure and function prediction. Nat. Methods 12 (2015), 7–8.
    • (2015) Nat. Methods , vol.12 , pp. 7-8
    • Yang, J.1    Yan, R.2    Roy, A.3    Xu, D.4    Poisson, J.5    Zhang, Y.6
  • 49
    • 10344232638 scopus 로고    scopus 로고
    • Scoring function for automated assessment of protein structure template quality
    • Zhang, Y., Skolnick, J., Scoring function for automated assessment of protein structure template quality. Proteins 57 (2004), 702–710.
    • (2004) Proteins , vol.57 , pp. 702-710
    • Zhang, Y.1    Skolnick, J.2
  • 50
    • 85033794178 scopus 로고    scopus 로고
    • Template-based and free modeling of I-TASSER and Quark pipelines using predicted contact maps in CASP12
    • Zhang, C., Mortuza, S.M., He, B., Wang, Y., Zhang, Y., Template-based and free modeling of I-TASSER and Quark pipelines using predicted contact maps in CASP12. Proteins 86 (2018), 136–151.
    • (2018) Proteins , vol.86 , pp. 136-151
    • Zhang, C.1    Mortuza, S.M.2    He, B.3    Wang, Y.4    Zhang, Y.5
  • 51
    • 77954179479 scopus 로고    scopus 로고
    • Fragment-free approach to protein folding using conditional neural fields
    • Zhao, F., Peng, J., Xu, J., Fragment-free approach to protein folding using conditional neural fields. Bioinformatics 26 (2010), i310–i317.
    • (2010) Bioinformatics , vol.26 , pp. i310-i317
    • Zhao, F.1    Peng, J.2    Xu, J.3
  • 52
    • 79251601609 scopus 로고    scopus 로고
    • Trends in template/fragment-free protein structure prediction
    • Zhou, Y., Duan, Y., Yang, Y., Faraggi, E., Lei, H., Trends in template/fragment-free protein structure prediction. Theor. Chem. Acc 128 (2011), 3–16.
    • (2011) Theor. Chem. Acc , vol.128 , pp. 3-16
    • Zhou, Y.1    Duan, Y.2    Yang, Y.3    Faraggi, E.4    Lei, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.