-
1
-
-
85075670920
-
-
TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
-
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283.
-
(2016)
, pp. 265-283
-
-
Abadi, M.1
Barham, P.2
Chen, J.3
Chen, Z.4
Davis, A.5
Dean, J.6
Devin, M.7
Ghemawat, S.8
Irving, G.9
Isard, M.10
-
2
-
-
84937727830
-
CONFOLD: residue-residue contact-guided ab initio protein folding
-
Adhikari, B., Bhattacharya, D., Cao, R., Cheng, J., CONFOLD: residue-residue contact-guided ab initio protein folding. Proteins 83 (2015), 1436–1449.
-
(2015)
Proteins
, vol.83
, pp. 1436-1449
-
-
Adhikari, B.1
Bhattacharya, D.2
Cao, R.3
Cheng, J.4
-
3
-
-
85009898495
-
Understanding intermediate layers using linear classifier probes
-
arXiv:1610.01644v4
-
Alain, G., Bengio, Y., Understanding intermediate layers using linear classifier probes. Arxiv, 2016 arXiv:1610.01644v4 https://arxiv.org/abs/1610.01644.
-
(2016)
Arxiv
-
-
Alain, G.1
Bengio, Y.2
-
4
-
-
85059623845
-
Parallelized natural extension reference frame: parallelized conversion from internal to Cartesian coordinates
-
AlQuraishi, M., Parallelized natural extension reference frame: parallelized conversion from internal to Cartesian coordinates. J. Comp. Chem. 40 (2019), 885–892.
-
(2019)
J. Comp. Chem.
, vol.40
, pp. 885-892
-
-
AlQuraishi, M.1
-
5
-
-
85064394003
-
ProteinNet: a standardized data set for machine learning of protein structure
-
arXiv:1902.00249v1
-
AlQuraishi, M., ProteinNet: a standardized data set for machine learning of protein structure. Arxiv, 2019 arXiv:1902.00249v1 https://arxiv.org/abs/1902.00249.
-
(2019)
Arxiv
-
-
AlQuraishi, M.1
-
6
-
-
84982245607
-
A vocabulary of ancient peptides at the origin of folded proteins
-
Alva, V., Söding, J., Lupas, A.N., A vocabulary of ancient peptides at the origin of folded proteins. Elife, 4, 2015, e09410.
-
(2015)
Elife
, vol.4
, pp. e09410
-
-
Alva, V.1
Söding, J.2
Lupas, A.N.3
-
7
-
-
85064393615
-
-
Protein torsion angle class prediction by a hybrid architecture of Bayesian and neural networks. In 13th International Conference on Bioinformatics and Computational Biology
-
Aydin, Z., Thompson, J., Bilmes, J., Baker, D., and Noble, W.S. (2012). Protein torsion angle class prediction by a hybrid architecture of Bayesian and neural networks. In 13th International Conference on Bioinformatics and Computational Biology, pp 2012–2018.
-
(2012)
, pp. 2012-2018
-
-
Aydin, Z.1
Thompson, J.2
Bilmes, J.3
Baker, D.4
Noble, W.S.5
-
8
-
-
0017751668
-
The Protein Data Bank. A computer-based archival file for macromolecular structures
-
Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M., The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur. J. Biochem 80 (1977), 319–324.
-
(1977)
Eur. J. Biochem
, vol.80
, pp. 319-324
-
-
Bernstein, F.C.1
Koetzle, T.F.2
Williams, G.J.3
Meyer, E.F.4
Brice, M.D.5
Rodgers, J.R.6
Kennard, O.7
Shimanouchi, T.8
Tasumi, M.9
-
9
-
-
0004204457
-
Introduction to Protein Structure
-
Garland Publishing Science
-
Branden, C., Tooze, J., Introduction to Protein Structure. 1999, Garland Publishing Science.
-
(1999)
-
-
Branden, C.1
Tooze, J.2
-
10
-
-
13844300063
-
Empirical limits for template-based protein structure prediction: the CASP5 example
-
Contreras-Moreira, B., Ezkurdia, I., Tress, M.L., Valencia, A., Empirical limits for template-based protein structure prediction: the CASP5 example. FEBS Lett. 579 (2005), 1203–1207.
-
(2005)
FEBS Lett.
, vol.579
, pp. 1203-1207
-
-
Contreras-Moreira, B.1
Ezkurdia, I.2
Tress, M.L.3
Valencia, A.4
-
11
-
-
85014645201
-
CATH: an expanded resource to predict protein function through structure and sequence
-
Dawson, N.L., Lewis, T.E., Das, S., Lees, J.G., Lee, D., Ashford, P., Orengo, C.A., Sillitoe, I., CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res. 45 (2017), D289–D295.
-
(2017)
Nucleic Acids Res.
, vol.45
, pp. D289-D295
-
-
Dawson, N.L.1
Lewis, T.E.2
Das, S.3
Lees, J.G.4
Lee, D.5
Ashford, P.6
Orengo, C.A.7
Sillitoe, I.8
-
12
-
-
0025370815
-
Dominant forces in protein folding
-
Dill, K.A., Dominant forces in protein folding. Biochemistry 29 (1990), 7133–7155.
-
(1990)
Biochemistry
, vol.29
, pp. 7133-7155
-
-
Dill, K.A.1
-
13
-
-
84869761071
-
The protein-folding problem, 50 years on
-
Dill, K.A., MacCallum, J.L., The protein-folding problem, 50 years on. Science 338 (2012), 1042–1046.
-
(2012)
Science
, vol.338
, pp. 1042-1046
-
-
Dill, K.A.1
MacCallum, J.L.2
-
14
-
-
84919849298
-
Protein structure prediction: from recognition of matches with known structures to recombination of fragments
-
A. Kolinski Springer
-
Gajda, M.J., Pawlowski, M., Bujnicki, J.M., Protein structure prediction: from recognition of matches with known structures to recombination of fragments. Kolinski, A., (eds.) Multiscale Approaches to Protein Modeling, 2011, Springer, 231–254.
-
(2011)
Multiscale Approaches to Protein Modeling
, pp. 231-254
-
-
Gajda, M.J.1
Pawlowski, M.2
Bujnicki, J.M.3
-
15
-
-
84856692375
-
Multiscale Approaches to Protein Modeling
-
Springer
-
Gajda, M.J., Pawlowski, M., Bujnicki, J.M., Multiscale Approaches to Protein Modeling. 2011, Springer.
-
(2011)
-
-
Gajda, M.J.1
Pawlowski, M.2
Bujnicki, J.M.3
-
16
-
-
85064384912
-
Real-value and confidence prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning
-
arXiv:1712.07244v1
-
Gao, Y., Wang, S., Deng, M., Xu, J., Real-value and confidence prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning. Arxiv, 2017 arXiv:1712.07244v1 https://arxiv.org/abs/1712.07244v1.
-
(2017)
Arxiv
-
-
Gao, Y.1
Wang, S.2
Deng, M.3
Xu, J.4
-
17
-
-
84944735469
-
Deep Learning
-
The MIT Press
-
Goodfellow, I., Bengio, Y., Courville, A., Deep Learning. 2016, The MIT Press.
-
(2016)
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
19
-
-
84994885238
-
Sequence co-evolution gives 3D contacts and structures of protein complexes
-
Hopf, T.A., Schärfe, C.P.I., Rodrigues, J.P.G.L.M., Green, A.G., Kohlbacher, O., Sander, C., Bonvin, A.M.J.J., Marks, D.S., Sequence co-evolution gives 3D contacts and structures of protein complexes. Elife, 3, 2014.
-
(2014)
Elife
, vol.3
-
-
Hopf, T.A.1
Schärfe, C.P.I.2
Rodrigues, J.P.G.L.M.3
Green, A.G.4
Kohlbacher, O.5
Sander, C.6
Bonvin, A.M.J.J.7
Marks, D.S.8
-
20
-
-
85011967183
-
Mutation effects predicted from sequence co-variation
-
Hopf, T.A., Ingraham, J.B., Poelwijk, F.J., Schärfe, C.P.I., Springer, M., Sander, C., Marks, D.S., Mutation effects predicted from sequence co-variation. Nat. Biotech 35 (2017), 128–135.
-
(2017)
Nat. Biotech
, vol.35
, pp. 128-135
-
-
Hopf, T.A.1
Ingraham, J.B.2
Poelwijk, F.J.3
Schärfe, C.P.I.4
Springer, M.5
Sander, C.6
Marks, D.S.7
-
21
-
-
84875225476
-
Emerging methods in protein co-evolution
-
Juan, D., de Pazos, F., Valencia, A., Emerging methods in protein co-evolution. Nat. Rev. Genet. 14 (2013), 249–261.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 249-261
-
-
Juan, D.1
de Pazos, F.2
Valencia, A.3
-
22
-
-
85114138873
-
Understanding Black-box predictions via influence functions
-
arXiv:1703.04730v2
-
Koh, P.W., Liang, P., Understanding Black-box predictions via influence functions. Arxiv, 2017 arXiv:1703.04730v2 https://arxiv.org/abs/1703.04730.
-
(2017)
Arxiv
-
-
Koh, P.W.1
Liang, P.2
-
23
-
-
84960355584
-
CASP11 statistics and the prediction center evaluation system
-
Kryshtafovych, A., Monastyrskyy, B., Fidelis, K., CASP11 statistics and the prediction center evaluation system. Proteins 84 (2016), 15–19.
-
(2016)
Proteins
, vol.84
, pp. 15-19
-
-
Kryshtafovych, A.1
Monastyrskyy, B.2
Fidelis, K.3
-
24
-
-
85037375235
-
Evaluation of the template-based modeling in CASP12
-
Kryshtafovych, A., Monastyrskyy, B., Fidelis, K., Moult, J., Schwede, T., Tramontano, A., Evaluation of the template-based modeling in CASP12. Proteins 86 (2018), 321–334.
-
(2018)
Proteins
, vol.86
, pp. 321-334
-
-
Kryshtafovych, A.1
Monastyrskyy, B.2
Fidelis, K.3
Moult, J.4
Schwede, T.5
Tramontano, A.6
-
25
-
-
78650905964
-
ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules
-
Leaver-Fay, A., Tyka, M., Lewis, S.M., Lange, O.F., Thompson, J., Jacak, R., Kaufman, K., Renfrew, P.D., Smith, C.A., Sheffler, W., et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Meth. Enzymol 487 (2011), 545–574.
-
(2011)
Meth. Enzymol
, vol.487
, pp. 545-574
-
-
Leaver-Fay, A.1
Tyka, M.2
Lewis, S.M.3
Lange, O.F.4
Thompson, J.5
Jacak, R.6
Kaufman, K.7
Renfrew, P.D.8
Smith, C.A.9
Sheffler, W.10
-
26
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
27
-
-
85029659778
-
Deep learning methods for protein torsion angle prediction
-
Li, H., Hou, J., Adhikari, B., Lyu, Q., Cheng, J., Deep learning methods for protein torsion angle prediction. BMC Bioinformatics, 18, 2017, 417.
-
(2017)
BMC Bioinformatics
, vol.18
, pp. 417
-
-
Li, H.1
Hou, J.2
Adhikari, B.3
Lyu, Q.4
Cheng, J.5
-
28
-
-
85042289963
-
Biological and functional relevance of CASP predictions
-
Liu, T., Ish-Shalom, S., Torng, W., Lafita, A., Bock, C., Mort, M., Cooper, D.N., Bliven, S., Capitani, G., Mooney, S.D., et al.Biological and functional relevance of CASP predictions. Proteins 86 (2018), 374–386.
-
(2018)
Proteins
, vol.86
, pp. 374-386
-
-
Liu, T.1
Ish-Shalom, S.2
Torng, W.3
Lafita, A.4
Bock, C.5
Mort, M.6
Cooper, D.N.7
Bliven, S.8
Capitani, G.9
Mooney, S.D.10
-
29
-
-
85038903223
-
Enhancing evolutionary couplings with deep convolutional neural networks
-
Liu, Y., Palmedo, P., Ye, Q., Berger, B., Peng, J., Enhancing evolutionary couplings with deep convolutional neural networks. Cell Syst 6 (2018), 65–74.
-
(2018)
Cell Syst
, vol.6
, pp. 65-74
-
-
Liu, Y.1
Palmedo, P.2
Ye, Q.3
Berger, B.4
Peng, J.5
-
30
-
-
84927770389
-
Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network
-
Lyons, J., Dehzangi, A., Heffernan, R., Sharma, A., Paliwal, K., Sattar, A., Zhou, Y., Yang, Y., Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J. Comput. Chem. 35 (2014), 2040–2046.
-
(2014)
J. Comput. Chem.
, vol.35
, pp. 2040-2046
-
-
Lyons, J.1
Dehzangi, A.2
Heffernan, R.3
Sharma, A.4
Paliwal, K.5
Sattar, A.6
Zhou, Y.7
Yang, Y.8
-
31
-
-
82855163967
-
Protein 3D structure computed from evolutionary sequence variation
-
Marks, D.S., Colwell, L.J., Sheridan, R., Hopf, T.A., Pagnani, A., Zecchina, R., Sander, C., Protein 3D structure computed from evolutionary sequence variation. PLoS One, 6, 2011, e28766.
-
(2011)
PLoS One
, vol.6
, pp. e28766
-
-
Marks, D.S.1
Colwell, L.J.2
Sheridan, R.3
Hopf, T.A.4
Pagnani, A.5
Zecchina, R.6
Sander, C.7
-
32
-
-
84925190208
-
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
-
Cambridge University Press
-
Marx, D., Hutter, J., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. 2012, Cambridge University Press.
-
(2012)
-
-
Marx, D.1
Hutter, J.2
-
33
-
-
84995046262
-
A large-scale experiment to assess protein structure prediction methods
-
ii–iv
-
Moult, J., Pedersen, J.T., Judson, R., Fidelis, K., A large-scale experiment to assess protein structure prediction methods. Proteins, 23, 1995 ii–iv.
-
(1995)
Proteins
, vol.23
-
-
Moult, J.1
Pedersen, J.T.2
Judson, R.3
Fidelis, K.4
-
34
-
-
85037523874
-
Critical assessment of methods of protein structure prediction (CASP)-round XII
-
Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., Tramontano, A., Critical assessment of methods of protein structure prediction (CASP)-round XII. Proteins 86 (2018), 7–15.
-
(2018)
Proteins
, vol.86
, pp. 7-15
-
-
Moult, J.1
Fidelis, K.2
Kryshtafovych, A.3
Schwede, T.4
Tramontano, A.5
-
35
-
-
84988351612
-
Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks
-
arXiv:1602.03616v2
-
Nguyen, A., Yosinski, J., Clune, J., Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. Arxiv, 2016 arXiv:1602.03616v2 https://arxiv.org/abs/1602.03616.
-
(2016)
Arxiv
-
-
Nguyen, A.1
Yosinski, J.2
Clune, J.3
-
36
-
-
84959378045
-
Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta
-
Ovchinnikov, S., Kim, D.E., Wang, R.Y.-R., Liu, Y., DiMaio, F., Baker, D., Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta. Proteins 84 (2016), 67–75.
-
(2016)
Proteins
, vol.84
, pp. 67-75
-
-
Ovchinnikov, S.1
Kim, D.E.2
Wang, R.Y.-R.3
Liu, Y.4
DiMaio, F.5
Baker, D.6
-
37
-
-
85010073180
-
Protein structure determination using metagenome sequence data
-
Ovchinnikov, S., Park, H., Varghese, N., Huang, P.S., Pavlopoulos, G.A., Kim, D.E., Kamisetty, H., Kyrpides, N.C., Baker, D., Protein structure determination using metagenome sequence data. Science 355 (2017), 294–298.
-
(2017)
Science
, vol.355
, pp. 294-298
-
-
Ovchinnikov, S.1
Park, H.2
Varghese, N.3
Huang, P.S.4
Pavlopoulos, G.A.5
Kim, D.E.6
Kamisetty, H.7
Kyrpides, N.C.8
Baker, D.9
-
38
-
-
23144448764
-
Practical conversion from torsion space to Cartesian space for in silico protein synthesis
-
Parsons, J., Holmes, J.B., Rojas, J.M., Tsai, J., Strauss, C.E.M., Practical conversion from torsion space to Cartesian space for in silico protein synthesis. J. Comput. Chem. 26 (2005), 1063–1068.
-
(2005)
J. Comput. Chem.
, vol.26
, pp. 1063-1068
-
-
Parsons, J.1
Holmes, J.B.2
Rojas, J.M.3
Tsai, J.4
Strauss, C.E.M.5
-
39
-
-
85018198432
-
Blind protein structure prediction using accelerated free-energy simulations
-
Perez, A., Morrone, J.A., Brini, E., MacCallum, J.L., Dill, K.A., Blind protein structure prediction using accelerated free-energy simulations. Sci. Adv, 2, 2016, e1601274.
-
(2016)
Sci. Adv
, vol.2
, pp. e1601274
-
-
Perez, A.1
Morrone, J.A.2
Brini, E.3
MacCallum, J.L.4
Dill, K.A.5
-
41
-
-
73649194755
-
Stereochemistry of polypeptide chain configurations
-
Ramachandran, G.N., Ramakrishnan, C., Sasisekharan, V., Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7 (1963), 95–99.
-
(1963)
J. Mol. Biol.
, vol.7
, pp. 95-99
-
-
Ramachandran, G.N.1
Ramakrishnan, C.2
Sasisekharan, V.3
-
42
-
-
85041767953
-
Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age
-
Schaarschmidt, J., Monastyrskyy, B., Kryshtafovych, A., Bonvin, A.M.J.J., Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age. Proteins 86 (2018), 51–66.
-
(2018)
Proteins
, vol.86
, pp. 51-66
-
-
Schaarschmidt, J.1
Monastyrskyy, B.2
Kryshtafovych, A.3
Bonvin, A.M.J.J.4
-
43
-
-
85031924228
-
-
Learning important features through propagating activation differences. In ICML'17 Proceedings of the 34th International Conference on Machine Learning-Volume 70
-
Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through propagating activation differences. In ICML'17 Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3145–3153.
-
(2017)
, pp. 3145-3153
-
-
Shrikumar, A.1
Greenside, P.2
Kundaje, A.3
-
44
-
-
85027522167
-
Deep inside convolutional networks: visualising image classification models and saliency maps
-
arXiv:1312.6034v2
-
Simonyan, K., Vedaldi, A., Zisserman, A., Deep inside convolutional networks: visualising image classification models and saliency maps. Arxiv, 2013 arXiv:1312.6034v2 https://arxiv.org/abs/1312.6034.
-
(2013)
Arxiv
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
45
-
-
85011370897
-
Accurate de novo prediction of protein contact map by ultra-deep learning model
-
Wang, S., Sun, S., Li, Z., Zhang, R., Xu, J., Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13, 2017, e1005324.
-
(2017)
PLoS Comput. Biol.
, vol.13
, pp. e1005324
-
-
Wang, S.1
Sun, S.2
Li, Z.3
Zhang, R.4
Xu, J.5
-
46
-
-
84862225232
-
Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field
-
Xu, D., Zhang, Y., Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80 (2012), 1715–1735.
-
(2012)
Proteins
, vol.80
, pp. 1715-1735
-
-
Xu, D.1
Zhang, Y.2
-
47
-
-
77951961719
-
How significant is a protein structure similarity with TM-score = 0.5?
-
Xu, J., Zhang, Y., How significant is a protein structure similarity with TM-score = 0.5?. Bioinformatics 26 (2010), 889–895.
-
(2010)
Bioinformatics
, vol.26
, pp. 889-895
-
-
Xu, J.1
Zhang, Y.2
-
48
-
-
84925156346
-
The I-TASSER suite: protein structure and function prediction
-
Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., The I-TASSER suite: protein structure and function prediction. Nat. Methods 12 (2015), 7–8.
-
(2015)
Nat. Methods
, vol.12
, pp. 7-8
-
-
Yang, J.1
Yan, R.2
Roy, A.3
Xu, D.4
Poisson, J.5
Zhang, Y.6
-
49
-
-
10344232638
-
Scoring function for automated assessment of protein structure template quality
-
Zhang, Y., Skolnick, J., Scoring function for automated assessment of protein structure template quality. Proteins 57 (2004), 702–710.
-
(2004)
Proteins
, vol.57
, pp. 702-710
-
-
Zhang, Y.1
Skolnick, J.2
-
50
-
-
85033794178
-
Template-based and free modeling of I-TASSER and Quark pipelines using predicted contact maps in CASP12
-
Zhang, C., Mortuza, S.M., He, B., Wang, Y., Zhang, Y., Template-based and free modeling of I-TASSER and Quark pipelines using predicted contact maps in CASP12. Proteins 86 (2018), 136–151.
-
(2018)
Proteins
, vol.86
, pp. 136-151
-
-
Zhang, C.1
Mortuza, S.M.2
He, B.3
Wang, Y.4
Zhang, Y.5
-
51
-
-
77954179479
-
Fragment-free approach to protein folding using conditional neural fields
-
Zhao, F., Peng, J., Xu, J., Fragment-free approach to protein folding using conditional neural fields. Bioinformatics 26 (2010), i310–i317.
-
(2010)
Bioinformatics
, vol.26
, pp. i310-i317
-
-
Zhao, F.1
Peng, J.2
Xu, J.3
-
52
-
-
79251601609
-
Trends in template/fragment-free protein structure prediction
-
Zhou, Y., Duan, Y., Yang, Y., Faraggi, E., Lei, H., Trends in template/fragment-free protein structure prediction. Theor. Chem. Acc 128 (2011), 3–16.
-
(2011)
Theor. Chem. Acc
, vol.128
, pp. 3-16
-
-
Zhou, Y.1
Duan, Y.2
Yang, Y.3
Faraggi, E.4
Lei, H.5
|