메뉴 건너뛰기




Volumn , Issue , 2018, Pages 128-135

Cascade Gaussian Process Regression Framework for Biomass Prediction in a Fed-batch Reactor

Author keywords

Biomass; Bioreactor; Fedbatch; Gaussian Process; Prediction; Regression

Indexed keywords

BATCH REACTORS; BIOCONVERSION; BIOREACTORS; DISSOLVED OXYGEN; FERMENTATION; FORECASTING; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); REGRESSION ANALYSIS;

EID: 85062767006     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SSCI.2018.8628937     Document Type: Conference Paper
Times cited : (12)

References (23)
  • 1
    • 0030152991 scopus 로고    scopus 로고
    • A tutorial review on bioprocess systems engineering
    • K. Shimizu, "A tutorial review on bioprocess systems engineering", Computers & Chemical Engineering, vol. 20, no. 6-7, pp. 915-941, 1996.
    • (1996) Computers & Chemical Engineering , vol.20 , Issue.6-7 , pp. 915-941
    • Shimizu, K.1
  • 2
    • 27444433806 scopus 로고    scopus 로고
    • Soft-sensor development for fed-batch bioreactors using support vector regression
    • K. Desai, Y. Badhe, S. Tambe and B. Kulkarni, "Soft-sensor development for fed-batch bioreactors using support vector regression", Biochemical Engineering Journal, vol. 27, no. 3, pp. 225-239, 2006.
    • (2006) Biochemical Engineering Journal , vol.27 , Issue.3 , pp. 225-239
    • Desai, K.1    Badhe, Y.2    Tambe, S.3    Kulkarni, B.4
  • 4
    • 0346103857 scopus 로고    scopus 로고
    • Crisp and fuzzy optimization of a fed-batch fermentation for ethanol production
    • Y. Chen and F. Wang, "Crisp and Fuzzy Optimization of a Fed-Batch Fermentation for Ethanol Production", Industrial & Engineering Chemistry Research, vol. 42, no. 26, pp. 6843-6850, 2003.
    • (2003) Industrial & Engineering Chemistry Research , vol.42 , Issue.26 , pp. 6843-6850
    • Chen, Y.1    Wang, F.2
  • 7
    • 9244249149 scopus 로고    scopus 로고
    • Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms
    • L. Chen, S. Nguang, X. Chen and X. Li, "Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms", Biochemical Engineering Journal, vol. 22, no. 1, pp. 51-61, 2004.
    • (2004) Biochemical Engineering Journal , vol.22 , Issue.1 , pp. 51-61
    • Chen, L.1    Nguang, S.2    Chen, X.3    Li, X.4
  • 8
    • 33644890191 scopus 로고    scopus 로고
    • Prediction of key state variables using support vector machines in bioprocesses
    • Y. Li and J. Yuan, "Prediction of Key State Variables using Support Vector Machines in Bioprocesses", Chemical Engineering & Technology, vol. 29, no. 3, pp. 313-319, 2006.
    • (2006) Chemical Engineering & Technology , vol.29 , Issue.3 , pp. 313-319
    • Li, Y.1    Yuan, J.2
  • 9
    • 77951296145 scopus 로고    scopus 로고
    • Hybrid modeling of penicillin fermentation process based on least square support vector machine
    • X. Wang, J. Chen, C. Liu and F. Pan, "Hybrid modeling of penicillin fermentation process based on least square support vector machine", Chemical Engineering Research and Design, vol. 88, no. 4, pp. 415-420, 2010.
    • (2010) Chemical Engineering Research and Design , vol.88 , Issue.4 , pp. 415-420
    • Wang, X.1    Chen, J.2    Liu, C.3    Pan, F.4
  • 10
    • 84947045799 scopus 로고    scopus 로고
    • The potential of random forest and neural networks for biomass and recombinant protein modeling in escherichia colifed-batch fermentations
    • M. Melcher, T. Scharl, B. Spangl, M. Luchner, M. Cserjan, K. Bayer, F. Leisch and G. Striedner, "The potential of random forest and neural networks for biomass and recombinant protein modeling in Escherichia colifed-batch fermentations", Biotechnology Journal, vol. 10, no. 11, pp. 1770-1782, 2015.
    • (2015) Biotechnology Journal , vol.10 , Issue.11 , pp. 1770-1782
    • Melcher, M.1    Scharl, T.2    Spangl, B.3    Luchner, M.4    Cserjan, M.5    Bayer, K.6    Leisch, F.7    Striedner, G.8
  • 13
    • 52949129443 scopus 로고    scopus 로고
    • Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression
    • F. Di Sciascio and A. Amicarelli, "Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression", Computers & Chemical Engineering, vol. 32, no. 12, pp. 3264-3273, 2008.
    • (2008) Computers & Chemical Engineering , vol.32 , Issue.12 , pp. 3264-3273
    • Di Sciascio, F.1    Amicarelli, A.2
  • 14
    • 84938633868 scopus 로고    scopus 로고
    • Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes
    • H. Jin, X. Chen, L. Wang, K. Yang and L. Wu, "Adaptive Soft Sensor Development Based on Online Ensemble Gaussian Process Regression for Nonlinear Time-Varying Batch Processes", Industrial & Engineering Chemistry Research, vol. 54, no. 30, pp. 7320-7345, 2015.
    • (2015) Industrial & Engineering Chemistry Research , vol.54 , Issue.30 , pp. 7320-7345
    • Jin, H.1    Chen, X.2    Wang, L.3    Yang, K.4    Wu, L.5
  • 15
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • J. Yu, "Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach", Chemical Engineering Science, vol. 82, pp. 22-30, 2012.
    • (2012) Chemical Engineering Science , vol.82 , pp. 22-30
    • Yu, J.1
  • 16
    • 85001790725 scopus 로고    scopus 로고
    • Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes
    • C. Mei, Y. Su, G. Liu, Y. Ding and Z. Liao, "Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes", Chinese Journal of Chemical Engineering, vol. 25, no. 1, pp. 116-122, 2017
    • (2017) Chinese Journal of Chemical Engineering , vol.25 , Issue.1 , pp. 116-122
    • Mei, C.1    Su, Y.2    Liu, G.3    Ding, Y.4    Liao, Z.5
  • 17
    • 0001762190 scopus 로고    scopus 로고
    • Dynamic modeling, sensitivity analysis and parameter estimation of industrial yeast fermenters
    • C. Pertev, "Dynamic modeling, sensitivity analysis and parameter estimation of industrial yeast fermenters", Computers & Chemical Engineering, vol. 21, no. 1-2, pp. S739-S744, 1997.
    • (1997) Computers & Chemical Engineering , vol.21 , Issue.1-2 , pp. S739-S744
    • Pertev, C.1
  • 18
    • 0022736565 scopus 로고
    • Growth of saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis
    • B. Sonnleitner and O. Kappeli, "Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis", Biotechnology and Bioengineering, vol. 28, no. 6, pp. 927-937, 1986.
    • (1986) Biotechnology and Bioengineering , vol.28 , Issue.6 , pp. 927-937
    • Sonnleitner, B.1    Kappeli, O.2
  • 19
    • 78049478031 scopus 로고    scopus 로고
    • Run-to-run optimization for fed-batch fermentation process with swarm energy conservation particle swarm optimization algorithm
    • J. Wang, Y. Xue, T. Yu and L. Zhao, "Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm", Chinese Journal of Chemical Engineering, vol. 18, no. 5, pp. 787-794, 2010.
    • (2010) Chinese Journal of Chemical Engineering , vol.18 , Issue.5 , pp. 787-794
    • Wang, J.1    Xue, Y.2    Yu, T.3    Zhao, L.4
  • 22
    • 0001196683 scopus 로고
    • Maximum likelihood estimation of models for residual covariance in spatial regression
    • K. Mardia and R. Marshall, "Maximum Likelihood Estimation of Models for Residual Covariance in Spatial Regression", Biometrika, vol. 71, no. 1, p. 135, 1984.
    • (1984) Biometrika , vol.71 , Issue.1 , pp. 135
    • Mardia, K.1    Marshall, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.