메뉴 건너뛰기




Volumn 93, Issue 14, 2019, Pages

Single-cell virus sequencing of influenza infections that trigger innate immunity

Author keywords

10x Chromium; Defective virus; Heterogeneity; Influenza virus; Interferon; NS1; PacBio; PB1; Single cell RNA seq

Indexed keywords

INS1 PROTEIN, INFLUENZA VIRUS; VIRAL PROTEIN;

EID: 85069237924     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.00500-19     Document Type: Article
Times cited : (91)

References (97)
  • 1
    • 33748455338 scopus 로고    scopus 로고
    • Type I interferons in host defense
    • Stetson DB, Medzhitov R. 2006. Type I interferons in host defense. Immunity 25:373–381. https://doi.org/10.1016/j.immuni.2006.08.007.
    • (2006) Immunity , vol.25 , pp. 373-381
    • Stetson, DB1    Medzhitov, R.2
  • 2
    • 33748475531 scopus 로고    scopus 로고
    • Type I interferon gene induction by the interferon regulatory factor family of transcription factors
    • Honda K, Takaoka A, Taniguchi T. 2006. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 25:349–360. https://doi.org/10.1016/j.immuni.2006.08.009.
    • (2006) Immunity , vol.25 , pp. 349-360
    • Honda, K1    Takaoka, A2    Taniguchi, T.3
  • 3
    • 0014653595 scopus 로고
    • The results of controlled observations on the prophylaxis of influenza with interferon
    • Solov’ev V. 1969. The results of controlled observations on the prophylaxis of influenza with interferon. Bull World Health Organ 41:683–688.
    • (1969) Bull World Health Organ , vol.41 , pp. 683-688
    • Solov’ev, V.1
  • 4
    • 0023270494 scopus 로고
    • Intranasally administered interferon as prophylaxis against experimentally induced influenza A virus infection in humans
    • Treanor JJ, Betts RF, Erb SM, Roth FK, Dolin R. 1987. Intranasally administered interferon as prophylaxis against experimentally induced influenza A virus infection in humans. J Infect Dis 156:379–383. https://doi.org/10.1093/infdis/156.2.379.
    • (1987) J Infect Dis , vol.156 , pp. 379-383
    • Treanor, JJ1    Betts, RF2    Erb, SM3    Roth, FK4    Dolin, R.5
  • 5
    • 33847292819 scopus 로고    scopus 로고
    • Protection from lethal influenza virus challenge by oral type 1 interferon
    • Beilharz MW, Cummins JM, Bennett AL. 2007. Protection from lethal influenza virus challenge by oral type 1 interferon. Biochem Biophys Res Commun 355:740–744. https://doi.org/10.1016/j.bbrc.2007.02.019.
    • (2007) Biochem Biophys Res Commun , vol.355 , pp. 740-744
    • Beilharz, MW1    Cummins, JM2    Bennett, AL.3
  • 6
    • 64049119567 scopus 로고    scopus 로고
    • Intranasal administration of alpha interferon reduces seasonal influenza A virus morbidity in ferrets
    • Kugel D, Kochs G, Obojes K, Roth J, Kobinger GP, Kobasa D, Haller O, Staeheli P, Von Messling V. 2009. Intranasal administration of alpha interferon reduces seasonal influenza A virus morbidity in ferrets. J Virol 83:3843–3851. https://doi.org/10.1128/JVI.02453-08.
    • (2009) J Virol , vol.83 , pp. 3843-3851
    • Kugel, D1    Kochs, G2    Obojes, K3    Roth, J4    Kobinger, GP5    Kobasa, D6    Haller, O7    Staeheli, P8    Von Messling, V.9
  • 7
    • 72849138377 scopus 로고    scopus 로고
    • Transmission of pandemic H1N1 influenza virus and impact of prior exposure to seasonal strains or interferon treatment
    • Steel J, Staeheli P, Mubareka S, Garcia-Sastre A, Palese P, Lowen AC. 2010. Transmission of pandemic H1N1 influenza virus and impact of prior exposure to seasonal strains or interferon treatment. J Virol 84: 21–26. https://doi.org/10.1128/JVI.01732-09.
    • (2010) J Virol , vol.84 , pp. 21-26
    • Steel, J1    Staeheli, P2    Mubareka, S3    Garcia-Sastre, A4    Palese, P5    Lowen, AC.6
  • 8
    • 33947108477 scopus 로고    scopus 로고
    • A question of self-preservation: immunopathology in influenza virus infection
    • La Gruta NL, Kedzierska K, Stambas J, Doherty PC. 2007. A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol 85:85–92. https://doi.org/10.1038/sj.icb.7100026.
    • (2007) Immunol Cell Biol , vol.85 , pp. 85-92
    • La Gruta, NL1    Kedzierska, K2    Stambas, J3    Doherty, PC.4
  • 9
    • 84899503850 scopus 로고    scopus 로고
    • Innate immunity to influenza virus infection
    • Iwasaki A, Pillai PS. 2014. Innate immunity to influenza virus infection. Nat Rev Immunol 14:315. https://doi.org/10.1038/nri3665.
    • (2014) Nat Rev Immunol , vol.14 , pp. 315
    • Iwasaki, A1    Pillai, PS.2
  • 10
    • 84878567290 scopus 로고    scopus 로고
    • Visualizing the beta interferon response in mice during infection with influenza A viruses expressing or lacking nonstructural protein 1
    • Kallfass C, Lienenklaus S, Weiss S, Staeheli P. 2013. Visualizing the beta interferon response in mice during infection with influenza A viruses expressing or lacking nonstructural protein 1. J Virol 87:6925–6930. https://doi.org/10.1128/JVI.00283-13.
    • (2013) J Virol , vol.87 , pp. 6925-6930
    • Kallfass, C1    Lienenklaus, S2    Weiss, S3    Staeheli, P.4
  • 11
    • 85016959780 scopus 로고    scopus 로고
    • Single-cell studies of IFN-β promoter activation by wild-type and NS1-defective influenza A viruses
    • Killip MJ, Jackson D, Perez-Cidoncha M, Fodor E, Randall RE. 2017. Single-cell studies of IFN-β promoter activation by wild-type and NS1-defective influenza A viruses. J Gen Virol 98:357–363. https://doi.org/10.1099/jgv.0.000687.
    • (2017) J Gen Virol , vol.98 , pp. 357-363
    • Killip, MJ1    Jackson, D2    Perez-Cidoncha, M3    Fodor, E4    Randall, RE.5
  • 12
    • 85043531075 scopus 로고    scopus 로고
    • Extreme heterogeneity of influenza virus infection in single cells
    • Russell AB, Trapnell C, Bloom JD. 2018. Extreme heterogeneity of influenza virus infection in single cells. Elife 7:e32303. https://doi.org/10.7554/eLife.32303.
    • (2018) Elife , vol.7 , pp. e32303
    • Russell, AB1    Trapnell, C2    Bloom, JD.3
  • 14
    • 85053456878 scopus 로고    scopus 로고
    • Distinct antiviral signatures revealed by the magnitude and round of influenza virus replication in vivo
    • Sjaastad LE, Fay EJ, Fiege JK, Macchietto MG, Stone IA, Markman MW, Shen S, Langlois RA. 2018. Distinct antiviral signatures revealed by the magnitude and round of influenza virus replication in vivo. Proc Natl Acad Sci U S A 115:9610–9615. https://doi.org/10.1073/pnas .1807516115.
    • (2018) Proc Natl Acad Sci U S A , vol.115 , pp. 9610-9615
    • Sjaastad, LE1    Fay, EJ2    Fiege, JK3    Macchietto, MG4    Stone, IA5    Markman, MW6    Shen, S7    Langlois, RA.8
  • 15
    • 84947782751 scopus 로고    scopus 로고
    • Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection
    • Heldt FS, Kupke SY, Dorl S, Reichl U, Frensing T. 2015. Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. Nat Commun 6:8938. https://doi.org/10.1038/ncomms9938.
    • (2015) Nat Commun , vol.6 , pp. 8938
    • Heldt, FS1    Kupke, SY2    Dorl, S3    Reichl, U4    Frensing, T.5
  • 16
    • 85078561383 scopus 로고    scopus 로고
    • Cell-to-cell variation in defective virus expression and effects on host responses during influenza virus infection
    • Wang C, Forst CV, Chou T, Geber A, Wang M, Hamou W, Smith M, Sebra R, Zhang B, Zhou B, Ghedin E. 2018. Cell-to-cell variation in defective virus expression and effects on host responses during influenza virus infection. bioRxiv https://doi.org/10.1101/487785.
    • (2018) bioRxiv
    • Wang, C1    Forst, CV2    Chou, T3    Geber, A4    Wang, M5    Hamou, W6    Smith, M7    Sebra, R8    Zhang, B9    Zhou, B10    Ghedin, E.11
  • 17
    • 85051323990 scopus 로고    scopus 로고
    • Stochastic processes constrain the within and between host evolution of influenza virus
    • McCrone JT, Woods RJ, Martin ET, Malosh RE, Monto AS, Lauring AS. 2018. Stochastic processes constrain the within and between host evolution of influenza virus. Elife 7:e35962. https://doi.org/10.7554/eLife.35962.
    • (2018) Elife , vol.7 , pp. e35962
    • McCrone, JT1    Woods, RJ2    Martin, ET3    Malosh, RE4    Monto, AS5    Lauring, AS.6
  • 18
    • 85062095417 scopus 로고    scopus 로고
    • Reconciling disparate estimates of viral genetic diversity during human influenza infections
    • 25 February
    • Xue KS, Bloom JD. 25 February 2019. Reconciling disparate estimates of viral genetic diversity during human influenza infections. Nat Genet https://doi.org/10.1038/s41588-019-0349-3.
    • (2019) Nat Genet
    • Xue, KS1    Bloom, JD.2
  • 23
    • 85020380942 scopus 로고    scopus 로고
    • Cell polarization and epigenetic status shape the heterogeneous response to type III interferons in intestinal epithelial cells
    • Bhushal S, Wolfsmuller M, Selvakumar T, Kemper L, Wirth D, Hornef M, Hauser H, Koster M. 2017. Cell polarization and epigenetic status shape the heterogeneous response to type III interferons in intestinal epithelial cells. Front Immunol 8:671– 671. https://doi.org/10.3389/fimmu.2017 .00671.
    • (2017) Front Immunol , vol.8 , pp. 671-671
    • Bhushal, S1    Wolfsmuller, M2    Selvakumar, T3    Kemper, L4    Wirth, D5    Hornef, M6    Hauser, H7    Koster, M.8
  • 24
    • 0345004816 scopus 로고    scopus 로고
    • Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems
    • Garcia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T. 1998. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252:324–330. https://doi.org/10.1006/viro.1998.9508.
    • (1998) Virology , vol.252 , pp. 324-330
    • Garcia-Sastre, A1    Egorov, A2    Matassov, D3    Brandt, S4    Levy, DE5    Durbin, JE6    Palese, P7    Muster, T.8
  • 25
    • 54449099369 scopus 로고    scopus 로고
    • The multifunctional NS1 protein of influenza A viruses
    • Hale BG, Randall RE, Ortin J, Jackson D. 2008. The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89:2359–2376. https://doi.org/10.1099/vir.0.2008/004606-0.
    • (2008) J Gen Virol , vol.89 , pp. 2359-2376
    • Hale, BG1    Randall, RE2    Ortin, J3    Jackson, D.4
  • 26
    • 84929576523 scopus 로고    scopus 로고
    • Influenza A virus protein PA-X contributes to viral growth and suppression of the host antiviral and immune responses
    • Hayashi T, MacDonald LA, Takimoto T. 2015. Influenza A virus protein PA-X contributes to viral growth and suppression of the host antiviral and immune responses. J Virol 89:6442–6452. https://doi.org/10.1128/JVI.00319-15.
    • (2015) J Virol , vol.89 , pp. 6442-6452
    • Hayashi, T1    MacDonald, LA2    Takimoto, T.3
  • 27
    • 70649087924 scopus 로고    scopus 로고
    • Mechanisms and functional implications of the degradation of host RNA polymerase II in influenza virus infected cells
    • Vreede FT, Chan AY, Sharps J, Fodor E. 2010. Mechanisms and functional implications of the degradation of host RNA polymerase II in influenza virus infected cells. Virology 396:125–134. https://doi.org/10.1016/j.virol.2009.10.003.
    • (2010) Virology , vol.396 , pp. 125-134
    • Vreede, FT1    Chan, AY2    Sharps, J3    Fodor, E.4
  • 28
    • 80755169631 scopus 로고    scopus 로고
    • The influenza virus PB1-F2 protein has interferon antagonistic activity
    • Dudek SE, Wixler L, Nordhoff C, Nordmann A, Anhlan D, Wixler V, Ludwig S. 2011. The influenza virus PB1-F2 protein has interferon antagonistic activity. Biol Chem 392:1135–1144. https://doi.org/10.1515/BC.2011.174.
    • (2011) Biol Chem , vol.392 , pp. 1135-1144
    • Dudek, SE1    Wixler, L2    Nordhoff, C3    Nordmann, A4    Anhlan, D5    Wixler, V6    Ludwig, S.7
  • 29
    • 84959511733 scopus 로고    scopus 로고
    • Influenza virus activation of the interferon system
    • Killip MJ, Fodor E, Randall RE. 2015. Influenza virus activation of the interferon system. Virus Res 209:11–22. https://doi.org/10.1016/j.virusres.2015.02.003.
    • (2015) Virus Res , vol.209 , pp. 11-22
    • Killip, MJ1    Fodor, E2    Randall, RE.3
  • 30
    • 0022477122 scopus 로고
    • Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type
    • Parvin JD, Moscona A, Pan W, Leider J, Palese P. 1986. Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type. J Virol 59:377–383.
    • (1986) J Virol , vol.59 , pp. 377-383
    • Parvin, JD1    Moscona, A2    Pan, W3    Leider, J4    Palese, P.5
  • 31
    • 0026561520 scopus 로고
    • Heterogeneity of the mutation rates of influenza A viruses: isolation of mutator mutants
    • Suarez P, Valcarcel J, Ortin J. 1992. Heterogeneity of the mutation rates of influenza A viruses: isolation of mutator mutants. J Virol 66: 2491–2494.
    • (1992) J Virol , vol.66 , pp. 2491-2494
    • Suarez, P1    Valcarcel, J2    Ortin, J.3
  • 32
    • 0028009540 scopus 로고
    • An estimation of the nucleotide substitution rate at defined positions in the influenza virus haemagglutinin gene
    • Suarez-Lopez P, Ortin J. 1994. An estimation of the nucleotide substitution rate at defined positions in the influenza virus haemagglutinin gene. J Gen Virol 75:389–393. https://doi.org/10.1099/0022-1317-75-2 -389.
    • (1994) J Gen Virol , vol.75 , pp. 389-393
    • Suarez-Lopez, P1    Ortin, J.2
  • 33
    • 84905001681 scopus 로고    scopus 로고
    • An experimentally determined evolutionary model dramatically improves phylogenetic fit
    • Bloom JD. 2014. An experimentally determined evolutionary model dramatically improves phylogenetic fit. Mol Biol Evol 31:1956–1978. https://doi.org/10.1093/molbev/msu173.
    • (2014) Mol Biol Evol , vol.31 , pp. 1956-1978
    • Bloom, JD.1
  • 34
    • 85026749797 scopus 로고    scopus 로고
    • A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses
    • Pauly MD, Procario MC, Lauring AS. 2017. A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses. Elife 6:e26437. https://doi.org/10.7554/eLife.26437.
    • (2017) Elife , vol.6 , pp. e26437
    • Pauly, MD1    Procario, MC2    Lauring, AS.3
  • 37
    • 84897515363 scopus 로고    scopus 로고
    • An unbiased genetic screen reveals the polygenic nature of the influenza virus anti-interferon response
    • Pérez-Cidoncha M, Killip MJ, Oliveros JC, Asensio VJ, Fernández Y, Bengoechea JA, Randall RE, Ortín J. 2014. An unbiased genetic screen reveals the polygenic nature of the influenza virus anti-interferon response. J Virol 88:4632–4646. https://doi.org/10.1128/JVI.00014-14.
    • (2014) J Virol , vol.88 , pp. 4632-4646
    • Pérez-Cidoncha, M1    Killip, MJ2    Oliveros, JC3    Asensio, VJ4    Fernández, Y5    Bengoechea, JA6    Randall, RE7    Ortín, J.8
  • 38
    • 77957997708 scopus 로고    scopus 로고
    • Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing
    • Baum A, Sachidanandam R, Garcia-Sastre A. 2010. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc Natl Acad Sci U S A 107:16303–16308. https://doi.org/10.1073/pnas.1005077107.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 16303-16308
    • Baum, A1    Sachidanandam, R2    Garcia-Sastre, A.3
  • 39
    • 84887308873 scopus 로고    scopus 로고
    • Defective viral genomes arising in vivo provide critical danger signals for the triggering of lung antiviral immunity
    • Tapia K, Kim W-K, Sun Y, Mercado-López X, Dunay E, Wise M, Adu M, López CB. 2013. Defective viral genomes arising in vivo provide critical danger signals for the triggering of lung antiviral immunity. PLoS Pathog 9:e1003703. https://doi.org/10.1371/journal.ppat.1003703.
    • (2013) PLoS Pathog , vol.9 , pp. e1003703
    • Tapia, K1    Kim, W-K2    Sun, Y3    Mercado-López, X4    Dunay, E5    Wise, M6    Adu, M7    López, CB.8
  • 40
    • 84930321672 scopus 로고    scopus 로고
    • Evidence for a novel mechanism of influenza virus-induced type I interferon expression by a defective RNA-encoded protein
    • Boergeling Y, Rozhdestvensky TS, Schmolke M, Resa-Infante P, Robeck T, Randau G, Wolff T, Gabriel G, Brosius J, Ludwig S. 2015. Evidence for a novel mechanism of influenza virus-induced type I interferon expression by a defective RNA-encoded protein. PLoS Pathog 11:e1004924. https://doi.org/10.1371/journal.ppat.1004924.
    • (2015) PLoS Pathog , vol.11 , pp. e1004924
    • Boergeling, Y1    Rozhdestvensky, TS2    Schmolke, M3    Resa-Infante, P4    Robeck, T5    Randau, G6    Wolff, T7    Gabriel, G8    Brosius, J9    Ludwig, S.10
  • 41
    • 84936931510 scopus 로고    scopus 로고
    • Cloned defective interfering influenza RNA and a possible pan-specific treatment of respiratory virus diseases
    • Dimmock NJ, Easton AJ. 2015. Cloned defective interfering influenza RNA and a possible pan-specific treatment of respiratory virus diseases. Viruses 7:3768–3788. https://doi.org/10.3390/v7072796.
    • (2015) Viruses , vol.7 , pp. 3768-3788
    • Dimmock, NJ1    Easton, AJ.2
  • 42
    • 85062641949 scopus 로고    scopus 로고
    • Inhibition of ongoing influenza A virus replication reveals different mechanisms of RIG-I activation
    • Liu G, Lu Y, Liu Q, Zhou Y. 2019. Inhibition of ongoing influenza A virus replication reveals different mechanisms of RIG-I activation. J Virol 93: e02066-18. https://doi.org/10.1128/JVI.02066-18.
    • (2019) J Virol , vol.93 , pp. e02066-18
    • Liu, G1    Lu, Y2    Liu, Q3    Zhou, Y.4
  • 43
    • 84874702494 scopus 로고    scopus 로고
    • Most influenza A virions fail to express at least one essential viral protein
    • Brooke CB, Ince WL, Wrammert J, Ahmed R, Wilson PC, Bennink JR, Yewdell JW. 2013. Most influenza A virions fail to express at least one essential viral protein. J Virol 87:3155–3162. https://doi.org/10.1128/JVI .02284-12.
    • (2013) J Virol , vol.87 , pp. 3155-3162
    • Brooke, CB1    Ince, WL2    Wrammert, J3    Ahmed, R4    Wilson, PC5    Bennink, JR6    Yewdell, JW.7
  • 44
    • 85034112659 scopus 로고    scopus 로고
    • Single-cell virology: on-chip investigation of viral infection dynamics
    • Guo F, Li S, Caglar MU, Mao Z, Liu W, Woodman A, Arnold JJ, Wilke CO, Huang TJ, Cameron CE. 2017. Single-cell virology: on-chip investigation of viral infection dynamics. Cell Rep 21:1692–1704. https://doi.org/10.1016/j.celrep.2017.10.051.
    • (2017) Cell Rep , vol.21 , pp. 1692-1704
    • Guo, F1    Li, S2    Caglar, MU3    Mao, Z4    Liu, W5    Woodman, A6    Arnold, JJ7    Wilke, CO8    Huang, TJ9    Cameron, CE.10
  • 45
    • 85043513977 scopus 로고    scopus 로고
    • Single-cell transcriptional dynamics of flavivirus infection
    • Zanini F, Pu SY, Bekerman E, Einav S, Quake SR. 2018. Single-cell transcriptional dynamics of flavivirus infection. Elife 7:e32942. https://doi.org/10.7554/eLife.32942.
    • (2018) Elife , vol.7 , pp. e32942
    • Zanini, F1    Pu, SY2    Bekerman, E3    Einav, S4    Quake, SR.5
  • 48
    • 85062631583 scopus 로고    scopus 로고
    • West Nile virus-inclusive single-cell RNA sequencing reveals heterogeneity in the type I interferon response within single cells
    • O’Neal JT, Upadhyay AA, Wolabaugh A, Patel NB, Bosinger SE, Suthar MS. 2019. West Nile virus-inclusive single-cell RNA sequencing reveals heterogeneity in the type I interferon response within single cells. J Virol 93:e01778-18. https://doi.org/10.1128/JVI.01778-18.
    • (2019) J Virol , vol.93 , pp. e01778-18
    • O’Neal, JT1    Upadhyay, AA2    Wolabaugh, A3    Patel, NB4    Bosinger, SE5    Suthar, MS.6
  • 49
    • 85064879786 scopus 로고    scopus 로고
    • Single-cell virus sequencing of influenza infections that trigger innate immunity
    • Russell AB, Kowalsky JR, Bloom JD. 2018. Single-cell virus sequencing of influenza infections that trigger innate immunity. bioRxiv https://doi.org/10.1101/437277.
    • (2018) bioRxiv
    • Russell, AB1    Kowalsky, JR2    Bloom, JD.3
  • 51
    • 0030660432 scopus 로고    scopus 로고
    • Cell-surface marking of CD34-restricted phenotypes of human hematopoietic progenitor cells by retrovirus-mediated gene transfer
    • Ruggieri L, Aiuti A, Salomoni M, Zappone E, Ferrari G, Bordignon C. 1997. Cell-surface marking of CD34-restricted phenotypes of human hematopoietic progenitor cells by retrovirus-mediated gene transfer. Hum Gene Ther 8:1611–1623. https://doi.org/10.1089/hum.1997.8.13-1611.
    • (1997) Hum Gene Ther , vol.8 , pp. 1611-1623
    • Ruggieri, L1    Aiuti, A2    Salomoni, M3    Zappone, E4    Ferrari, G5    Bordignon, C.6
  • 52
    • 33745839246 scopus 로고    scopus 로고
    • Sendai virus defective-interfering genomes and the activation of interferon-beta
    • Strahle L, Garcin D, Kolakofsky D. 2006. Sendai virus defective-interfering genomes and the activation of interferon-beta. Virology 351:101–111. https://doi.org/10.1016/j.virol.2006.03.022.
    • (2006) Virology , vol.351 , pp. 101-111
    • Strahle, L1    Garcin, D2    Kolakofsky, D.3
  • 53
    • 0034705225 scopus 로고    scopus 로고
    • A DNA transfection system for generation of influenza A virus from eight plasmids
    • Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. 2000. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97:6108–6113. https://doi.org/10.1073/pnas.100133697.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 6108-6113
    • Hoffmann, E1    Neumann, G2    Kawaoka, Y3    Hobom, G4    Webster, RG.5
  • 54
    • 84964329278 scopus 로고    scopus 로고
    • Propagation and characterization of influenza virus stocks that lack high levels of defective viral genomes and hemagglutinin mutations
    • Xue J, Chambers BS, Hensley SE, Lopez CB. 2016. Propagation and characterization of influenza virus stocks that lack high levels of defective viral genomes and hemagglutinin mutations. Front Microbiol 7:326. https://doi.org/10.3389/fmicb.2016.00326.
    • (2016) Front Microbiol , vol.7 , pp. 326
    • Xue, J1    Chambers, BS2    Hensley, SE3    Lopez, CB.4
  • 56
    • 0019470363 scopus 로고
    • Polyadenylation sites for influenza virus mRNA
    • Robertson J, Schubert M, Lazzarini R. 1981. Polyadenylation sites for influenza virus mRNA. J Virol 38:157–163.
    • (1981) J Virol , vol.38 , pp. 157-163
    • Robertson, J1    Schubert, M2    Lazzarini, R.3
  • 57
    • 84931275587 scopus 로고    scopus 로고
    • Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation
    • Koppstein D, Ashour J, Bartel DP. 2015. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Res 43:5052–5064. https://doi.org/10.1093/nar/gkv333.
    • (2015) Nucleic Acids Res , vol.43 , pp. 5052-5064
    • Koppstein, D1    Ashour, J2    Bartel, DP.3
  • 58
    • 77956125365 scopus 로고    scopus 로고
    • A flexible and efficient template format for circular consensus sequencing and SNP detection
    • Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW. 2010. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38:e159. https://doi.org/10.1093/nar/ gkq543.
    • (2010) Nucleic Acids Res , vol.38 , pp. e159
    • Travers, KJ1    Chin, CS2    Rank, DR3    Eid, JS4    Turner, SW.5
  • 59
    • 85052891535 scopus 로고    scopus 로고
    • Estimating the frequency of multiplets in single-cell RNA sequencing from cell-mixing experiments
    • Bloom JD. 2018. Estimating the frequency of multiplets in single-cell RNA sequencing from cell-mixing experiments. PeerJ 6:e5578. https://doi.org/10.7717/peerj.5578.
    • (2018) PeerJ , vol.6 , pp. e5578
    • Bloom, JD.1
  • 60
    • 85027696020 scopus 로고    scopus 로고
    • A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications
    • Haque A, Engel J, Teichmann SA, Lonnberg T. 2017. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med 9:75. https://doi.org/10.1186/s13073-017-0467-4.
    • (2017) Genome Med , vol.9 , pp. 75
    • Haque, A1    Engel, J2    Teichmann, SA3    Lonnberg, T.4
  • 62
    • 85067402257 scopus 로고    scopus 로고
    • Incomplete influenza A virus genomes are abundant but readily complemented during spatially structured viral spread
    • Jacobs NT, Onuoha NO, Antia A, Antia R, Steel J, Lowen AC. 2019. Incomplete influenza A virus genomes are abundant but readily complemented during spatially structured viral spread. bioRxiv https://doi.org/10.1101/529065.
    • (2019) bioRxiv
    • Jacobs, NT1    Onuoha, NO2    Antia, A3    Antia, R4    Steel, J5    Lowen, AC.6
  • 63
    • 0024535928 scopus 로고
    • Control of influenza virus gene expression: quantitative analysis of each viral RNA species in infected cells
    • Hatada E, Hasegawa M, Mukaigawa J, Shimizu K, Fukuda R. 1989. Control of influenza virus gene expression: quantitative analysis of each viral RNA species in infected cells. J Biochem 105:537–546. https://doi.org/10.1093/oxfordjournals.jbchem.a122702.
    • (1989) J Biochem , vol.105 , pp. 537-546
    • Hatada, E1    Hasegawa, M2    Mukaigawa, J3    Shimizu, K4    Fukuda, R.5
  • 64
    • 85019101126 scopus 로고    scopus 로고
    • Plaques formed by mutagenized viral populations have elevated coinfection frequencies
    • Aguilera ER, Erickson AK, Jesudhasan PR, Robinson CM, Pfeiffer JK. 2017. Plaques formed by mutagenized viral populations have elevated coinfection frequencies. mBio 8:e02020-16. https://doi.org/10.1128/mBio.02020-16.
    • (2017) mBio , vol.8 , pp. e02020-16
    • Aguilera, ER1    Erickson, AK2    Jesudhasan, PR3    Robinson, CM4    Pfeiffer, JK.5
  • 65
    • 84944213433 scopus 로고    scopus 로고
    • Single-cell analysis of RNA virus infection identifies multiple genetically diverse viral genomes within single infectious units
    • Combe M, Garijo R, Geller R, Cuevas JM, Sanjuan R. 2015. Single-cell analysis of RNA virus infection identifies multiple genetically diverse viral genomes within single infectious units. Cell Host Microbe 18:424 – 432. https://doi.org/10.1016/j.chom.2015.09.009.
    • (2015) Cell Host Microbe , vol.18 , pp. 424-432
    • Combe, M1    Garijo, R2    Geller, R3    Cuevas, JM4    Sanjuan, R.5
  • 67
    • 84937639038 scopus 로고    scopus 로고
    • In vivo RNAi screening identifies MDA5 as a significant contributor to the cellular defense against influenza A virus
    • Benitez AA, Panis M, Xue J, Varble A, Shim JV, Frick AL, Lopez CB, Sachs D, tenOever BR. 2015. In vivo RNAi screening identifies MDA5 as a significant contributor to the cellular defense against influenza A virus. Cell Rep 11:1714–1726. https://doi.org/10.1016/j.celrep.2015.05.032.
    • (2015) Cell Rep , vol.11 , pp. 1714-1726
    • Benitez, AA1    Panis, M2    Xue, J3    Varble, A4    Shim, JV5    Frick, AL6    Lopez, CB7    Sachs, D8    tenOever, BR.9
  • 68
    • 85035083737 scopus 로고    scopus 로고
    • Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity
    • Chiang JJ, Sparrer KMJ, van Gent M, Lässig C, Huang T, Osterrieder N, Hopfner K-P, Gack MU. 2018. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat Immunol 19: 53–62. https://doi.org/10.1038/s41590-017-0005-y.
    • (2018) Nat Immunol , vol.19 , pp. 53-62
    • Chiang, JJ1    Sparrer, KMJ2    van Gent, M3    Lässig, C4    Huang, T5    Osterrieder, N6    Hopfner, K-P7    Gack, MU.8
  • 69
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Maaten L, Hinton G. 2008. Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605.
    • (2008) J Mach Learn Res , vol.9 , pp. 2579-2605
    • Maaten, L1    Hinton, G.2
  • 70
    • 84897403748 scopus 로고    scopus 로고
    • Comparison of somatic mutation calling methods in amplicon and whole exome sequence data
    • Xu H, DiCarlo J, Satya RV, Peng Q, Wang Y. 2014. Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC Genomics 15:244. https://doi.org/10.1186/1471-2164-15-244.
    • (2014) BMC Genomics , vol.15 , pp. 244
    • Xu, H1    DiCarlo, J2    Satya, RV3    Peng, Q4    Wang, Y.5
  • 72
    • 0012057129 scopus 로고
    • Measurement of inequality of incomes
    • Gini C. 1921. Measurement of inequality of incomes. Econ J (London) 31:124–126. https://doi.org/10.2307/2223319.
    • (1921) Econ J (London) , vol.31 , pp. 124-126
    • Gini, C.1
  • 73
    • 0037452618 scopus 로고    scopus 로고
    • Selective incorporation of influenza virus RNA segments into virions
    • Fujii Y, Goto H, Watanabe T, Yoshida T, Kawaoka Y. 2003. Selective incorporation of influenza virus RNA segments into virions. Proc Natl Acad Sci U S A 100:2002–2007. https://doi.org/10.1073/pnas.0437772100.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 2002-2007
    • Fujii, Y1    Goto, H2    Watanabe, T3    Yoshida, T4    Kawaoka, Y.5
  • 74
    • 35348814973 scopus 로고    scopus 로고
    • Specific residues of the influenza A virus hemagglutinin viral RNA are important for efficient packaging into budding virions
    • Marsh GA, Hatami R, Palese P. 2007. Specific residues of the influenza A virus hemagglutinin viral RNA are important for efficient packaging into budding virions. J Virol 81:9727–9736. https://doi.org/10.1128/JVI.01144-07.
    • (2007) J Virol , vol.81 , pp. 9727-9736
    • Marsh, GA1    Hatami, R2    Palese, P.3
  • 75
    • 60349083295 scopus 로고    scopus 로고
    • Growth of an RNA virus in single cells reveals a broad fitness distribution
    • Zhu Y, Yongky A, Yin J. 2009. Growth of an RNA virus in single cells reveals a broad fitness distribution. Virology 385:39–46. https://doi.org/10.1016/j.virol.2008.10.031.
    • (2009) Virology , vol.385 , pp. 39-46
    • Zhu, Y1    Yongky, A2    Yin, J.3
  • 76
    • 84899811665 scopus 로고    scopus 로고
    • Single-cell analysis uncovers extensive biological noise in poliovirus replication
    • Schulte M, Andino R. 2014. Single-cell analysis uncovers extensive biological noise in poliovirus replication. J Virol 88:6205–6212. https://doi.org/10.1128/JVI.03539-13.
    • (2014) J Virol , vol.88 , pp. 6205-6212
    • Schulte, M1    Andino, R.2
  • 77
    • 84958078465 scopus 로고    scopus 로고
    • High-throughput single-cell kinetics of virus infections in the presence of defective interfering particles
    • Akpinar F, Timm A, Yin J. 2016. High-throughput single-cell kinetics of virus infections in the presence of defective interfering particles. J Virol 90:1599–1612. https://doi.org/10.1128/JVI.02190-15.
    • (2016) J Virol , vol.90 , pp. 1599-1612
    • Akpinar, F1    Timm, A2    Yin, J.3
  • 79
    • 77957773125 scopus 로고    scopus 로고
    • Lentiviral vector delivery of human interleukin-7 (hIL-7) to human immune system (HIS) mice expands T lymphocyte populations
    • O’Connell RM, Balazs AB, Rao DS, Kivork C, Yang L, Baltimore D. 2010. Lentiviral vector delivery of human interleukin-7 (hIL-7) to human immune system (HIS) mice expands T lymphocyte populations. PLoS One 5:e12009. https://doi.org/10.1371/journal.pone.0012009.
    • (2010) PLoS One , vol.5 , pp. e12009
    • O’Connell, RM1    Balazs, AB2    Rao, DS3    Kivork, C4    Yang, L5    Baltimore, D.6
  • 80
    • 79955707349 scopus 로고    scopus 로고
    • High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice
    • Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY. 2011. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6:e18556. https://doi.org/10.1371/journal.pone.0018556.
    • (2011) PLoS One , vol.6 , pp. e18556
    • Kim, JH1    Lee, SR2    Li, LH3    Park, HJ4    Park, JH5    Lee, KY6    Kim, MK7    Shin, BA8    Choi, SY.9
  • 81
    • 33745158157 scopus 로고
    • A simple method of estimating fifty per cent endpoints
    • Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408.
    • (1938) Am J Epidemiol , vol.27 , pp. 493-497
    • Reed, LJ1    Muench, H.2
  • 82
    • 85016515562 scopus 로고    scopus 로고
    • Complete mapping of viral escape from neutralizing antibodies
    • Doud MB, Hensley SE, Bloom JD. 2017. Complete mapping of viral escape from neutralizing antibodies. PLoS Pathog 13:e1006271. https://doi.org/10.1371/journal.ppat.1006271.
    • (2017) PLoS Pathog , vol.13 , pp. e1006271
    • Doud, MB1    Hensley, SE2    Bloom, JD.3
  • 83
    • 84941761377 scopus 로고    scopus 로고
    • Micelle PCR reduces chimera formation in 16S rRNA profiling of complex microbial DNA mixtures
    • Boers SA, Hays JP, Jansen R. 2015. Micelle PCR reduces chimera formation in 16S rRNA profiling of complex microbial DNA mixtures. Sci Rep 5:14181. https://doi.org/10.1038/srep14181.
    • (2015) Sci Rep , vol.5 , pp. 14181
    • Boers, SA1    Hays, JP2    Jansen, R.3
  • 84
    • 84896950946 scopus 로고    scopus 로고
    • Activation of the interferon induction cascade by influenza A viruses requires viral RNA synthesis and nuclear export
    • Killip MJ, Smith M, Jackson D, Randall RE. 2014. Activation of the interferon induction cascade by influenza A viruses requires viral RNA synthesis and nuclear export. J Virol 88:3942–3952. https://doi.org/10.1128/JVI.03109-13.
    • (2014) J Virol , vol.88 , pp. 3942-3952
    • Killip, MJ1    Smith, M2    Jackson, D3    Randall, RE.4
  • 85
    • 85025409225 scopus 로고
    • The quantitative determination of influenza virus and antibodies by means of red cell agglutination
    • Hirst GK. 1942. The quantitative determination of influenza virus and antibodies by means of red cell agglutination. J Exp Med 75:49–64. https://doi.org/10.1084/jem.75.1.49.
    • (1942) J Exp Med , vol.75 , pp. 49-64
    • Hirst, GK.1
  • 86
    • 77953262416 scopus 로고    scopus 로고
    • Permissive secondary mutations enable the evolution of influenza oseltamivir resistance
    • Bloom JD, Gong LI, Baltimore D. 2010. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328: 1272–1275. https://doi.org/10.1126/science.1187816.
    • (2010) Science , vol.328 , pp. 1272-1275
    • Bloom, JD1    Gong, LI2    Baltimore, D.3
  • 87
    • 84867306721 scopus 로고    scopus 로고
    • Snakemake–a scalable bioinformatics workflow engine
    • Koster J, Rahmann S. 2012. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics 28:2520–2522. https://doi.org/10.1093/bioinformatics/ bts480.
    • (2012) Bioinformatics , vol.28 , pp. 2520-2522
    • Koster, J1    Rahmann, S.2
  • 88
    • 85054132627 scopus 로고    scopus 로고
    • Minimap2: pairwise alignment for nucleotide sequences
    • Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. https://doi.org/10.1093/bioinformatics/bty191.
    • (2018) Bioinformatics , vol.34 , pp. 3094-3100
    • Li, H.1
  • 89
    • 84930207201 scopus 로고    scopus 로고
    • Software for the analysis and visualization of deep mutational scanning data
    • Bloom JD. 2015. Software for the analysis and visualization of deep mutational scanning data. BMC Bioinformatics 16:168. https://doi.org/10.1186/s12859-015-0590-4.
    • (2015) BMC Bioinformatics , vol.16 , pp. 168
    • Bloom, JD.1
  • 91
    • 85031017685 scopus 로고    scopus 로고
    • Reversed graph embedding resolves complex single-cell trajectories
    • Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C. 2017. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14:979. https://doi.org/10.1038/nmeth.4402.
    • (2017) Nat Methods , vol.14 , pp. 979
    • Qiu, X1    Mao, Q2    Tang, Y3    Wang, L4    Chawla, R5    Pliner, HA6    Trapnell, C.7
  • 94
    • 85019837743 scopus 로고    scopus 로고
    • An in vitro fluorescence based study of initiation of RNA synthesis by influenza B polymerase
    • Reich S, Guilligay D, Cusack S. 2017. An in vitro fluorescence based study of initiation of RNA synthesis by influenza B polymerase. Nucleic Acids Res 45:3353–3368. https://doi.org/10.1093/nar/gkx043.
    • (2017) Nucleic Acids Res , vol.45 , pp. 3353-3368
    • Reich, S1    Guilligay, D2    Cusack, S.3
  • 95
    • 0036720769 scopus 로고    scopus 로고
    • A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs
    • Fodor E, Crow M, Mingay LJ, Deng T, Sharps J, Fechter P, Brownlee GG. 2002. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76:8989–9001. https://doi.org/10.1128/JVI.76.18.8989-9001.2002.
    • (2002) J Virol , vol.76 , pp. 8989-9001
    • Fodor, E1    Crow, M2    Mingay, LJ3    Deng, T4    Sharps, J5    Fechter, P6    Brownlee, GG.7
  • 96
    • 4143153932 scopus 로고    scopus 로고
    • Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates
    • Vreede FT, Jung TE, Brownlee GG. 2004. Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol 78:9568–9572. https://doi.org/10.1128/JVI.78.17.9568-9572.2004.
    • (2004) J Virol , vol.78 , pp. 9568-9572
    • Vreede, FT1    Jung, TE2    Brownlee, GG.3
  • 97
    • 85010686232 scopus 로고    scopus 로고
    • The role of the priming loop in influenza A virus RNA synthesis
    • Velthuis A. t, Robb NC, Kapanidis AN, Fodor E. 2016. The role of the priming loop in influenza A virus RNA synthesis. Nat Microbiol 1:16029. https://doi.org/10.1038/nmicrobiol.2016.29.
    • (2016) Nat Microbiol , vol.1 , pp. 16029
    • Velthuis, A. t1    Robb, NC2    Kapanidis, AN3    Fodor, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.