메뉴 건너뛰기




Volumn 19, Issue 10, 2019, Pages

A lighted deep convolutional neural network based fault diagnosis of rotating machinery

Author keywords

Convolutional neural networks; Deep learning; Fault diagnosis; Rotating machinery; Wavelet packet transform

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; CONVOLUTION; DATA MINING; DEEP LEARNING; FAILURE ANALYSIS; FAULT DETECTION; MACHINE DESIGN; NEURAL NETWORKS; ROTATING MACHINERY; WAVELET ANALYSIS; WAVELET DECOMPOSITION;

EID: 85067299389     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s19102381     Document Type: Article
Times cited : (64)

References (40)
  • 1
    • 85042943940 scopus 로고    scopus 로고
    • Artificial intelligence for fault diagnosis of rotating machinery: A review
    • Liu, R.N.; Yang, B.Y.; Zio, E.; Chen, X.F. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2018, 108, 33–47. [CrossRef]
    • (2018) Mech. Syst. Signal Process. , vol.108 , pp. 33-47
    • Liu, R.N.1    Yang, B.Y.2    Zio, E.3    Chen, X.F.4
  • 2
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: A review with applications
    • Yan, R.Q.; Gao, R.X.; Chen, X.F. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Process. 2014, 96, 1–15. [CrossRef]
    • (2014) Signal Process , vol.96 , pp. 1-15
    • Yan, R.Q.1    Gao, R.X.2    Chen, X.F.3
  • 4
    • 85042082491 scopus 로고    scopus 로고
    • A review on the application of deep learning in system health management
    • Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 2018, 107, 241–265. [CrossRef]
    • (2018) Mech. Syst. Signal Process. , vol.107 , pp. 241-265
    • Khan, S.1    Yairi, T.2
  • 5
    • 85028716822 scopus 로고    scopus 로고
    • Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing
    • Shao, H.D.; Jiang, H.K.; Zhang, H.Z.; Duan, W.J.; Liang, T.C.; Wu, S.P. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mech. Syst. Signal Process. 2018, 100, 743–765. [CrossRef]
    • (2018) Mech. Syst. Signal Process. , vol.100 , pp. 743-765
    • Shao, H.D.1    Jiang, H.K.2    Zhang, H.Z.3    Duan, W.J.4    Liang, T.C.5    Wu, S.P.6
  • 6
    • 85022192782 scopus 로고    scopus 로고
    • Comparative study of measurement systems used to evaluate vibrations of rolling bearings
    • Adamczak, S.; Stępień, K.; Wrzochal, M. Comparative study of measurement systems used to evaluate vibrations of rolling bearings. Procedia Eng. 2017, 192, 971–975. [CrossRef]
    • (2017) Procedia Eng , vol.192 , pp. 971-975
    • Adamczak, S.1    Stępień, K.2    Wrzochal, M.3
  • 7
    • 84890044969 scopus 로고    scopus 로고
    • Condition monitoring and fault diagnosis of planetary gearboxes: A review
    • Lei, Y.G.; Lin, J.; Zuo, M.J.; He, Z.J. Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement 2014, 48, 292–305. [CrossRef]
    • (2014) Measurement , vol.48 , pp. 292-305
    • Lei, Y.G.1    Lin, J.2    Zuo, M.J.3    He, Z.J.4
  • 8
    • 33646512202 scopus 로고    scopus 로고
    • Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines
    • Rojas, A.; Nandi, A.K. Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines. Mech. Syst. Signal Process. 2006, 20, 1523–1536. [CrossRef]
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 1523-1536
    • Rojas, A.1    Nandi, A.K.2
  • 9
    • 3442879066 scopus 로고    scopus 로고
    • Fault-dictionary diagnostic method in frequency domain for nonlinear networks based on Volterra series and backward propagation neural networks (BPNN)
    • Xia, H.; He, Y.G.; Wu, J. Fault-dictionary diagnostic method in frequency domain for nonlinear networks based on Volterra series and backward propagation neural networks (BPNN). J. Hunan Univ. Nat. Sci. 2004, 31, 41–43.
    • (2004) J. Hunan Univ. Nat. Sci. , vol.31 , pp. 41-43
    • Xia, H.1    He, Y.G.2    Wu, J.3
  • 10
    • 64049098473 scopus 로고    scopus 로고
    • Application of an intelligent classification method to mechanical fault diagnosis
    • Lei, Y.G.; He, Z.J.; Zi, Y.Y. Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 2009, 36, 9941–9948. [CrossRef]
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9941-9948
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 11
    • 85044405769 scopus 로고    scopus 로고
    • Multifault Diagnosis of induction motor at intermediate operating conditions using wavelet packet transform and support vector machine
    • Gangsar, P.; Tiwari, R. Multifault Diagnosis of induction motor at intermediate operating conditions using wavelet packet transform and support vector machine. J. Dyn. Syst-T. ASME 2018, 140, 081014-1-8. [CrossRef]
    • (2018) J. Dyn. Syst-T. ASME , vol.140 , pp. 081014-81021
    • Gangsar, P.1    Tiwari, R.2
  • 12
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. 2013, 35, 1798–1828. [CrossRef]
    • (2013) IEEE Trans. Pattern Anal. , vol.35 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 13
    • 85008219650 scopus 로고    scopus 로고
    • An enhancement deep feature fusion method for rotating machinery fault diagnosis
    • Shao, H.D.; Jiang, H.K.; Wang, F.A.; Zhao, H.W. An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowl. Based Syst. 2017, 119, 200–220. [CrossRef]
    • (2017) Knowl. Based Syst. , vol.119 , pp. 200-220
    • Shao, H.D.1    Jiang, H.K.2    Wang, F.A.3    Zhao, H.W.4
  • 14
    • 84983314971 scopus 로고    scopus 로고
    • Randomized algorithms for nonlinear system identification with deep learning modification
    • Rosa, E.D.L.; Yu, W. Randomized algorithms for nonlinear system identification with deep learning modification. Inf. Sci. 2016, 364–365, 197–212. [CrossRef]
    • (2016) Inf. Sci. , vol.364-365 , pp. 197-212
    • Rosa, E.D.L.1    Yu, W.2
  • 15
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jia, F.; Lei, Y.G.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72–73, 303–315. [CrossRef]
    • (2016) Mech. Syst. Signal Process. , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.G.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 16
    • 84963864627 scopus 로고    scopus 로고
    • Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
    • Li, C.; Sanchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D.; Vásquez, R.E. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Mech. Syst. Signal Process. 2016, 76–77, 283–293. [CrossRef]
    • (2016) Mech. Syst. Signal Process. , vol.76-77 , pp. 283-293
    • Li, C.1    Sanchez, R.V.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5    Vásquez, R.E.6
  • 17
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • Gan, M.; Wang, C.; Zhu, C.A. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 2016, 72–73, 92–104. [CrossRef]
    • (2016) Mech. Syst. Signal Process. , vol.72-73 , pp. 92-104
    • Gan, M.1    Wang, C.2    Zhu, C.A.3
  • 18
    • 85044378737 scopus 로고    scopus 로고
    • Sparse deep stacking network for fault diagnosis of motor
    • Sun, C.; Ma, M.; Zhao, Z.B.; Chen, X.F. Sparse deep stacking network for fault diagnosis of motor. IEEE Trans. Ind. Inform. 2018, 14, 3261–3270. [CrossRef]
    • (2018) IEEE Trans. Ind. Inform. , vol.14 , pp. 3261-3270
    • Sun, C.1    Ma, M.2    Zhao, Z.B.3    Chen, X.F.4
  • 19
    • 85011676262 scopus 로고    scopus 로고
    • Learning to monitor machine health with convolutional bi-directional LSTM networks
    • Zhao, R.; Yan, R.Q.; Wang, J.J.; Mao, K.Z. Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors 2017, 17, 273. [CrossRef] [PubMed]
    • (2017) Sensors , vol.17 , pp. 273
    • Zhao, R.1    Yan, R.Q.2    Wang, J.J.3    Mao, K.Z.4
  • 20
    • 84997079451 scopus 로고    scopus 로고
    • Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
    • Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [CrossRef]
    • (2017) J. Sound Vib. , vol.388 , pp. 154-170
    • Abdeljaber, O.1    Avci, O.2    Kiranyaz, S.3    Gabbouj, M.4    Inman, D.J.5
  • 22
    • 84994474581 scopus 로고    scopus 로고
    • Real-time motor fault detection by 1-D convolutional neural networks
    • Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [CrossRef]
    • (2016) IEEE Trans. Ind. Electron. , vol.63 , pp. 7067-7075
    • Ince, T.1    Kiranyaz, S.2    Eren, L.3    Askar, M.4    Gabbouj, M.5
  • 23
    • 85048242203 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling bearing using one-dimensional multi-scale deep convolutional neural network based health state classification
    • Zhuhai, China, 27–29 March
    • Zhuang, Z.L.; Qin, W. Intelligent fault diagnosis of rolling bearing using one-dimensional multi-scale deep convolutional neural network based health state classification. In Proceedings of the IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai, China, 27–29 March 2018.
    • (2018) Proceedings of the IEEE 15Th International Conference on Networking, Sensing and Control (ICNSC)
    • Zhuang, Z.L.1    Qin, W.2
  • 24
    • 85028727944 scopus 로고    scopus 로고
    • A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
    • Zhang, W.; Li, C.H.; Peng, G.L.; Chen, Y.H.; Zhang, Z.J. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]
    • (2018) Mech. Syst. Signal Process. , vol.100 , pp. 439-453
    • Zhang, W.1    Li, C.H.2    Peng, G.L.3    Chen, Y.H.4    Zhang, Z.J.5
  • 25
    • 85035107471 scopus 로고    scopus 로고
    • A new convolutional neural network-based data-driven fault diagnosis method
    • Wen, L.; Li, X.Y.; Gao, L.; Zhang, Y.Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [CrossRef]
    • (2018) IEEE Trans. Ind. Electron. , vol.65 , pp. 5990-5998
    • Wen, L.1    Li, X.Y.2    Gao, L.3    Zhang, Y.Y.4
  • 26
    • 85046677217 scopus 로고    scopus 로고
    • A novel fault diagnosis method for rotating machinery based on a convolutional neural network
    • Guo, S.; Yang, T.; Gao, W.; Zhang, C. A novel fault diagnosis method for rotating machinery based on a convolutional neural network. Sensors 2018, 18, 1429. [CrossRef]
    • (2018) Sensors , vol.18 , pp. 1429
    • Guo, S.1    Yang, T.2    Gao, W.3    Zhang, C.4
  • 27
    • 85020626243 scopus 로고    scopus 로고
    • Dislocated time series convolutional neural architecture: An intelligent fault diagnosis approach for electric machine
    • Liu, R.N.; Meng, G.T.; Yang, B.Y.; Sun, C.; Chen, X.F. Dislocated time series convolutional neural architecture: An intelligent fault diagnosis approach for electric machine. IEEE Trans. Ind. Inf. 2017, 13, 1310–1320. [CrossRef]
    • (2017) IEEE Trans. Ind. Inf. , vol.13 , pp. 1310-1320
    • Liu, R.N.1    Meng, G.T.2    Yang, B.Y.3    Sun, C.4    Chen, X.F.5
  • 28
    • 85031806343 scopus 로고    scopus 로고
    • Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes
    • Zhao, M.H.; Kang, M.; Tang, B.P.; Pecht, M. Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes. IEEE Trans. Ind. Electron. 2018, 65, 4290–4300. [CrossRef]
    • (2018) IEEE Trans. Ind. Electron. , vol.65 , pp. 4290-4300
    • Zhao, M.H.1    Kang, M.2    Tang, B.P.3    Pecht, M.4
  • 29
    • 85046378997 scopus 로고    scopus 로고
    • A survey of deep learning: Platforms, applications and emerging research trends
    • Hatcher, W.G.; Yu, W. A survey of deep learning: Platforms, applications and emerging research trends. IEEE Access 2018, 6, 24411–24432. [CrossRef]
    • (2018) IEEE Access , vol.6 , pp. 24411-24432
    • Hatcher, W.G.1    Yu, W.2
  • 30
    • 0242686081 scopus 로고    scopus 로고
    • Structural damage assessment based on wavelet packet transform
    • Sun, Z.; Chang, C.C. Structural damage assessment based on wavelet packet transform. J. Struct. Eng. 2002, 128, 1354–1361. [CrossRef]
    • (2002) J. Struct. Eng. , vol.128 , pp. 1354-1361
    • Sun, Z.1    Chang, C.C.2
  • 31
    • 84875131605 scopus 로고    scopus 로고
    • An analysis of deviations of cylindrical surfaces with the use of wavelet transform
    • Stępień, K.; Makieła, W. An analysis of deviations of cylindrical surfaces with the use of wavelet transform. Metrol. Meas. Syst. 2013, 20, 139–150. [CrossRef]
    • (2013) Metrol. Meas. Syst. , vol.20 , pp. 139-150
    • Stępień, K.1    Makieła, W.2
  • 34
    • 85042198914 scopus 로고    scopus 로고
    • Threat of adversarial attacks on deep learning in computer vision: A survey
    • Akhtar, N.; Mian, A. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access 2018, 6, 14410–14430. [CrossRef]
    • (2018) IEEE Access , vol.6 , pp. 14410-14430
    • Akhtar, N.1    Mian, A.2
  • 35
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y.; Bengio, Y.; Hinton, G.E. Review: Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
    • (2015) Nature , vol.521 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.E.R.3
  • 36
    • 85020126914 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [CrossRef]
    • (2017) Commun. ACM , vol.60 , pp. 84-90
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 38
    • 85067198550 scopus 로고    scopus 로고
    • Squeeze-and-Excitation Networks
    • accessed on 5 December 2018
    • Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E.H. Squeeze-and-Excitation Networks. IEEE Trans. PAMI. Available online: https://arxiv.org/abs/1709.01507 (accessed on 5 December 2018).
    • IEEE Trans. PAMI
    • Hu, J.1    Shen, L.2    Albanie, S.3    Sun, G.4    Wu, E.H.5
  • 40
    • 77951624231 scopus 로고    scopus 로고
    • Available online, accessed on 23 February 2019
    • Data Sets. Available online: http://csegroups.case.edu/bearingdatacenter/pages/download-data-file (accessed on 23 February 2019).
    • Data Sets


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.