-
1
-
-
85042943940
-
Artificial intelligence for fault diagnosis of rotating machinery: A review
-
Liu, R.N.; Yang, B.Y.; Zio, E.; Chen, X.F. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2018, 108, 33–47. [CrossRef]
-
(2018)
Mech. Syst. Signal Process.
, vol.108
, pp. 33-47
-
-
Liu, R.N.1
Yang, B.Y.2
Zio, E.3
Chen, X.F.4
-
2
-
-
84887433963
-
Wavelets for fault diagnosis of rotary machines: A review with applications
-
Yan, R.Q.; Gao, R.X.; Chen, X.F. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Process. 2014, 96, 1–15. [CrossRef]
-
(2014)
Signal Process
, vol.96
, pp. 1-15
-
-
Yan, R.Q.1
Gao, R.X.2
Chen, X.F.3
-
3
-
-
84961055987
-
Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review
-
Chen, J.L.; Li, Z.P.; Pan, J.; Chen, G.G.; Zi, Y.Y.; Yuan, J.; Chen, B.Q.; He, Z.J. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2016, 70, 1–35. [CrossRef]
-
(2016)
Mech. Syst. Signal Process.
, vol.70
, pp. 1-35
-
-
Chen, J.L.1
Li, Z.P.2
Pan, J.3
Chen, G.G.4
Zi, Y.Y.5
Yuan, J.6
Chen, B.Q.7
He, Z.J.8
-
4
-
-
85042082491
-
A review on the application of deep learning in system health management
-
Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 2018, 107, 241–265. [CrossRef]
-
(2018)
Mech. Syst. Signal Process.
, vol.107
, pp. 241-265
-
-
Khan, S.1
Yairi, T.2
-
5
-
-
85028716822
-
Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing
-
Shao, H.D.; Jiang, H.K.; Zhang, H.Z.; Duan, W.J.; Liang, T.C.; Wu, S.P. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mech. Syst. Signal Process. 2018, 100, 743–765. [CrossRef]
-
(2018)
Mech. Syst. Signal Process.
, vol.100
, pp. 743-765
-
-
Shao, H.D.1
Jiang, H.K.2
Zhang, H.Z.3
Duan, W.J.4
Liang, T.C.5
Wu, S.P.6
-
6
-
-
85022192782
-
Comparative study of measurement systems used to evaluate vibrations of rolling bearings
-
Adamczak, S.; Stępień, K.; Wrzochal, M. Comparative study of measurement systems used to evaluate vibrations of rolling bearings. Procedia Eng. 2017, 192, 971–975. [CrossRef]
-
(2017)
Procedia Eng
, vol.192
, pp. 971-975
-
-
Adamczak, S.1
Stępień, K.2
Wrzochal, M.3
-
7
-
-
84890044969
-
Condition monitoring and fault diagnosis of planetary gearboxes: A review
-
Lei, Y.G.; Lin, J.; Zuo, M.J.; He, Z.J. Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement 2014, 48, 292–305. [CrossRef]
-
(2014)
Measurement
, vol.48
, pp. 292-305
-
-
Lei, Y.G.1
Lin, J.2
Zuo, M.J.3
He, Z.J.4
-
8
-
-
33646512202
-
Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines
-
Rojas, A.; Nandi, A.K. Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines. Mech. Syst. Signal Process. 2006, 20, 1523–1536. [CrossRef]
-
(2006)
Mech. Syst. Signal Process.
, vol.20
, pp. 1523-1536
-
-
Rojas, A.1
Nandi, A.K.2
-
9
-
-
3442879066
-
Fault-dictionary diagnostic method in frequency domain for nonlinear networks based on Volterra series and backward propagation neural networks (BPNN)
-
Xia, H.; He, Y.G.; Wu, J. Fault-dictionary diagnostic method in frequency domain for nonlinear networks based on Volterra series and backward propagation neural networks (BPNN). J. Hunan Univ. Nat. Sci. 2004, 31, 41–43.
-
(2004)
J. Hunan Univ. Nat. Sci.
, vol.31
, pp. 41-43
-
-
Xia, H.1
He, Y.G.2
Wu, J.3
-
10
-
-
64049098473
-
Application of an intelligent classification method to mechanical fault diagnosis
-
Lei, Y.G.; He, Z.J.; Zi, Y.Y. Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 2009, 36, 9941–9948. [CrossRef]
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 9941-9948
-
-
Lei, Y.G.1
He, Z.J.2
Zi, Y.Y.3
-
11
-
-
85044405769
-
Multifault Diagnosis of induction motor at intermediate operating conditions using wavelet packet transform and support vector machine
-
Gangsar, P.; Tiwari, R. Multifault Diagnosis of induction motor at intermediate operating conditions using wavelet packet transform and support vector machine. J. Dyn. Syst-T. ASME 2018, 140, 081014-1-8. [CrossRef]
-
(2018)
J. Dyn. Syst-T. ASME
, vol.140
, pp. 081014-81021
-
-
Gangsar, P.1
Tiwari, R.2
-
12
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. 2013, 35, 1798–1828. [CrossRef]
-
(2013)
IEEE Trans. Pattern Anal.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
13
-
-
85008219650
-
An enhancement deep feature fusion method for rotating machinery fault diagnosis
-
Shao, H.D.; Jiang, H.K.; Wang, F.A.; Zhao, H.W. An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowl. Based Syst. 2017, 119, 200–220. [CrossRef]
-
(2017)
Knowl. Based Syst.
, vol.119
, pp. 200-220
-
-
Shao, H.D.1
Jiang, H.K.2
Wang, F.A.3
Zhao, H.W.4
-
14
-
-
84983314971
-
Randomized algorithms for nonlinear system identification with deep learning modification
-
Rosa, E.D.L.; Yu, W. Randomized algorithms for nonlinear system identification with deep learning modification. Inf. Sci. 2016, 364–365, 197–212. [CrossRef]
-
(2016)
Inf. Sci.
, vol.364-365
, pp. 197-212
-
-
Rosa, E.D.L.1
Yu, W.2
-
15
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
Jia, F.; Lei, Y.G.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72–73, 303–315. [CrossRef]
-
(2016)
Mech. Syst. Signal Process.
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.G.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
16
-
-
84963864627
-
Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
-
Li, C.; Sanchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D.; Vásquez, R.E. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Mech. Syst. Signal Process. 2016, 76–77, 283–293. [CrossRef]
-
(2016)
Mech. Syst. Signal Process.
, vol.76-77
, pp. 283-293
-
-
Li, C.1
Sanchez, R.V.2
Zurita, G.3
Cerrada, M.4
Cabrera, D.5
Vásquez, R.E.6
-
17
-
-
84955504842
-
Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
-
Gan, M.; Wang, C.; Zhu, C.A. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 2016, 72–73, 92–104. [CrossRef]
-
(2016)
Mech. Syst. Signal Process.
, vol.72-73
, pp. 92-104
-
-
Gan, M.1
Wang, C.2
Zhu, C.A.3
-
18
-
-
85044378737
-
Sparse deep stacking network for fault diagnosis of motor
-
Sun, C.; Ma, M.; Zhao, Z.B.; Chen, X.F. Sparse deep stacking network for fault diagnosis of motor. IEEE Trans. Ind. Inform. 2018, 14, 3261–3270. [CrossRef]
-
(2018)
IEEE Trans. Ind. Inform.
, vol.14
, pp. 3261-3270
-
-
Sun, C.1
Ma, M.2
Zhao, Z.B.3
Chen, X.F.4
-
19
-
-
85011676262
-
Learning to monitor machine health with convolutional bi-directional LSTM networks
-
Zhao, R.; Yan, R.Q.; Wang, J.J.; Mao, K.Z. Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors 2017, 17, 273. [CrossRef] [PubMed]
-
(2017)
Sensors
, vol.17
, pp. 273
-
-
Zhao, R.1
Yan, R.Q.2
Wang, J.J.3
Mao, K.Z.4
-
20
-
-
84997079451
-
Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
-
Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [CrossRef]
-
(2017)
J. Sound Vib.
, vol.388
, pp. 154-170
-
-
Abdeljaber, O.1
Avci, O.2
Kiranyaz, S.3
Gabbouj, M.4
Inman, D.J.5
-
21
-
-
84973470244
-
Convolutional neural network based fault detection for rotating machinery
-
Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345. [CrossRef]
-
(2016)
J. Sound Vib.
, vol.377
, pp. 331-345
-
-
Janssens, O.1
Slavkovikj, V.2
Vervisch, B.3
Stockman, K.4
Loccufier, M.5
Verstockt, S.6
van de Walle, R.7
van Hoecke, S.8
-
22
-
-
84994474581
-
Real-time motor fault detection by 1-D convolutional neural networks
-
Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [CrossRef]
-
(2016)
IEEE Trans. Ind. Electron.
, vol.63
, pp. 7067-7075
-
-
Ince, T.1
Kiranyaz, S.2
Eren, L.3
Askar, M.4
Gabbouj, M.5
-
23
-
-
85048242203
-
Intelligent fault diagnosis of rolling bearing using one-dimensional multi-scale deep convolutional neural network based health state classification
-
Zhuhai, China, 27–29 March
-
Zhuang, Z.L.; Qin, W. Intelligent fault diagnosis of rolling bearing using one-dimensional multi-scale deep convolutional neural network based health state classification. In Proceedings of the IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai, China, 27–29 March 2018.
-
(2018)
Proceedings of the IEEE 15Th International Conference on Networking, Sensing and Control (ICNSC)
-
-
Zhuang, Z.L.1
Qin, W.2
-
24
-
-
85028727944
-
A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
-
Zhang, W.; Li, C.H.; Peng, G.L.; Chen, Y.H.; Zhang, Z.J. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]
-
(2018)
Mech. Syst. Signal Process.
, vol.100
, pp. 439-453
-
-
Zhang, W.1
Li, C.H.2
Peng, G.L.3
Chen, Y.H.4
Zhang, Z.J.5
-
25
-
-
85035107471
-
A new convolutional neural network-based data-driven fault diagnosis method
-
Wen, L.; Li, X.Y.; Gao, L.; Zhang, Y.Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [CrossRef]
-
(2018)
IEEE Trans. Ind. Electron.
, vol.65
, pp. 5990-5998
-
-
Wen, L.1
Li, X.Y.2
Gao, L.3
Zhang, Y.Y.4
-
26
-
-
85046677217
-
A novel fault diagnosis method for rotating machinery based on a convolutional neural network
-
Guo, S.; Yang, T.; Gao, W.; Zhang, C. A novel fault diagnosis method for rotating machinery based on a convolutional neural network. Sensors 2018, 18, 1429. [CrossRef]
-
(2018)
Sensors
, vol.18
, pp. 1429
-
-
Guo, S.1
Yang, T.2
Gao, W.3
Zhang, C.4
-
27
-
-
85020626243
-
Dislocated time series convolutional neural architecture: An intelligent fault diagnosis approach for electric machine
-
Liu, R.N.; Meng, G.T.; Yang, B.Y.; Sun, C.; Chen, X.F. Dislocated time series convolutional neural architecture: An intelligent fault diagnosis approach for electric machine. IEEE Trans. Ind. Inf. 2017, 13, 1310–1320. [CrossRef]
-
(2017)
IEEE Trans. Ind. Inf.
, vol.13
, pp. 1310-1320
-
-
Liu, R.N.1
Meng, G.T.2
Yang, B.Y.3
Sun, C.4
Chen, X.F.5
-
28
-
-
85031806343
-
Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes
-
Zhao, M.H.; Kang, M.; Tang, B.P.; Pecht, M. Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes. IEEE Trans. Ind. Electron. 2018, 65, 4290–4300. [CrossRef]
-
(2018)
IEEE Trans. Ind. Electron.
, vol.65
, pp. 4290-4300
-
-
Zhao, M.H.1
Kang, M.2
Tang, B.P.3
Pecht, M.4
-
29
-
-
85046378997
-
A survey of deep learning: Platforms, applications and emerging research trends
-
Hatcher, W.G.; Yu, W. A survey of deep learning: Platforms, applications and emerging research trends. IEEE Access 2018, 6, 24411–24432. [CrossRef]
-
(2018)
IEEE Access
, vol.6
, pp. 24411-24432
-
-
Hatcher, W.G.1
Yu, W.2
-
30
-
-
0242686081
-
Structural damage assessment based on wavelet packet transform
-
Sun, Z.; Chang, C.C. Structural damage assessment based on wavelet packet transform. J. Struct. Eng. 2002, 128, 1354–1361. [CrossRef]
-
(2002)
J. Struct. Eng.
, vol.128
, pp. 1354-1361
-
-
Sun, Z.1
Chang, C.C.2
-
31
-
-
84875131605
-
An analysis of deviations of cylindrical surfaces with the use of wavelet transform
-
Stępień, K.; Makieła, W. An analysis of deviations of cylindrical surfaces with the use of wavelet transform. Metrol. Meas. Syst. 2013, 20, 139–150. [CrossRef]
-
(2013)
Metrol. Meas. Syst.
, vol.20
, pp. 139-150
-
-
Stępień, K.1
Makieła, W.2
-
32
-
-
85041280258
-
Enhanced discrete wavelet packet sub-band frequency edge detection using Hilbert transform
-
Dibal, P.Y.; Onwuka, E.N.; Agajo, J.; Alenoghena, C.O. Enhanced discrete wavelet packet sub-band frequency edge detection using Hilbert transform. Int. J. Wavelets Multiresolut. Inf. Process. 2018, 16, 3880–3882. [CrossRef]
-
(2018)
Int. J. Wavelets Multiresolut. Inf. Process.
, vol.16
, pp. 3880-3882
-
-
Dibal, P.Y.1
Onwuka, E.N.2
Agajo, J.3
Alenoghena, C.O.4
-
33
-
-
70349687590
-
Rate-distortion optimal wavelet packet transform for low bit rate video coding
-
Shenzhen, China, 11–12 May
-
Zong, X.F.; Men, A.D.; Yang, B. Rate-distortion optimal wavelet packet transform for low bit rate video coding. In Proceedings of the IEEE International Workshop on Imaging Systems and Techniques, Shenzhen, China, 11–12 May 2009; pp. 359–363.
-
(2009)
Proceedings of the IEEE International Workshop on Imaging Systems and Techniques
, pp. 359-363
-
-
Zong, X.F.1
Men, A.D.2
Yang, B.3
-
34
-
-
85042198914
-
Threat of adversarial attacks on deep learning in computer vision: A survey
-
Akhtar, N.; Mian, A. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access 2018, 6, 14410–14430. [CrossRef]
-
(2018)
IEEE Access
, vol.6
, pp. 14410-14430
-
-
Akhtar, N.1
Mian, A.2
-
35
-
-
84930630277
-
Deep learning
-
LeCun, Y.; Bengio, Y.; Hinton, G.E. Review: Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.E.R.3
-
36
-
-
85020126914
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [CrossRef]
-
(2017)
Commun. ACM
, vol.60
, pp. 84-90
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
37
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA, USA, 7–12 June
-
Szegedy, C.; Liu, W.; Jia, Y.Q.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.Q.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
38
-
-
85067198550
-
Squeeze-and-Excitation Networks
-
accessed on 5 December 2018
-
Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E.H. Squeeze-and-Excitation Networks. IEEE Trans. PAMI. Available online: https://arxiv.org/abs/1709.01507 (accessed on 5 December 2018).
-
IEEE Trans. PAMI
-
-
Hu, J.1
Shen, L.2
Albanie, S.3
Sun, G.4
Wu, E.H.5
-
40
-
-
77951624231
-
-
Available online, accessed on 23 February 2019
-
Data Sets. Available online: http://csegroups.case.edu/bearingdatacenter/pages/download-data-file (accessed on 23 February 2019).
-
Data Sets
-
-
|