메뉴 건너뛰기




Volumn 100, Issue , 2018, Pages 743-765

Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing

Author keywords

Compressed sensing; Exponential moving average; Feature learning; Improved convolutional deep belief network; Rolling bearing

Indexed keywords

BEARINGS (MACHINE PARTS); COMPRESSED SENSING; CONVOLUTION; DEEP LEARNING; FAULT DETECTION; SIGNAL RECONSTRUCTION; VIBRATION ANALYSIS;

EID: 85028716822     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2017.08.002     Document Type: Article
Times cited : (366)

References (53)
  • 1
    • 84875269406 scopus 로고    scopus 로고
    • An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
    • Jiang, H.K., Li, C.L., Li, H.X., An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mech. Syst. Sig. Process. 36 (2013), 225–239.
    • (2013) Mech. Syst. Sig. Process. , vol.36 , pp. 225-239
    • Jiang, H.K.1    Li, C.L.2    Li, H.X.3
  • 2
    • 84995469462 scopus 로고    scopus 로고
    • Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis
    • Li, Y.F., Liang, X.H., Zuo, M.J., Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis. Mech. Syst. Sig. Process. 85 (2017), 146–161.
    • (2017) Mech. Syst. Sig. Process. , vol.85 , pp. 146-161
    • Li, Y.F.1    Liang, X.H.2    Zuo, M.J.3
  • 3
    • 85013647609 scopus 로고    scopus 로고
    • Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings
    • Miao, Y.H., Zhao, M., Lin, J., Lei, Y.G., Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings. Mech. Syst. Sig. Process. 92 (2017), 173–195.
    • (2017) Mech. Syst. Sig. Process. , vol.92 , pp. 173-195
    • Miao, Y.H.1    Zhao, M.2    Lin, J.3    Lei, Y.G.4
  • 4
    • 84995427068 scopus 로고    scopus 로고
    • Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive
    • Li, Z.P., Chen, J.L., Zi, Y.Y., Pan, J., Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive. Mech. Syst. Sig. Process. 85 (2017), 512–519.
    • (2017) Mech. Syst. Sig. Process. , vol.85 , pp. 512-519
    • Li, Z.P.1    Chen, J.L.2    Zi, Y.Y.3    Pan, J.4
  • 6
    • 84964624225 scopus 로고    scopus 로고
    • Time-frequency manifold sparse reconstruction: a novel method for bearing fault feature extraction
    • Ding, X.X., He, Q.B., Time-frequency manifold sparse reconstruction: a novel method for bearing fault feature extraction. Mech. Syst. Sig. Process. 80 (2016), 392–413.
    • (2016) Mech. Syst. Sig. Process. , vol.80 , pp. 392-413
    • Ding, X.X.1    He, Q.B.2
  • 7
    • 84994707514 scopus 로고    scopus 로고
    • Early fault feature extraction of rolling bearing based on ICD and tunable Q-factor wavelet transform
    • Li, Y.B., Liang, X.H., Xu, M.Q., Huang, W.H., Early fault feature extraction of rolling bearing based on ICD and tunable Q-factor wavelet transform. Mech. Syst. Sig. Process. 86 (2017), 204–223.
    • (2017) Mech. Syst. Sig. Process. , vol.86 , pp. 204-223
    • Li, Y.B.1    Liang, X.H.2    Xu, M.Q.3    Huang, W.H.4
  • 8
    • 84978319097 scopus 로고    scopus 로고
    • A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis
    • Grasso, M., Chatterton, S., Pennacchi, P., Colosimo, B.M., A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis. Mech. Syst. Sig. Process. 81 (2016), 126–147.
    • (2016) Mech. Syst. Sig. Process. , vol.81 , pp. 126-147
    • Grasso, M.1    Chatterton, S.2    Pennacchi, P.3    Colosimo, B.M.4
  • 9
    • 84995608735 scopus 로고    scopus 로고
    • Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
    • Mao, W.T., He, L., Yan, Y.J., Wang, J.W., Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine. Mech. Syst. Sig. Process. 83 (2017), 450–473.
    • (2017) Mech. Syst. Sig. Process. , vol.83 , pp. 450-473
    • Mao, W.T.1    He, L.2    Yan, Y.J.3    Wang, J.W.4
  • 10
    • 84979459993 scopus 로고    scopus 로고
    • Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing
    • Lv, Y., Yuan, R., Song, G.B., Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing. Mech. Syst. Sig. Process. 81 (2016), 219–234.
    • (2016) Mech. Syst. Sig. Process. , vol.81 , pp. 219-234
    • Lv, Y.1    Yuan, R.2    Song, G.B.3
  • 11
    • 84944355420 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
    • Zhang, X.L., Wang, B.J., Chen, X.F., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl.-Based Syst. 89 (2015), 56–85.
    • (2015) Knowl.-Based Syst. , vol.89 , pp. 56-85
    • Zhang, X.L.1    Wang, B.J.2    Chen, X.F.3
  • 12
    • 84954356935 scopus 로고    scopus 로고
    • A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks
    • Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., Pavan, A.M., A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renew. Energy 90 (2016), 501–512.
    • (2016) Renew. Energy , vol.90 , pp. 501-512
    • Chine, W.1    Mellit, A.2    Lughi, V.3    Malek, A.4    Sulligoi, G.5    Pavan, A.M.6
  • 13
    • 84955757234 scopus 로고    scopus 로고
    • A novel identification method of Volterra series in rotor-bearing system for fault diagnosis
    • Xia, X., Zhou, J.Z., Xiao, J., A novel identification method of Volterra series in rotor-bearing system for fault diagnosis. Mech. Syst. Sig. Process. 66–67 (2016), 557–567.
    • (2016) Mech. Syst. Sig. Process. , vol.66-67 , pp. 557-567
    • Xia, X.1    Zhou, J.Z.2    Xiao, J.3
  • 14
    • 84980569542 scopus 로고    scopus 로고
    • A novel approach integrating dimensional analysis and neural networks for the detection of localized faults in roller bearings
    • Jamadar, I.M., Vakharia, D.P., A novel approach integrating dimensional analysis and neural networks for the detection of localized faults in roller bearings. Measurement 94 (2016), 177–185.
    • (2016) Measurement , vol.94 , pp. 177-185
    • Jamadar, I.M.1    Vakharia, D.P.2
  • 15
    • 84907486966 scopus 로고    scopus 로고
    • Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
    • Ali, J.B., Fnaiech, N., Saidi, L., Chebel-Morello, B., Fnaiech, F., Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 89 (2015), 16–27.
    • (2015) Appl. Acoust. , vol.89 , pp. 16-27
    • Ali, J.B.1    Fnaiech, N.2    Saidi, L.3    Chebel-Morello, B.4    Fnaiech, F.5
  • 16
    • 84908092471 scopus 로고    scopus 로고
    • Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings
    • Chen, X.Y., Zhou, J.Z., Xiao, J., Zhang, X.X., Xiao, H., Zhu, W.L., Fu, W.L., Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings. Appl. Math. Comput. 247 (2014), 835–847.
    • (2014) Appl. Math. Comput. , vol.247 , pp. 835-847
    • Chen, X.Y.1    Zhou, J.Z.2    Xiao, J.3    Zhang, X.X.4    Xiao, H.5    Zhu, W.L.6    Fu, W.L.7
  • 17
    • 84975476102 scopus 로고    scopus 로고
    • Intelligent diagnosis of bearing knock faults in internal combustion engines using vibration simulation
    • Chen, J., Randall, R.B., Intelligent diagnosis of bearing knock faults in internal combustion engines using vibration simulation. Mech. Mach. Theory 104 (2016), 161–176.
    • (2016) Mech. Mach. Theory , vol.104 , pp. 161-176
    • Chen, J.1    Randall, R.B.2
  • 19
    • 84896719372 scopus 로고    scopus 로고
    • Vibration analysis for bearing fault detection and classification using an intelligent filter
    • Zarei, J., Tajeddini, M.A., Karimi, H.R., Vibration analysis for bearing fault detection and classification using an intelligent filter. Mechatronics 24 (2014), 151–157.
    • (2014) Mechatronics , vol.24 , pp. 151-157
    • Zarei, J.1    Tajeddini, M.A.2    Karimi, H.R.3
  • 20
    • 79951581707 scopus 로고    scopus 로고
    • EEMD method and WNN for fault diagnosis of locomotive roller bearings
    • Lei, Y.G., He, Z.J., Zi, Y.Y., EEMD method and WNN for fault diagnosis of locomotive roller bearings. Expert Syst. Appl. 38 (2011), 7334–7341.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 7334-7341
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 21
    • 64049098473 scopus 로고    scopus 로고
    • Application of an intelligent classification method to mechanical fault diagnosis
    • Lei, Y.G., He, Z.J., Zi, Y.Y., Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 36 (2009), 9941–9948.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9941-9948
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 22
    • 84880675844 scopus 로고    scopus 로고
    • Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine
    • Tang, B.P., Song, T., Li, F., Deng, L., Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine. Renew. Energy 62 (2014), 1–9.
    • (2014) Renew. Energy , vol.62 , pp. 1-9
    • Tang, B.P.1    Song, T.2    Li, F.3    Deng, L.4
  • 23
    • 84863854584 scopus 로고    scopus 로고
    • Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM
    • Liu, W.Y., Wang, Z.F., Han, J.G., Wang, G.F., Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM. Renew. Energy 50 (2013), 1–6.
    • (2013) Renew. Energy , vol.50 , pp. 1-6
    • Liu, W.Y.1    Wang, Z.F.2    Han, J.G.3    Wang, G.F.4
  • 24
    • 84880337928 scopus 로고    scopus 로고
    • A classifier fusion system for bearing fault diagnosis
    • Batista, L., Badri, B., Sabourin, R., Thomas, M., A classifier fusion system for bearing fault diagnosis. Expert Syst. Appl. 40 (2013), 6788–6797.
    • (2013) Expert Syst. Appl. , vol.40 , pp. 6788-6797
    • Batista, L.1    Badri, B.2    Sabourin, R.3    Thomas, M.4
  • 25
    • 84941274320 scopus 로고    scopus 로고
    • A fault diagnosis method combined with LMD, sample entropy and energy ratio for roller bearings
    • Han, M.H., Pan, J.L., A fault diagnosis method combined with LMD, sample entropy and energy ratio for roller bearings. Measurement 76 (2015), 7–19.
    • (2015) Measurement , vol.76 , pp. 7-19
    • Han, M.H.1    Pan, J.L.2
  • 26
    • 84926352537 scopus 로고    scopus 로고
    • A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
    • Zhang, X.Y., Liang, Y.T., Zhou, J.Z., Zang, Y., A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM. Measurement 69 (2015), 164–179.
    • (2015) Measurement , vol.69 , pp. 164-179
    • Zhang, X.Y.1    Liang, Y.T.2    Zhou, J.Z.3    Zang, Y.4
  • 27
    • 84923655625 scopus 로고    scopus 로고
    • Application of higher order spectral features and support vector machines for bearing faults classification
    • Saidi, L., Ali, J.B., Fnaiech, F., Application of higher order spectral features and support vector machines for bearing faults classification. ISA Trans. 54 (2015), 193–206.
    • (2015) ISA Trans. , vol.54 , pp. 193-206
    • Saidi, L.1    Ali, J.B.2    Fnaiech, F.3
  • 28
    • 84955633182 scopus 로고    scopus 로고
    • Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings
    • Zeng, M., Yang, Y., Zheng, J.D., Cheng, J.S., Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings. Mech. Syst. Sig. Process. 66–67 (2016), 533–545.
    • (2016) Mech. Syst. Sig. Process. , vol.66-67 , pp. 533-545
    • Zeng, M.1    Yang, Y.2    Zheng, J.D.3    Cheng, J.S.4
  • 29
    • 84995467084 scopus 로고    scopus 로고
    • Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
    • Zheng, J.D., Pan, H.Y., Cheng, J.S., Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines. Mech. Syst. Sig. Process. 85 (2017), 746–759.
    • (2017) Mech. Syst. Sig. Process. , vol.85 , pp. 746-759
    • Zheng, J.D.1    Pan, H.Y.2    Cheng, J.S.3
  • 30
    • 84961285424 scopus 로고    scopus 로고
    • Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis
    • Liu, R.N., Yang, B.Y., Zhang, X.L., Wang, S.B., Chen, X.F., Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis. Mech. Syst. Sig. Process. 78 (2016), 345–370.
    • (2016) Mech. Syst. Sig. Process. , vol.78 , pp. 345-370
    • Liu, R.N.1    Yang, B.Y.2    Zhang, X.L.3    Wang, S.B.4    Chen, X.F.5
  • 31
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jia, F., Lei, Y.G., Lin, J., Zhou, X., Lu, N., Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Sig. Process. 72–73 (2016), 303–315.
    • (2016) Mech. Syst. Sig. Process. , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.G.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 32
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: a review and new perspectives
    • Bengio, Y., Courville, A., Representation learning: a review and new perspectives. IEEE Trans. Softw. Eng. 35 (2013), 1798–1828.
    • (2013) IEEE Trans. Softw. Eng. , vol.35 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2
  • 33
    • 85008219650 scopus 로고    scopus 로고
    • An enhancement deep feature fusion method for rotating machinery fault diagnosis
    • Shao, H.D., Jiang, H.K., Wang, F.A., Zhao, H.W., An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowl.-Based Syst. 119 (2017), 200–220.
    • (2017) Knowl.-Based Syst. , vol.119 , pp. 200-220
    • Shao, H.D.1    Jiang, H.K.2    Wang, F.A.3    Zhao, H.W.4
  • 34
    • 84983314971 scopus 로고    scopus 로고
    • Randomized algorithms for nonlinear system identification with deep learning modification
    • Rosa, E.D.L., Yu, W., Randomized algorithms for nonlinear system identification with deep learning modification. Inf. Sci. 364–365 (2016), 197–212.
    • (2016) Inf. Sci. , vol.364-365 , pp. 197-212
    • Rosa, E.D.L.1    Yu, W.2
  • 35
    • 85014511127 scopus 로고    scopus 로고
    • Multi-bearing remaining useful life collaborative prediction: a deep learning approach
    • Ren, L., Cui, J., Sun, Y.Q., Cheng, X.J., Multi-bearing remaining useful life collaborative prediction: a deep learning approach. J. Manufact. Syst. 43 (2017), 248–256.
    • (2017) J. Manufact. Syst. , vol.43 , pp. 248-256
    • Ren, L.1    Cui, J.2    Sun, Y.Q.3    Cheng, X.J.4
  • 36
    • 84930630277 scopus 로고    scopus 로고
    • Review: deep learning
    • LeCun, Y., Bengio, Y., Hinton, G.E., Review: deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.E.3
  • 37
    • 84946064662 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis using an optimization deep belief network
    • Shao, H.D., Jiang, H.K., Zhang, X., Niu, M.G., Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol., 26, 2015, 115002.
    • (2015) Meas. Sci. Technol. , vol.26 , pp. 115002
    • Shao, H.D.1    Jiang, H.K.2    Zhang, X.3    Niu, M.G.4
  • 39
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • Gan, M., Wang, C., Zhu, C.A., Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Sig. Process. 72–73 (2016), 92–104.
    • (2016) Mech. Syst. Sig. Process. , vol.72-73 , pp. 92-104
    • Gan, M.1    Wang, C.2    Zhu, C.A.3
  • 42
    • 84907500988 scopus 로고    scopus 로고
    • Deep architecture for traffic flow prediction: deep belief networks with multitask learning
    • Huang, W.H., Song, G.J., Hong, H.K., Xie, K.Q., Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15 (2014), 2191–2201.
    • (2014) IEEE Trans. Intell. Transp. Syst. , vol.15 , pp. 2191-2201
    • Huang, W.H.1    Song, G.J.2    Hong, H.K.3    Xie, K.Q.4
  • 43
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., The, Y.W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    The, Y.W.3
  • 44
    • 84928189410 scopus 로고    scopus 로고
    • Sparse classification of rotating machinery faults based on compressive sensing strategy
    • Tang, G., Yang, Q., Wang, H.Q., Luo, G.G., Ma, J.W., Sparse classification of rotating machinery faults based on compressive sensing strategy. Mechatronics 18 (2015), 60–67.
    • (2015) Mechatronics , vol.18 , pp. 60-67
    • Tang, G.1    Yang, Q.2    Wang, H.Q.3    Luo, G.G.4    Ma, J.W.5
  • 46
    • 84924700075 scopus 로고    scopus 로고
    • Compressed sparse time-frequency feature representation via compressive sensing and its applications in fault diagnosis
    • Wang, Y.X., Xiang, J.W., Mo, Q.Y., He, S.L., Compressed sparse time-frequency feature representation via compressive sensing and its applications in fault diagnosis. Measurement 68 (2015), 70–81.
    • (2015) Measurement , vol.68 , pp. 70-81
    • Wang, Y.X.1    Xiang, J.W.2    Mo, Q.Y.3    He, S.L.4
  • 47
    • 0028496580 scopus 로고
    • Weight smoothing to improve network generalization
    • Jean, J.N., Wang, J., Weight smoothing to improve network generalization. IEEE Trans. Neural Netw. 5 (1994), 752–763.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 752-763
    • Jean, J.N.1    Wang, J.2
  • 48
    • 84957842278 scopus 로고    scopus 로고
    • Exponential moving average based multiagent reinforcement learning algorithms
    • Awheda, M.D., Schwartz, H.M., Exponential moving average based multiagent reinforcement learning algorithms. Artif. Intell. Rev. 45 (2016), 1–34.
    • (2016) Artif. Intell. Rev. , vol.45 , pp. 1-34
    • Awheda, M.D.1    Schwartz, H.M.2
  • 50
    • 84979085360 scopus 로고    scopus 로고
    • Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
    • Guo, X.J., Chen, L., Shen, C.Q., Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 93 (2016), 490–502.
    • (2016) Measurement , vol.93 , pp. 490-502
    • Guo, X.J.1    Chen, L.2    Shen, C.Q.3
  • 51
    • 84982792319 scopus 로고    scopus 로고
    • Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
    • Lu, C., Wang, Z.Y., Qin, W.L., Ma, J., Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Sig. Process. 130 (2017), 377–388.
    • (2017) Sig. Process. , vol.130 , pp. 377-388
    • Lu, C.1    Wang, Z.Y.2    Qin, W.L.3    Ma, J.4
  • 52
    • 85018771228 scopus 로고    scopus 로고
    • A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
    • Shao, H.D., Jiang, H.K., Zhao, H.W., Wang, F.A., A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Mech. Syst. Sig. Process. 98 (2017), 187–204.
    • (2017) Mech. Syst. Sig. Process. , vol.98 , pp. 187-204
    • Shao, H.D.1    Jiang, H.K.2    Zhao, H.W.3    Wang, F.A.4
  • 53
    • 84963934455 scopus 로고    scopus 로고
    • An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
    • Lei, Y.G., Jia, F., Lin, J., Xing, S.B., Ding, S.X., An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Industr. Electron. 63 (2016), 3137–3147.
    • (2016) IEEE Trans. Industr. Electron. , vol.63 , pp. 3137-3147
    • Lei, Y.G.1    Jia, F.2    Lin, J.3    Xing, S.B.4    Ding, S.X.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.