-
1
-
-
84875269406
-
An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
-
Jiang, H.K., Li, C.L., Li, H.X., An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mech. Syst. Sig. Process. 36 (2013), 225–239.
-
(2013)
Mech. Syst. Sig. Process.
, vol.36
, pp. 225-239
-
-
Jiang, H.K.1
Li, C.L.2
Li, H.X.3
-
2
-
-
84995469462
-
Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis
-
Li, Y.F., Liang, X.H., Zuo, M.J., Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis. Mech. Syst. Sig. Process. 85 (2017), 146–161.
-
(2017)
Mech. Syst. Sig. Process.
, vol.85
, pp. 146-161
-
-
Li, Y.F.1
Liang, X.H.2
Zuo, M.J.3
-
3
-
-
85013647609
-
Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings
-
Miao, Y.H., Zhao, M., Lin, J., Lei, Y.G., Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings. Mech. Syst. Sig. Process. 92 (2017), 173–195.
-
(2017)
Mech. Syst. Sig. Process.
, vol.92
, pp. 173-195
-
-
Miao, Y.H.1
Zhao, M.2
Lin, J.3
Lei, Y.G.4
-
4
-
-
84995427068
-
Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive
-
Li, Z.P., Chen, J.L., Zi, Y.Y., Pan, J., Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive. Mech. Syst. Sig. Process. 85 (2017), 512–519.
-
(2017)
Mech. Syst. Sig. Process.
, vol.85
, pp. 512-519
-
-
Li, Z.P.1
Chen, J.L.2
Zi, Y.Y.3
Pan, J.4
-
5
-
-
84961055987
-
Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review
-
Chen, J.L., Li, Z.P., Pan, J., Chen, G.G., Zi, Y.Y., Yuan, J., Chen, B.Q., He, Z.J., Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review. Mech. Syst. Sig. Process. 70–71 (2016), 1–35.
-
(2016)
Mech. Syst. Sig. Process.
, vol.70-71
, pp. 1-35
-
-
Chen, J.L.1
Li, Z.P.2
Pan, J.3
Chen, G.G.4
Zi, Y.Y.5
Yuan, J.6
Chen, B.Q.7
He, Z.J.8
-
6
-
-
84964624225
-
Time-frequency manifold sparse reconstruction: a novel method for bearing fault feature extraction
-
Ding, X.X., He, Q.B., Time-frequency manifold sparse reconstruction: a novel method for bearing fault feature extraction. Mech. Syst. Sig. Process. 80 (2016), 392–413.
-
(2016)
Mech. Syst. Sig. Process.
, vol.80
, pp. 392-413
-
-
Ding, X.X.1
He, Q.B.2
-
7
-
-
84994707514
-
Early fault feature extraction of rolling bearing based on ICD and tunable Q-factor wavelet transform
-
Li, Y.B., Liang, X.H., Xu, M.Q., Huang, W.H., Early fault feature extraction of rolling bearing based on ICD and tunable Q-factor wavelet transform. Mech. Syst. Sig. Process. 86 (2017), 204–223.
-
(2017)
Mech. Syst. Sig. Process.
, vol.86
, pp. 204-223
-
-
Li, Y.B.1
Liang, X.H.2
Xu, M.Q.3
Huang, W.H.4
-
8
-
-
84978319097
-
A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis
-
Grasso, M., Chatterton, S., Pennacchi, P., Colosimo, B.M., A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis. Mech. Syst. Sig. Process. 81 (2016), 126–147.
-
(2016)
Mech. Syst. Sig. Process.
, vol.81
, pp. 126-147
-
-
Grasso, M.1
Chatterton, S.2
Pennacchi, P.3
Colosimo, B.M.4
-
9
-
-
84995608735
-
Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
-
Mao, W.T., He, L., Yan, Y.J., Wang, J.W., Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine. Mech. Syst. Sig. Process. 83 (2017), 450–473.
-
(2017)
Mech. Syst. Sig. Process.
, vol.83
, pp. 450-473
-
-
Mao, W.T.1
He, L.2
Yan, Y.J.3
Wang, J.W.4
-
10
-
-
84979459993
-
Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing
-
Lv, Y., Yuan, R., Song, G.B., Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing. Mech. Syst. Sig. Process. 81 (2016), 219–234.
-
(2016)
Mech. Syst. Sig. Process.
, vol.81
, pp. 219-234
-
-
Lv, Y.1
Yuan, R.2
Song, G.B.3
-
11
-
-
84944355420
-
Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
-
Zhang, X.L., Wang, B.J., Chen, X.F., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl.-Based Syst. 89 (2015), 56–85.
-
(2015)
Knowl.-Based Syst.
, vol.89
, pp. 56-85
-
-
Zhang, X.L.1
Wang, B.J.2
Chen, X.F.3
-
12
-
-
84954356935
-
A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks
-
Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., Pavan, A.M., A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renew. Energy 90 (2016), 501–512.
-
(2016)
Renew. Energy
, vol.90
, pp. 501-512
-
-
Chine, W.1
Mellit, A.2
Lughi, V.3
Malek, A.4
Sulligoi, G.5
Pavan, A.M.6
-
13
-
-
84955757234
-
A novel identification method of Volterra series in rotor-bearing system for fault diagnosis
-
Xia, X., Zhou, J.Z., Xiao, J., A novel identification method of Volterra series in rotor-bearing system for fault diagnosis. Mech. Syst. Sig. Process. 66–67 (2016), 557–567.
-
(2016)
Mech. Syst. Sig. Process.
, vol.66-67
, pp. 557-567
-
-
Xia, X.1
Zhou, J.Z.2
Xiao, J.3
-
14
-
-
84980569542
-
A novel approach integrating dimensional analysis and neural networks for the detection of localized faults in roller bearings
-
Jamadar, I.M., Vakharia, D.P., A novel approach integrating dimensional analysis and neural networks for the detection of localized faults in roller bearings. Measurement 94 (2016), 177–185.
-
(2016)
Measurement
, vol.94
, pp. 177-185
-
-
Jamadar, I.M.1
Vakharia, D.P.2
-
15
-
-
84907486966
-
Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
-
Ali, J.B., Fnaiech, N., Saidi, L., Chebel-Morello, B., Fnaiech, F., Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 89 (2015), 16–27.
-
(2015)
Appl. Acoust.
, vol.89
, pp. 16-27
-
-
Ali, J.B.1
Fnaiech, N.2
Saidi, L.3
Chebel-Morello, B.4
Fnaiech, F.5
-
16
-
-
84908092471
-
Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings
-
Chen, X.Y., Zhou, J.Z., Xiao, J., Zhang, X.X., Xiao, H., Zhu, W.L., Fu, W.L., Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings. Appl. Math. Comput. 247 (2014), 835–847.
-
(2014)
Appl. Math. Comput.
, vol.247
, pp. 835-847
-
-
Chen, X.Y.1
Zhou, J.Z.2
Xiao, J.3
Zhang, X.X.4
Xiao, H.5
Zhu, W.L.6
Fu, W.L.7
-
17
-
-
84975476102
-
Intelligent diagnosis of bearing knock faults in internal combustion engines using vibration simulation
-
Chen, J., Randall, R.B., Intelligent diagnosis of bearing knock faults in internal combustion engines using vibration simulation. Mech. Mach. Theory 104 (2016), 161–176.
-
(2016)
Mech. Mach. Theory
, vol.104
, pp. 161-176
-
-
Chen, J.1
Randall, R.B.2
-
18
-
-
84960117474
-
Observer-biased bearing condition monitoring: from fault detection to multi-fault classification
-
Li, C., Oliveira, J.V.D., Cerrada, M., Pacheco, F., Cabrera, D., Sanchez, V., Zurita, G., Observer-biased bearing condition monitoring: from fault detection to multi-fault classification. Eng. Appl. Artif. Intell. 50 (2016), 287–301.
-
(2016)
Eng. Appl. Artif. Intell.
, vol.50
, pp. 287-301
-
-
Li, C.1
Oliveira, J.V.D.2
Cerrada, M.3
Pacheco, F.4
Cabrera, D.5
Sanchez, V.6
Zurita, G.7
-
19
-
-
84896719372
-
Vibration analysis for bearing fault detection and classification using an intelligent filter
-
Zarei, J., Tajeddini, M.A., Karimi, H.R., Vibration analysis for bearing fault detection and classification using an intelligent filter. Mechatronics 24 (2014), 151–157.
-
(2014)
Mechatronics
, vol.24
, pp. 151-157
-
-
Zarei, J.1
Tajeddini, M.A.2
Karimi, H.R.3
-
20
-
-
79951581707
-
EEMD method and WNN for fault diagnosis of locomotive roller bearings
-
Lei, Y.G., He, Z.J., Zi, Y.Y., EEMD method and WNN for fault diagnosis of locomotive roller bearings. Expert Syst. Appl. 38 (2011), 7334–7341.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 7334-7341
-
-
Lei, Y.G.1
He, Z.J.2
Zi, Y.Y.3
-
21
-
-
64049098473
-
Application of an intelligent classification method to mechanical fault diagnosis
-
Lei, Y.G., He, Z.J., Zi, Y.Y., Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 36 (2009), 9941–9948.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 9941-9948
-
-
Lei, Y.G.1
He, Z.J.2
Zi, Y.Y.3
-
22
-
-
84880675844
-
Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine
-
Tang, B.P., Song, T., Li, F., Deng, L., Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine. Renew. Energy 62 (2014), 1–9.
-
(2014)
Renew. Energy
, vol.62
, pp. 1-9
-
-
Tang, B.P.1
Song, T.2
Li, F.3
Deng, L.4
-
23
-
-
84863854584
-
Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM
-
Liu, W.Y., Wang, Z.F., Han, J.G., Wang, G.F., Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM. Renew. Energy 50 (2013), 1–6.
-
(2013)
Renew. Energy
, vol.50
, pp. 1-6
-
-
Liu, W.Y.1
Wang, Z.F.2
Han, J.G.3
Wang, G.F.4
-
24
-
-
84880337928
-
A classifier fusion system for bearing fault diagnosis
-
Batista, L., Badri, B., Sabourin, R., Thomas, M., A classifier fusion system for bearing fault diagnosis. Expert Syst. Appl. 40 (2013), 6788–6797.
-
(2013)
Expert Syst. Appl.
, vol.40
, pp. 6788-6797
-
-
Batista, L.1
Badri, B.2
Sabourin, R.3
Thomas, M.4
-
25
-
-
84941274320
-
A fault diagnosis method combined with LMD, sample entropy and energy ratio for roller bearings
-
Han, M.H., Pan, J.L., A fault diagnosis method combined with LMD, sample entropy and energy ratio for roller bearings. Measurement 76 (2015), 7–19.
-
(2015)
Measurement
, vol.76
, pp. 7-19
-
-
Han, M.H.1
Pan, J.L.2
-
26
-
-
84926352537
-
A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
-
Zhang, X.Y., Liang, Y.T., Zhou, J.Z., Zang, Y., A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM. Measurement 69 (2015), 164–179.
-
(2015)
Measurement
, vol.69
, pp. 164-179
-
-
Zhang, X.Y.1
Liang, Y.T.2
Zhou, J.Z.3
Zang, Y.4
-
27
-
-
84923655625
-
Application of higher order spectral features and support vector machines for bearing faults classification
-
Saidi, L., Ali, J.B., Fnaiech, F., Application of higher order spectral features and support vector machines for bearing faults classification. ISA Trans. 54 (2015), 193–206.
-
(2015)
ISA Trans.
, vol.54
, pp. 193-206
-
-
Saidi, L.1
Ali, J.B.2
Fnaiech, F.3
-
28
-
-
84955633182
-
Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings
-
Zeng, M., Yang, Y., Zheng, J.D., Cheng, J.S., Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings. Mech. Syst. Sig. Process. 66–67 (2016), 533–545.
-
(2016)
Mech. Syst. Sig. Process.
, vol.66-67
, pp. 533-545
-
-
Zeng, M.1
Yang, Y.2
Zheng, J.D.3
Cheng, J.S.4
-
29
-
-
84995467084
-
Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
-
Zheng, J.D., Pan, H.Y., Cheng, J.S., Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines. Mech. Syst. Sig. Process. 85 (2017), 746–759.
-
(2017)
Mech. Syst. Sig. Process.
, vol.85
, pp. 746-759
-
-
Zheng, J.D.1
Pan, H.Y.2
Cheng, J.S.3
-
30
-
-
84961285424
-
Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis
-
Liu, R.N., Yang, B.Y., Zhang, X.L., Wang, S.B., Chen, X.F., Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis. Mech. Syst. Sig. Process. 78 (2016), 345–370.
-
(2016)
Mech. Syst. Sig. Process.
, vol.78
, pp. 345-370
-
-
Liu, R.N.1
Yang, B.Y.2
Zhang, X.L.3
Wang, S.B.4
Chen, X.F.5
-
31
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
Jia, F., Lei, Y.G., Lin, J., Zhou, X., Lu, N., Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Sig. Process. 72–73 (2016), 303–315.
-
(2016)
Mech. Syst. Sig. Process.
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.G.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
32
-
-
84879854889
-
Representation learning: a review and new perspectives
-
Bengio, Y., Courville, A., Representation learning: a review and new perspectives. IEEE Trans. Softw. Eng. 35 (2013), 1798–1828.
-
(2013)
IEEE Trans. Softw. Eng.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
-
33
-
-
85008219650
-
An enhancement deep feature fusion method for rotating machinery fault diagnosis
-
Shao, H.D., Jiang, H.K., Wang, F.A., Zhao, H.W., An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowl.-Based Syst. 119 (2017), 200–220.
-
(2017)
Knowl.-Based Syst.
, vol.119
, pp. 200-220
-
-
Shao, H.D.1
Jiang, H.K.2
Wang, F.A.3
Zhao, H.W.4
-
34
-
-
84983314971
-
Randomized algorithms for nonlinear system identification with deep learning modification
-
Rosa, E.D.L., Yu, W., Randomized algorithms for nonlinear system identification with deep learning modification. Inf. Sci. 364–365 (2016), 197–212.
-
(2016)
Inf. Sci.
, vol.364-365
, pp. 197-212
-
-
Rosa, E.D.L.1
Yu, W.2
-
35
-
-
85014511127
-
Multi-bearing remaining useful life collaborative prediction: a deep learning approach
-
Ren, L., Cui, J., Sun, Y.Q., Cheng, X.J., Multi-bearing remaining useful life collaborative prediction: a deep learning approach. J. Manufact. Syst. 43 (2017), 248–256.
-
(2017)
J. Manufact. Syst.
, vol.43
, pp. 248-256
-
-
Ren, L.1
Cui, J.2
Sun, Y.Q.3
Cheng, X.J.4
-
36
-
-
84930630277
-
Review: deep learning
-
LeCun, Y., Bengio, Y., Hinton, G.E., Review: deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.E.3
-
37
-
-
84946064662
-
Rolling bearing fault diagnosis using an optimization deep belief network
-
Shao, H.D., Jiang, H.K., Zhang, X., Niu, M.G., Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol., 26, 2015, 115002.
-
(2015)
Meas. Sci. Technol.
, vol.26
, pp. 115002
-
-
Shao, H.D.1
Jiang, H.K.2
Zhang, X.3
Niu, M.G.4
-
38
-
-
84973470244
-
Convolutional neural network based fault detection for rotating machinery
-
Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S., Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 377 (2016), 331–345.
-
(2016)
J. Sound Vib.
, vol.377
, pp. 331-345
-
-
Janssens, O.1
Slavkovikj, V.2
Vervisch, B.3
Stockman, K.4
Loccufier, M.5
Verstockt, S.6
-
39
-
-
84955504842
-
Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
-
Gan, M., Wang, C., Zhu, C.A., Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Sig. Process. 72–73 (2016), 92–104.
-
(2016)
Mech. Syst. Sig. Process.
, vol.72-73
, pp. 92-104
-
-
Gan, M.1
Wang, C.2
Zhu, C.A.3
-
40
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: International Conference on Machine Learning, Montreal, Canada, 2009, pp. 609–616.
-
(2009)
International Conference on Machine Learning, Montreal, Canada
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
41
-
-
70450159350
-
Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning
-
M. Norouzi, M. Ranjbar, G. Mori, Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning, in: IEEE Conference on Computer Vision & Pattern Recognition, 2009, pp. 2735–2742.
-
(2009)
IEEE Conference on Computer Vision & Pattern Recognition
, pp. 2735-2742
-
-
Norouzi, M.1
Ranjbar, M.2
Mori, G.3
-
42
-
-
84907500988
-
Deep architecture for traffic flow prediction: deep belief networks with multitask learning
-
Huang, W.H., Song, G.J., Hong, H.K., Xie, K.Q., Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15 (2014), 2191–2201.
-
(2014)
IEEE Trans. Intell. Transp. Syst.
, vol.15
, pp. 2191-2201
-
-
Huang, W.H.1
Song, G.J.2
Hong, H.K.3
Xie, K.Q.4
-
43
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., The, Y.W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
The, Y.W.3
-
44
-
-
84928189410
-
Sparse classification of rotating machinery faults based on compressive sensing strategy
-
Tang, G., Yang, Q., Wang, H.Q., Luo, G.G., Ma, J.W., Sparse classification of rotating machinery faults based on compressive sensing strategy. Mechatronics 18 (2015), 60–67.
-
(2015)
Mechatronics
, vol.18
, pp. 60-67
-
-
Tang, G.1
Yang, Q.2
Wang, H.Q.3
Luo, G.G.4
Ma, J.W.5
-
46
-
-
84924700075
-
Compressed sparse time-frequency feature representation via compressive sensing and its applications in fault diagnosis
-
Wang, Y.X., Xiang, J.W., Mo, Q.Y., He, S.L., Compressed sparse time-frequency feature representation via compressive sensing and its applications in fault diagnosis. Measurement 68 (2015), 70–81.
-
(2015)
Measurement
, vol.68
, pp. 70-81
-
-
Wang, Y.X.1
Xiang, J.W.2
Mo, Q.Y.3
He, S.L.4
-
47
-
-
0028496580
-
Weight smoothing to improve network generalization
-
Jean, J.N., Wang, J., Weight smoothing to improve network generalization. IEEE Trans. Neural Netw. 5 (1994), 752–763.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 752-763
-
-
Jean, J.N.1
Wang, J.2
-
48
-
-
84957842278
-
Exponential moving average based multiagent reinforcement learning algorithms
-
Awheda, M.D., Schwartz, H.M., Exponential moving average based multiagent reinforcement learning algorithms. Artif. Intell. Rev. 45 (2016), 1–34.
-
(2016)
Artif. Intell. Rev.
, vol.45
, pp. 1-34
-
-
Awheda, M.D.1
Schwartz, H.M.2
-
49
-
-
85019734822
-
Deep neural networks-based rolling bearing fault diagnosis
-
Chen, Z.Q., Deng, S.C., Chen, X.D., Li, C., Sanchez, R.V., Qin, H.F., Deep neural networks-based rolling bearing fault diagnosis. Microelectron. Reliab., 2017, 10.1016/j.microrel.2017.03.006.
-
(2017)
Microelectron. Reliab.
-
-
Chen, Z.Q.1
Deng, S.C.2
Chen, X.D.3
Li, C.4
Sanchez, R.V.5
Qin, H.F.6
-
50
-
-
84979085360
-
Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
-
Guo, X.J., Chen, L., Shen, C.Q., Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 93 (2016), 490–502.
-
(2016)
Measurement
, vol.93
, pp. 490-502
-
-
Guo, X.J.1
Chen, L.2
Shen, C.Q.3
-
51
-
-
84982792319
-
Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
-
Lu, C., Wang, Z.Y., Qin, W.L., Ma, J., Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Sig. Process. 130 (2017), 377–388.
-
(2017)
Sig. Process.
, vol.130
, pp. 377-388
-
-
Lu, C.1
Wang, Z.Y.2
Qin, W.L.3
Ma, J.4
-
52
-
-
85018771228
-
A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
-
Shao, H.D., Jiang, H.K., Zhao, H.W., Wang, F.A., A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Mech. Syst. Sig. Process. 98 (2017), 187–204.
-
(2017)
Mech. Syst. Sig. Process.
, vol.98
, pp. 187-204
-
-
Shao, H.D.1
Jiang, H.K.2
Zhao, H.W.3
Wang, F.A.4
-
53
-
-
84963934455
-
An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
-
Lei, Y.G., Jia, F., Lin, J., Xing, S.B., Ding, S.X., An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Industr. Electron. 63 (2016), 3137–3147.
-
(2016)
IEEE Trans. Industr. Electron.
, vol.63
, pp. 3137-3147
-
-
Lei, Y.G.1
Jia, F.2
Lin, J.3
Xing, S.B.4
Ding, S.X.5
|