-
1
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
2
-
-
84881453258
-
Connectomic reconstruction of the inner plexiform layer in the mouse retina
-
M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W. Denk, "Connectomic reconstruction of the inner plexiform layer in the mouse retina," Nature, vol. 500, no. 7461, pp. 168-174, 2013.
-
(2013)
Nature
, vol.500
, Issue.7461
, pp. 168-174
-
-
Helmstaedter, M.1
Briggman, K.L.2
Turaga, S.C.3
Jain, V.4
Seung, H.S.5
Denk, W.6
-
3
-
-
84923276179
-
The human splicing code reveals new insights into the genetic determinants of disease
-
H. Y. Xiong et al., "The human splicing code reveals new insights into the genetic determinants of disease," Science, vol. 347, no. 6218, p. 1254806, 2015.
-
(2015)
Science
, vol.347
, Issue.6218
, pp. 1254806
-
-
Xiong, H.Y.1
-
4
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, "Deep neural nets as a method for quantitative structure-activity relationships," J. Chem. Inf. Model., vol. 55, no. 2, pp. 263-274, 2015.
-
(2015)
J. Chem. Inf. Model.
, vol.55
, Issue.2
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
5
-
-
84864075358
-
Online particle detection with neural networks based on topological calorimetry information
-
T. Ciodaro, D. Deva, J. M. de Seixas, and D. Damazio, "Online particle detection with neural networks based on topological calorimetry information," J. Phys., Conf. Series. vol. 368, no. 1, p. 012030, 2012.
-
(2012)
J. Phys., Conf. Series.
, vol.368
, Issue.1
, pp. 012030
-
-
Ciodaro, T.1
Deva, D.2
De Seixas, J.M.3
Damazio, D.4
-
7
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Nov.
-
G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
-
8
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to sequence learning with neural networks," in Proc, Adv. Neural Inf. Process. Syst., 2014, pp. 3104-3112.
-
(2014)
Proc, Adv. Neural Inf. Process. Syst.
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
9
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
10
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, 1989.
-
(1989)
Neural Comput.
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
-
11
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
Jun.
-
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database," in Proc. IEEE Conf. Comput. Vis. Patt. Recognit., Jun. 2009, pp. 248-255.
-
(2009)
Proc. IEEE Conf. Comput. Vis. Patt. Recognit.
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
13
-
-
85013977220
-
Deep learning applications and challenges in big data analytics
-
M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R.Wald, and E. Muharemagic, "Deep learning applications and challenges in big data analytics," J. Big Data, vol. 2, no. 1, pp. 1-21, 2015.
-
(2015)
J. Big Data
, vol.2
, Issue.1
, pp. 1-21
-
-
Najafabadi, M.M.1
Villanustre, F.2
Khoshgoftaar, T.M.3
Seliya, N.4
Wald, R.5
Muharemagic, E.6
-
14
-
-
85031918331
-
Mastering the game of go without human knowledge
-
D. Silver et al., "Mastering the game of go without human knowledge," Nature, vol. 550, no. 7676, pp. 354-359, 2017.
-
(2017)
Nature
, vol.550
, Issue.7676
, pp. 354-359
-
-
Silver, D.1
-
15
-
-
84986274465
-
Deep residual learning for image recognition
-
Jun.
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
16
-
-
85041904512
-
Universal adversarial perturbations
-
Jul.
-
S. M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, "Universal adversarial perturbations," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 86-94.
-
(2017)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
, pp. 86-94
-
-
Moosavi-Dezfooli, S.M.1
Fawzi, A.2
Fawzi, O.3
Frossard, P.4
-
21
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
A. Esteva et al., "Dermatologist-level classification of skin cancer with deep neural networks," Nature, vol. 542, no. 7639, pp. 115-118, 2017.
-
(2017)
Nature
, vol.542
, Issue.7639
, pp. 115-118
-
-
Esteva, A.1
-
28
-
-
84963570113
-
A unified gradient regularization family for adversarial examples
-
Nov.
-
C. Lyu, K. Huang, and H.-N. Liang, "A unified gradient regularization family for adversarial examples," in Proc. IEEE Int. Conf. Data Mining, Nov. 2015, pp. 301-309.
-
(2015)
Proc. IEEE Int. Conf. Data Mining
, pp. 301-309
-
-
Lyu, C.1
Huang, K.2
Liang, H.-N.3
-
38
-
-
84987680683
-
Distillation as a defense to adversarial perturbations against deep neural networks
-
May
-
N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, "Distillation as a defense to adversarial perturbations against deep neural networks," in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 582-597.
-
(2016)
Proc. IEEE Symp. Secur. Privacy (SP)
, pp. 582-597
-
-
Papernot, N.1
McDaniel, P.2
Wu, X.3
Jha, S.4
Swami, A.5
-
39
-
-
85021992078
-
Practical black-box attacks against machine learning
-
N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, "Practical black-box attacks against machine learning," in Proc. ACM Asia Conf. Comput. Commun. Secur., 2017, pp. 506-519.
-
(2017)
Proc. ACM Asia Conf. Comput. Commun. Secur.
, pp. 506-519
-
-
Papernot, N.1
McDaniel, P.2
Goodfellow, I.3
Jha, S.4
Celik, Z.B.5
Swami, A.6
-
40
-
-
85044963779
-
-
[Online]
-
X. Xu, X. Chen, C. Liu, A. Rohrbach, T. Darell, and D. Song. (2017). "Can you fool AI with adversarial examples on a visual Turing test?" [Online]. Available: https://arxiv.org/abs/1709.08693
-
(2017)
Can You Fool AI with Adversarial Examples on a Visual Turing Test?
-
-
Xu, X.1
Chen, X.2
Liu, C.3
Rohrbach, A.4
Darell, T.5
Song, D.6
-
41
-
-
85037345899
-
ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models
-
P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, "ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models," in Proc. 10th ACMWorkshop Artif. Intell. Secur. (AISEC), 2017, pp. 15-26.
-
(2017)
Proc. 10th ACMWorkshop Artif. Intell. Secur. (AISEC)
, pp. 15-26
-
-
Chen, P.-Y.1
Zhang, H.2
Sharma, Y.3
Yi, J.4
Hsieh, C.-J.5
-
48
-
-
85015427003
-
Assessing threat of adversarial examples on deep neural networks
-
Dec.
-
A. Graese, A. Rozsa, and T. E. Boult, "Assessing threat of adversarial examples on deep neural networks," in Proc. IEEE Int. Conf. Mach. Learn. Appl., Dec. 2016, pp. 69-74.
-
(2016)
Proc. IEEE Int. Conf. Mach. Learn. Appl.
, pp. 69-74
-
-
Graese, A.1
Rozsa, A.2
Boult, T.E.3
-
50
-
-
85044917850
-
-
[Online]
-
B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. Wang. (2017). "Detecting adversarial examples in deep networks with adaptive noise reduction'." [Online]. Available: https://arxiv.org/abs/1705.08378
-
(2017)
Detecting Adversarial Examples in Deep Networks with Adaptive Noise Reduction'
-
-
Liang, B.1
Li, H.2
Su, M.3
Li, X.4
Shi, W.5
Wang, X.6
-
60
-
-
84978047763
-
The limitations of deep learning in adversarial settings
-
Mar.
-
N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, "The limitations of deep learning in adversarial settings," in Proc. IEEE Eur. Symp. Secur. Privacy, Mar. 2016, pp. 372-387.
-
(2016)
Proc. IEEE Eur. Symp. Secur. Privacy
, pp. 372-387
-
-
Papernot, N.1
McDaniel, P.2
Jha, S.3
Fredrikson, M.4
Celik, Z.B.5
Swami, A.6
-
63
-
-
85046297726
-
-
[Online]
-
M. Melis, A. Demontis, B. Biggio, G. Brown, G. Fumera, and F. Roli. (2017). "Is deep learning safe for robot vision? Adversarial examples against the iCub humanoid." [Online]. Available: https://arxiv.org/abs/1708.06939
-
(2017)
Is Deep Learning Safe for Robot Vision? Adversarial Examples Against the ICub Humanoid
-
-
Melis, M.1
Demontis, A.2
Biggio, B.3
Brown, G.4
Fumera, G.5
Roli, F.6
-
67
-
-
85041901493
-
Universal adversarial perturbations against semantic image segmentation
-
Oct.
-
J. H. Metzen, M. C. Kumar, T. Brox, and V. Fischer, "Universal adversarial perturbations against semantic image segmentation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Oct. 2017, pp. 2755-2764.
-
(2017)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 2755-2764
-
-
Metzen, J.H.1
Kumar, M.C.2
Brox, T.3
Fischer, V.4
-
69
-
-
85018922715
-
Robustness of classifiers: From adversarial to random noise
-
A. Fawzi, S. Moosavi-Dezfooli, and P. Frossard, "Robustness of classifiers: From adversarial to random noise," in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1632-1640.
-
(2016)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1632-1640
-
-
Fawzi, A.1
Moosavi-Dezfooli, S.2
Frossard, P.3
-
72
-
-
84986325571
-
DeepFool: A simple and accurate method to fool deep neural networks
-
Jun.
-
S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, "DeepFool: A simple and accurate method to fool deep neural networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2574-2582.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 2574-2582
-
-
Moosavi-Dezfooli, S.1
Fawzi, A.2
Frossard, P.3
-
77
-
-
85037351312
-
-
[Online]
-
F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. (2017). "Ensemble adversarial training: Attacks and defenses." [Online]. Available: https://arxiv.org/abs/1705.07204
-
(2017)
Ensemble Adversarial Training: Attacks and Defenses.
-
-
Tramèr, F.1
Kurakin, A.2
Papernot, N.3
Goodfellow, I.4
Boneh, D.5
McDaniel, P.6
-
95
-
-
85024499196
-
-
[Online]
-
O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi. (2017). "Measuring neural net robustness with constraints." [Online]. Available: https://arxiv.org/abs/1605.07262
-
(2017)
Measuring Neural Net Robustness with Constraints.
-
-
Bastani, O.1
Ioannou, Y.2
Lampropoulos, L.3
Vytiniotis, D.4
Nori, A.5
Criminisi, A.6
-
97
-
-
85015380605
-
Are accuracy and robustness correlated
-
Dec.
-
A. Rozsa, M. Günther, and T. E. Boult, "Are accuracy and robustness correlated," in Proc. IEEE Int. Conf. Mach. Learn. Appl., Dec. 2016, pp. 227-232.
-
(2016)
Proc. IEEE Int. Conf. Mach. Learn. Appl.
, pp. 227-232
-
-
Rozsa, A.1
Günther, M.2
Boult, T.E.3
-
105
-
-
85041894951
-
Adversarial examples detection in deep networks with convolutional filter statistics
-
X. Li and F. Li, "Adversarial examples detection in deep networks with convolutional filter statistics," in Proc. Int. Conf. Comput. Vis., 2017, pp. 1-9.
-
(2017)
Proc. Int. Conf. Comput. Vis.
, pp. 1-9
-
-
Li, X.1
Li, F.2
-
107
-
-
85029485845
-
Adversarial examples for malware detection
-
K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel, "Adversarial examples for malware detection," in Proc. Eur. Symp. Res. Comput. Secur., 2017, pp. 62-79.
-
(2017)
Proc. Eur. Symp. Res. Comput. Secur.
, pp. 62-79
-
-
Grosse, K.1
Papernot, N.2
Manoharan, P.3
Backes, M.4
McDaniel, P.5
-
110
-
-
85011845631
-
Crafting adversarial input sequences for recurrent neural networks
-
N. Papernot, P. McDaniel, A. Swami, and R. Harang, "Crafting adversarial input sequences for recurrent neural networks," in Proc. IEEE Military Commun. Conf., 2016, pp. 49-54.
-
(2016)
Proc. IEEE Military Commun. Conf.
, pp. 49-54
-
-
Papernot, N.1
McDaniel, P.2
Swami, A.3
Harang, R.4
-
114
-
-
84946206172
-
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
-
A. Nguyen, J. Yosinski, and J. Clune, "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 427-436.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 427-436
-
-
Nguyen, A.1
Yosinski, J.2
Clune, J.3
-
115
-
-
85030239021
-
-
[Online]
-
C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille. (2017). "Adversarial examples for semantic segmentation and object detection." [Online]. Available: https://arxiv.org/abs/1703.08603
-
(2017)
Adversarial Examples for Semantic Segmentation and Object Detection.
-
-
Xie, C.1
Wang, J.2
Zhang, Z.3
Zhou, Y.4
Xie, L.5
Yuille, A.6
-
116
-
-
84986266803
-
Improving the robustness of deep neural networks via stability training
-
Jun.
-
S. Zheng, Y. Song, T. Leung, and I. Goodfellow, "Improving the robustness of deep neural networks via stability training," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 4480-4488.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 4480-4488
-
-
Zheng, S.1
Song, Y.2
Leung, T.3
Goodfellow, I.4
-
117
-
-
84995436428
-
Fundamental limits on adversarial robustness
-
A. Fawzi, O. Fawzi, and P. Frossard, "Fundamental limits on adversarial robustness," in Proc. ICML, Workshop Deep Learn., 2015, pp. 1-7.
-
(2015)
Proc. ICML, Workshop Deep Learn.
, pp. 1-7
-
-
Fawzi, A.1
Fawzi, O.2
Frossard, P.3
-
133
-
-
85106092143
-
-
[Online]
-
Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun. (2017). "Tactics of adversarial attack on deep reinforcement learning agents." [Online]. Available: https://arxiv.org/abs/1703.06748
-
(2017)
Tactics of Adversarial Attack on Deep Reinforcement Learning Agents.
-
-
Lin, Y.-C.1
Hong, Z.-W.2
Liao, Y.-H.3
Shih, M.-L.4
Liu, M.-Y.5
Sun, M.6
-
135
-
-
85031044119
-
Mitigating fooling with competitive overcomplete output layer neural networks
-
May
-
N. Kardan and K. O. Stanley, "Mitigating fooling with competitive overcomplete output layer neural networks," in Proc. Int. Joint Conf. Neural Netw., May 2017, pp. 518-525.
-
(2017)
Proc. Int. Joint Conf. Neural Netw.
, pp. 518-525
-
-
Kardan, N.1
Stanley, K.O.2
-
140
-
-
85030869875
-
Alleviating adversarial attacks via convolutional autoencoder
-
Jun.
-
W. Bai, C. Quan, and Z. Luo, "Alleviating adversarial attacks via convolutional autoencoder," in Proc. Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib. Comput. (SNPD), Jun. 2017, pp. 53-58.
-
(2017)
Proc. Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib. Comput. (SNPD)
, pp. 53-58
-
-
Bai, W.1
Quan, C.2
Luo, Z.3
-
141
-
-
85044937209
-
Adversarial-Playground: A visualization suite showing how adversarial examples fool deep learning
-
Oct.
-
A. P. Norton and Y. Qi, "Adversarial-Playground: A visualization suite showing how adversarial examples fool deep learning," in Proc. IEEE Symp. Vis. Cyber Secur., Oct. 2017, pp. 1-4.
-
(2017)
Proc. IEEE Symp. Vis. Cyber Secur.
, pp. 1-4
-
-
Norton, A.P.1
Qi, Y.2
-
143
-
-
85027703540
-
Fooling neural networks in face attractiveness evaluation: Adversarial examples with high attractiveness score but lowsubjective score
-
Apr.
-
S. Shen, R. Furuta, T. Yamasaki, and K. Aizawa, "Fooling neural networks in face attractiveness evaluation: Adversarial examples with high attractiveness score but lowsubjective score," in Proc. IEEE 3rd Int. Conf. Multimedia Big Data, Apr. 2017, pp. 66-69.
-
(2017)
Proc. IEEE 3rd Int. Conf. Multimedia Big Data
, pp. 66-69
-
-
Shen, S.1
Furuta, R.2
Yamasaki, T.3
Aizawa, K.4
-
144
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
Jun.
-
C. Szegedy, V. Vincent, S. Ioffe, J. Shlens, and Z.Wojna, "Rethinking the inception architecture for computer vision," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818-2826.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 2818-2826
-
-
Szegedy, C.1
Vincent, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
146
-
-
79952003251
-
Differential evolution: A survey of the state-of-the-art
-
Feb.
-
S. Das and P. N. Suganthan, "Differential evolution: A survey of the state-of-the-art," IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4-31, Feb. 2011.
-
(2011)
IEEE Trans. Evol. Comput.
, vol.15
, Issue.1
, pp. 4-31
-
-
Das, S.1
Suganthan, P.N.2
-
148
-
-
84960980241
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 91-99.
-
(2015)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
150
-
-
77956002520
-
-
M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada
-
A. Krizhevsky, "Learning multiple layers of features from tiny images," M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, 2009.
-
(2009)
Learning Multiple Layers of Features from Tiny Images
-
-
Krizhevsky, A.1
-
152
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
153
-
-
0022471098
-
Learning representations by back-propagating errors
-
Oct.
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, Oct. 1986.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
154
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
155
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
V. Mnih et al., "Human-level control through deep reinforcement learning," Nature, vol. 518, pp. 529-533, 2015.
-
(2015)
Nature
, vol.518
, pp. 529-533
-
-
Mnih, V.1
-
156
-
-
84971448181
-
Asynchronous methods for deep reinforcement learning
-
M. Volodymyr et al., "Asynchronous methods for deep reinforcement learning," in Proc. Int. Conf. Mach. Learn., 2016, pp. 1-10.
-
(2016)
Proc. Int. Conf. Mach. Learn.
, pp. 1-10
-
-
Volodymyr, M.1
-
157
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Jun.
-
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 3431-3440.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
158
-
-
85019137284
-
Are facial attributes adversarially robust?
-
Dec.
-
A. Rozsa, M. Günther, E. M. Rudd, and T. E. Boult, "Are facial attributes adversarially robust?" in Proc. Int. Conf. Pattern Recognit., Dec. 2016, pp. 3121-3127.
-
(2016)
Proc. Int. Conf. Pattern Recognit.
, pp. 3121-3127
-
-
Rozsa, A.1
Günther, M.2
Rudd, E.M.3
Boult, T.E.4
-
159
-
-
84973917446
-
Deep learning face attributes in the wild
-
Z. Liu, P. Luo, X. Wang, and X. Tang, "Deep learning face attributes in the wild," in Proc. Int. Conf. Comput. Vis., 2015, pp. 3730-3738.
-
(2015)
Proc. Int. Conf. Comput. Vis.
, pp. 3730-3738
-
-
Liu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
160
-
-
85044917753
-
Soft biometric privacy: Retaining biometric utility of face images while perturbing gender
-
V. Mirjalili and A. Ross, "Soft biometric privacy: Retaining biometric utility of face images while perturbing gender," in Proc. Int. Joint Conf. Biometrics, 2017, pp. 1-10.
-
(2017)
Proc. Int. Joint Conf. Biometrics
, pp. 1-10
-
-
Mirjalili, V.1
Ross, A.2
-
163
-
-
0034702306
-
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit
-
Jun.
-
R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung, "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, vol. 405, no. 6789, pp. 947-951, Jun. 2000.
-
(2000)
Nature
, vol.405
, Issue.6789
, pp. 947-951
-
-
Hahnloser, R.H.R.1
Sarpeshkar, R.2
Mahowald, M.A.3
Douglas, R.J.4
Seung, H.S.5
-
165
-
-
0026953305
-
Improving generalization performance using double backpropagation
-
Nov.
-
H. Drucker and Y. Le Cun, "Improving generalization performance using double backpropagation," IEEE Trans. Neural Netw., vol. 3, no. 6, pp. 991-997, Nov. 1992.
-
(1992)
IEEE Trans. Neural Netw.
, vol.3
, Issue.6
, pp. 991-997
-
-
Drucker, H.1
Le Cun, Y.2
-
170
-
-
84867527433
-
An introduction to frames
-
J. Kovačević and C. Amina, "An introduction to frames," Found. Trends Signal Process., vol. 2, no. 1, pp. 1-94, 2008.
-
(2008)
Found. Trends Signal Process.
, vol.2
, Issue.1
, pp. 1-94
-
-
Kovačević, J.1
Amina, C.2
-
171
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, "Contractive auto-encoders: Explicit invariance during feature extraction," in Proc. Int. Conf. Mach. Learn., 2011, pp. 833-840.
-
(2011)
Proc. Int. Conf. Mach. Learn.
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
172
-
-
84994477344
-
Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems
-
Dec.
-
S. S. Liew, M. Khalil-Hani, and R. Bakhteri, "Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems," Neurocomputing, vol. 216, pp. 718-734, Dec. 2016.
-
(2016)
Neurocomputing
, vol.216
, pp. 718-734
-
-
Liew, S.S.1
Khalil-Hani, M.2
Bakhteri, R.3
-
174
-
-
84870547834
-
Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey
-
Dec.
-
A. Mogelmose, M. M. Trivedi, and T. B. Moeslund, "Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey," IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, pp. 1484-1497, Dec. 2012.
-
(2012)
IEEE Trans. Intell. Transp. Syst.
, vol.13
, Issue.4
, pp. 1484-1497
-
-
Mogelmose, A.1
Trivedi, M.M.2
Moeslund, T.B.3
-
175
-
-
84962815548
-
MatConvNet-Convolutional neural networks for MATLAB
-
A. Vedaldi and K. Lenc, "MatConvNet-Convolutional neural networks for MATLAB," in Proc. ACM Int. Conf. Multimedia, 2015, pp. 689-692.
-
(2015)
Proc. ACM Int. Conf. Multimedia
, pp. 689-692
-
-
Vedaldi, A.1
Lenc, K.2
-
178
-
-
85058585233
-
A machine learning approach to visual perception of forest trails for mobile robots
-
Jul.
-
A. Giusti et al., "A machine learning approach to visual perception of forest trails for mobile robots," IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 661-667, Jul. 2016.
-
(2016)
IEEE Robot. Autom. Lett.
, vol.1
, Issue.2
, pp. 661-667
-
-
Giusti, A.1
-
179
-
-
85044950397
-
-
Accessed: Dec. 2017. [Online]
-
Objects Detection Machine Learning TensorFlow Demo. Accessed: Dec. 2017. [Online]. Available: https://play.google.com/store/apps/details?id=org.tensorflow.detect&hl=en
-
Objects Detection Machine Learning TensorFlow Demo.
-
-
-
180
-
-
85044939153
-
-
Accessed: Dec. 2017. [Online]
-
Class Central, Deep Learning for Self-Driving Cars. Accessed: Dec. 2017. [Online]. Available: https://www.class-central.com/mooc/8132/6-s094-deep-learning-for-self-driving-cars
-
Class Central, Deep Learning for Self-Driving Cars.
-
-
-
182
-
-
85044970310
-
-
Accessed: Dec. 2017. [Online]
-
About Face ID Advanced Technology. Accessed: Dec. 2017. [Online]. Available: https://support.apple.com/en-au/HT208108
-
About Face ID Advanced Technology.
-
-
-
183
-
-
84995426895
-
Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition
-
M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition," in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 1528-1540.
-
(2016)
Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
, pp. 1528-1540
-
-
Sharif, M.1
Bhagavatula, S.2
Bauer, L.3
Reiter, M.K.4
|