메뉴 건너뛰기




Volumn 6, Issue , 2018, Pages 14410-14430

Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey

Author keywords

adversarial learning; adversarial perturbation; black box attack; Deep learning; perturbation detection; white box attack

Indexed keywords

ARTIFICIAL HEART; ARTIFICIAL INTELLIGENCE; COMPUTER VISION; DEEP NEURAL NETWORKS; HUMAN COMPUTER INTERACTION; JOB ANALYSIS; LEARNING SYSTEMS; NEURAL NETWORKS; PERTURBATION TECHNIQUES; SURVEYS;

EID: 85042198914     PISSN: None     EISSN: 21693536     Source Type: Journal    
DOI: 10.1109/ACCESS.2018.2807385     Document Type: Review
Times cited : (1923)

References (186)
  • 1
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 2
    • 84881453258 scopus 로고    scopus 로고
    • Connectomic reconstruction of the inner plexiform layer in the mouse retina
    • M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W. Denk, "Connectomic reconstruction of the inner plexiform layer in the mouse retina," Nature, vol. 500, no. 7461, pp. 168-174, 2013.
    • (2013) Nature , vol.500 , Issue.7461 , pp. 168-174
    • Helmstaedter, M.1    Briggman, K.L.2    Turaga, S.C.3    Jain, V.4    Seung, H.S.5    Denk, W.6
  • 3
    • 84923276179 scopus 로고    scopus 로고
    • The human splicing code reveals new insights into the genetic determinants of disease
    • H. Y. Xiong et al., "The human splicing code reveals new insights into the genetic determinants of disease," Science, vol. 347, no. 6218, p. 1254806, 2015.
    • (2015) Science , vol.347 , Issue.6218 , pp. 1254806
    • Xiong, H.Y.1
  • 4
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, "Deep neural nets as a method for quantitative structure-activity relationships," J. Chem. Inf. Model., vol. 55, no. 2, pp. 263-274, 2015.
    • (2015) J. Chem. Inf. Model. , vol.55 , Issue.2 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 5
    • 84864075358 scopus 로고    scopus 로고
    • Online particle detection with neural networks based on topological calorimetry information
    • T. Ciodaro, D. Deva, J. M. de Seixas, and D. Damazio, "Online particle detection with neural networks based on topological calorimetry information," J. Phys., Conf. Series. vol. 368, no. 1, p. 012030, 2012.
    • (2012) J. Phys., Conf. Series. , vol.368 , Issue.1 , pp. 012030
    • Ciodaro, T.1    Deva, D.2    De Seixas, J.M.3    Damazio, D.4
  • 7
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Nov.
    • G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
    • (2012) IEEE Signal Process. Mag. , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1
  • 10
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, 1989.
    • (1989) Neural Comput. , vol.1 , Issue.4 , pp. 541-551
    • LeCun, Y.1
  • 14
    • 85031918331 scopus 로고    scopus 로고
    • Mastering the game of go without human knowledge
    • D. Silver et al., "Mastering the game of go without human knowledge," Nature, vol. 550, no. 7676, pp. 354-359, 2017.
    • (2017) Nature , vol.550 , Issue.7676 , pp. 354-359
    • Silver, D.1
  • 21
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • A. Esteva et al., "Dermatologist-level classification of skin cancer with deep neural networks," Nature, vol. 542, no. 7639, pp. 115-118, 2017.
    • (2017) Nature , vol.542 , Issue.7639 , pp. 115-118
    • Esteva, A.1
  • 28
    • 84963570113 scopus 로고    scopus 로고
    • A unified gradient regularization family for adversarial examples
    • Nov.
    • C. Lyu, K. Huang, and H.-N. Liang, "A unified gradient regularization family for adversarial examples," in Proc. IEEE Int. Conf. Data Mining, Nov. 2015, pp. 301-309.
    • (2015) Proc. IEEE Int. Conf. Data Mining , pp. 301-309
    • Lyu, C.1    Huang, K.2    Liang, H.-N.3
  • 38
    • 84987680683 scopus 로고    scopus 로고
    • Distillation as a defense to adversarial perturbations against deep neural networks
    • May
    • N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, "Distillation as a defense to adversarial perturbations against deep neural networks," in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 582-597.
    • (2016) Proc. IEEE Symp. Secur. Privacy (SP) , pp. 582-597
    • Papernot, N.1    McDaniel, P.2    Wu, X.3    Jha, S.4    Swami, A.5
  • 45
    • 85038925130 scopus 로고    scopus 로고
    • MagNet: A two-pronged defense against adversarial examples
    • D. Meng and H. Chen, "MagNet: A two-pronged defense against adversarial examples," in Proc. ACM Conf. Comput. Commun. Secur. (CCS), 2017, pp. 135-147.
    • (2017) Proc. ACM Conf. Comput. Commun. Secur. (CCS) , pp. 135-147
    • Meng, D.1    Chen, H.2
  • 105
    • 85041894951 scopus 로고    scopus 로고
    • Adversarial examples detection in deep networks with convolutional filter statistics
    • X. Li and F. Li, "Adversarial examples detection in deep networks with convolutional filter statistics," in Proc. Int. Conf. Comput. Vis., 2017, pp. 1-9.
    • (2017) Proc. Int. Conf. Comput. Vis. , pp. 1-9
    • Li, X.1    Li, F.2
  • 114
    • 84946206172 scopus 로고    scopus 로고
    • Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
    • A. Nguyen, J. Yosinski, and J. Clune, "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 427-436.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 427-436
    • Nguyen, A.1    Yosinski, J.2    Clune, J.3
  • 135
    • 85031044119 scopus 로고    scopus 로고
    • Mitigating fooling with competitive overcomplete output layer neural networks
    • May
    • N. Kardan and K. O. Stanley, "Mitigating fooling with competitive overcomplete output layer neural networks," in Proc. Int. Joint Conf. Neural Netw., May 2017, pp. 518-525.
    • (2017) Proc. Int. Joint Conf. Neural Netw. , pp. 518-525
    • Kardan, N.1    Stanley, K.O.2
  • 141
    • 85044937209 scopus 로고    scopus 로고
    • Adversarial-Playground: A visualization suite showing how adversarial examples fool deep learning
    • Oct.
    • A. P. Norton and Y. Qi, "Adversarial-Playground: A visualization suite showing how adversarial examples fool deep learning," in Proc. IEEE Symp. Vis. Cyber Secur., Oct. 2017, pp. 1-4.
    • (2017) Proc. IEEE Symp. Vis. Cyber Secur. , pp. 1-4
    • Norton, A.P.1    Qi, Y.2
  • 143
    • 85027703540 scopus 로고    scopus 로고
    • Fooling neural networks in face attractiveness evaluation: Adversarial examples with high attractiveness score but lowsubjective score
    • Apr.
    • S. Shen, R. Furuta, T. Yamasaki, and K. Aizawa, "Fooling neural networks in face attractiveness evaluation: Adversarial examples with high attractiveness score but lowsubjective score," in Proc. IEEE 3rd Int. Conf. Multimedia Big Data, Apr. 2017, pp. 66-69.
    • (2017) Proc. IEEE 3rd Int. Conf. Multimedia Big Data , pp. 66-69
    • Shen, S.1    Furuta, R.2    Yamasaki, T.3    Aizawa, K.4
  • 146
    • 79952003251 scopus 로고    scopus 로고
    • Differential evolution: A survey of the state-of-the-art
    • Feb.
    • S. Das and P. N. Suganthan, "Differential evolution: A survey of the state-of-the-art," IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4-31, Feb. 2011.
    • (2011) IEEE Trans. Evol. Comput. , vol.15 , Issue.1 , pp. 4-31
    • Das, S.1    Suganthan, P.N.2
  • 148
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 91-99.
    • (2015) Proc. Adv. Neural Inf. Process. Syst. , pp. 91-99
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 152
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 153
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Oct.
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, Oct. 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 154
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 155
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • V. Mnih et al., "Human-level control through deep reinforcement learning," Nature, vol. 518, pp. 529-533, 2015.
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1
  • 156
    • 84971448181 scopus 로고    scopus 로고
    • Asynchronous methods for deep reinforcement learning
    • M. Volodymyr et al., "Asynchronous methods for deep reinforcement learning," in Proc. Int. Conf. Mach. Learn., 2016, pp. 1-10.
    • (2016) Proc. Int. Conf. Mach. Learn. , pp. 1-10
    • Volodymyr, M.1
  • 160
    • 85044917753 scopus 로고    scopus 로고
    • Soft biometric privacy: Retaining biometric utility of face images while perturbing gender
    • V. Mirjalili and A. Ross, "Soft biometric privacy: Retaining biometric utility of face images while perturbing gender," in Proc. Int. Joint Conf. Biometrics, 2017, pp. 1-10.
    • (2017) Proc. Int. Joint Conf. Biometrics , pp. 1-10
    • Mirjalili, V.1    Ross, A.2
  • 163
    • 0034702306 scopus 로고    scopus 로고
    • Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit
    • Jun.
    • R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung, "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, vol. 405, no. 6789, pp. 947-951, Jun. 2000.
    • (2000) Nature , vol.405 , Issue.6789 , pp. 947-951
    • Hahnloser, R.H.R.1    Sarpeshkar, R.2    Mahowald, M.A.3    Douglas, R.J.4    Seung, H.S.5
  • 165
    • 0026953305 scopus 로고
    • Improving generalization performance using double backpropagation
    • Nov.
    • H. Drucker and Y. Le Cun, "Improving generalization performance using double backpropagation," IEEE Trans. Neural Netw., vol. 3, no. 6, pp. 991-997, Nov. 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.6 , pp. 991-997
    • Drucker, H.1    Le Cun, Y.2
  • 172
    • 84994477344 scopus 로고    scopus 로고
    • Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems
    • Dec.
    • S. S. Liew, M. Khalil-Hani, and R. Bakhteri, "Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems," Neurocomputing, vol. 216, pp. 718-734, Dec. 2016.
    • (2016) Neurocomputing , vol.216 , pp. 718-734
    • Liew, S.S.1    Khalil-Hani, M.2    Bakhteri, R.3
  • 174
    • 84870547834 scopus 로고    scopus 로고
    • Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey
    • Dec.
    • A. Mogelmose, M. M. Trivedi, and T. B. Moeslund, "Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey," IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, pp. 1484-1497, Dec. 2012.
    • (2012) IEEE Trans. Intell. Transp. Syst. , vol.13 , Issue.4 , pp. 1484-1497
    • Mogelmose, A.1    Trivedi, M.M.2    Moeslund, T.B.3
  • 175
    • 84962815548 scopus 로고    scopus 로고
    • MatConvNet-Convolutional neural networks for MATLAB
    • A. Vedaldi and K. Lenc, "MatConvNet-Convolutional neural networks for MATLAB," in Proc. ACM Int. Conf. Multimedia, 2015, pp. 689-692.
    • (2015) Proc. ACM Int. Conf. Multimedia , pp. 689-692
    • Vedaldi, A.1    Lenc, K.2
  • 178
    • 85058585233 scopus 로고    scopus 로고
    • A machine learning approach to visual perception of forest trails for mobile robots
    • Jul.
    • A. Giusti et al., "A machine learning approach to visual perception of forest trails for mobile robots," IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 661-667, Jul. 2016.
    • (2016) IEEE Robot. Autom. Lett. , vol.1 , Issue.2 , pp. 661-667
    • Giusti, A.1
  • 179
    • 85044950397 scopus 로고    scopus 로고
    • Accessed: Dec. 2017. [Online]
    • Objects Detection Machine Learning TensorFlow Demo. Accessed: Dec. 2017. [Online]. Available: https://play.google.com/store/apps/details?id=org.tensorflow.detect&hl=en
    • Objects Detection Machine Learning TensorFlow Demo.
  • 180
    • 85044939153 scopus 로고    scopus 로고
    • Accessed: Dec. 2017. [Online]
    • Class Central, Deep Learning for Self-Driving Cars. Accessed: Dec. 2017. [Online]. Available: https://www.class-central.com/mooc/8132/6-s094-deep-learning-for-self-driving-cars
    • Class Central, Deep Learning for Self-Driving Cars.
  • 182
    • 85044970310 scopus 로고    scopus 로고
    • Accessed: Dec. 2017. [Online]
    • About Face ID Advanced Technology. Accessed: Dec. 2017. [Online]. Available: https://support.apple.com/en-au/HT208108
    • About Face ID Advanced Technology.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.