메뉴 건너뛰기




Volumn 100, Issue , 2018, Pages 439-453

A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load

Author keywords

Anti noise; Convolutional neural networks; End to end; Intelligent fault diagnosis; Load domain adaptation

Indexed keywords

CONVOLUTION; DEEP NEURAL NETWORKS; FAILURE ANALYSIS; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 85028727944     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2017.06.022     Document Type: Article
Times cited : (1183)

References (36)
  • 1
    • 84929376682 scopus 로고    scopus 로고
    • A survey of fault diagnosis and fault-tolerant techniques—Part I: fault diagnosis with model-based and signal-based approaches
    • Gao, Z., Cecati, C., Ding, S.X., A survey of fault diagnosis and fault-tolerant techniques—Part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62:6 (2015), 3757–3767.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.6 , pp. 3757-3767
    • Gao, Z.1    Cecati, C.2    Ding, S.X.3
  • 2
    • 84890044969 scopus 로고    scopus 로고
    • Condition monitoring and fault diagnosis of planetary gearboxes: a review
    • Lei, Y., Lin, J., Zuo, M.J., He, Z., Condition monitoring and fault diagnosis of planetary gearboxes: a review. Measurement 48 (2014), 292–305.
    • (2014) Measurement , vol.48 , pp. 292-305
    • Lei, Y.1    Lin, J.2    Zuo, M.J.3    He, Z.4
  • 3
    • 0035475725 scopus 로고    scopus 로고
    • An intelligent online machine fault diagnosis system
    • Fong, A.C.M., Hui, S.C., An intelligent online machine fault diagnosis system. Comput. Control Eng. J. 12:5 (2001), 217–223.
    • (2001) Comput. Control Eng. J. , vol.12 , Issue.5 , pp. 217-223
    • Fong, A.C.M.1    Hui, S.C.2
  • 4
    • 0034297837 scopus 로고    scopus 로고
    • Neural-network-based motor rolling bearing fault diagnosis
    • Li, B., Chow, M.Y., Tipsuwan, Y., Hung, J.C., Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 47:5 (2000), 1060–1069.
    • (2000) IEEE Trans. Ind. Electron. , vol.47 , Issue.5 , pp. 1060-1069
    • Li, B.1    Chow, M.Y.2    Tipsuwan, Y.3    Hung, J.C.4
  • 6
    • 85028717061 scopus 로고    scopus 로고
    • Convolutional-Recursive Deep Learning for 3D Object Classification, In NIPS, vol. 3, No. 7, 2012, December, p. 8.
    • R. Socher, B. Huval, B.P. Bath, C.D. Manning, A.Y. Ng, Convolutional-Recursive Deep Learning for 3D Object Classification, In NIPS, vol. 3, No. 7, 2012, December, p. 8.
    • Socher, R.1    Huval, B.2    Bath, B.P.3    Manning, C.D.4    Ng, A.Y.5
  • 7
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521:7553 (2015), 436–444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 8
    • 84890491198 scopus 로고    scopus 로고
    • Recent advances in deep learning for speech research at Microsoft
    • IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013 May, pp. 8604-8608, IEEE.
    • L. Deng, J. Li, J.T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams, Y. Gong, Recent advances in deep learning for speech research at Microsoft, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013 May, pp. 8604-8608, IEEE.
    • (2013)
    • Deng, L.1    Li, J.2    Huang, J.T.3    Yao, K.4    Yu, D.5    Seide, F.6    Seltzer, M.7    Zweig, G.8    He, X.9    Williams, J.10    Gong, Y.11
  • 10
    • 84982792319 scopus 로고    scopus 로고
    • Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
    • Lu, C., Wang, Z.Y., Qin, W.L., Ma, J., Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Process. 130 (2017), 377–388.
    • (2017) Signal Process. , vol.130 , pp. 377-388
    • Lu, C.1    Wang, Z.Y.2    Qin, W.L.3    Ma, J.4
  • 11
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jia, F., Lei, Y., Lin, J., Zhou, X., Lu, N., Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72 (2016), 303–315.
    • (2016) Mech. Syst. Signal Process. , vol.72 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 12
    • 84978805885 scopus 로고    scopus 로고
    • Fault diagnosis of hydraulic pump based on stacked autoencoders
    • 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), vol. 1, 2015, July, pp. 58–62, IEEE.
    • Z. Huijie, R. Ting, W. Xinqing, Z. You, F. Husheng, Fault diagnosis of hydraulic pump based on stacked autoencoders, in: 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), vol. 1, 2015, July, pp. 58–62, IEEE.
    • (2015)
    • Huijie, Z.1    Ting, R.2    Xinqing, W.3    You, Z.4    Husheng, F.5
  • 13
    • 84962118969 scopus 로고    scopus 로고
    • Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring
    • Guo, L., Gao, H., Huang, H., He, X., Li, S., Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring. Shock Vib., 2016.
    • (2016) Shock Vib.
    • Guo, L.1    Gao, H.2    Huang, H.3    He, X.4    Li, S.5
  • 14
    • 84888870402 scopus 로고    scopus 로고
    • Intelligent condition based monitoring of rotating machines using sparse auto-encoders
    • IEEE Conference on Prognostics and Health Management (PHM), 2013, June, pp. 1–7, IEEE.
    • N.K. Verma, V.K. Gupta, M. Sharma, R.K. Sevakula, Intelligent condition based monitoring of rotating machines using sparse auto-encoders, in: 2013 IEEE Conference on Prognostics and Health Management (PHM), 2013, June, pp. 1–7, IEEE.
    • (2013)
    • Verma, N.K.1    Gupta, V.K.2    Sharma, M.3    Sevakula, R.K.4
  • 15
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 16
    • 85028715280 scopus 로고    scopus 로고
    • Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014 Also available at: arXiv preprint arXiv:1409.1556.
    • K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014 Also available at: arXiv preprint arXiv:1409.1556.
    • Simonyan, K.1    Zisserman, A.2
  • 18
    • 85028728599 scopus 로고    scopus 로고
    • Inception-v4, Inception-Resnet And The Impact of Residual Connections On Learning, 2016, Also available at: arXiv preprint arXiv:1602.07261.
    • C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, Inception-Resnet And The Impact of Residual Connections On Learning, 2016, Also available at: arXiv preprint arXiv:1602.07261.
    • Szegedy, C.1    Ioffe, S.2    Vanhoucke, V.3    Alemi, A.4
  • 20
    • 84997079451 scopus 로고    scopus 로고
    • Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
    • Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J., Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388 (2017), 154–170.
    • (2017) J. Sound Vib. , vol.388 , pp. 154-170
    • Abdeljaber, O.1    Avci, O.2    Kiranyaz, S.3    Gabbouj, M.4    Inman, D.J.5
  • 21
    • 85013858722 scopus 로고    scopus 로고
    • A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals
    • Zhang, W., Peng, G., Li, C., Chen, Y., Zhang, Z., A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors, 17(2), 2017, 425.
    • (2017) Sensors , vol.17 , Issue.2 , pp. 425
    • Zhang, W.1    Peng, G.2    Li, C.3    Chen, Y.4    Zhang, Z.5
  • 22
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • Gan, M., Wang, C., Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 72 (2016), 92–104.
    • (2016) Mech. Syst. Signal Process. , vol.72 , pp. 92-104
    • Gan, M.1    Wang, C.2
  • 23
    • 84975124887 scopus 로고    scopus 로고
    • Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning
    • Li, C., Sánchez, R.V., Zurita, G., Cerrada, M., Cabrera, D., Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning. Sensors, 16(6), 2016, 895.
    • (2016) Sensors , vol.16 , Issue.6 , pp. 895
    • Li, C.1    Sánchez, R.V.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5
  • 24
    • 85028695601 scopus 로고    scopus 로고
    • Deep Learning Using Linear Support Vector Machines, 2013, Also Available at: arXiv preprint arXiv:1306.0239.
    • Y. Tang, Deep Learning Using Linear Support Vector Machines, 2013, Also Available at: arXiv preprint arXiv:1306.0239.
    • Tang, Y.1
  • 25
    • 84966312391 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on svd feature extraction and transfer learning classification
    • Prognostics and System Health Management Conference (PHM), 2015, 2015, October, pp. 1–6, IEEE.
    • F. Shen, C. Chen, R. Yan, R.X. Gao, Bearing fault diagnosis based on svd feature extraction and transfer learning classification, in: Prognostics and System Health Management Conference (PHM), 2015, 2015, October, pp. 1–6, IEEE.
    • Shen, F.1    Chen, C.2    Yan, R.3    Gao, R.X.4
  • 27
    • 84919933755 scopus 로고    scopus 로고
    • Vibration spectrum imaging: A novel bearing fault classification approach
    • Amar, M., Gondal, I., Wilson, C., Vibration spectrum imaging: A novel bearing fault classification approach. IEEE Trans. Ind. Electron. 62:1 (2015), 494–502.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.1 , pp. 494-502
    • Amar, M.1    Gondal, I.2    Wilson, C.3
  • 28
    • 84992499952 scopus 로고    scopus 로고
    • Merging kalman filtering and zonotopic state bounding for robust fault detection under noisy environment
    • Combastel, C., Merging kalman filtering and zonotopic state bounding for robust fault detection under noisy environment. IFAC-PapersOnLine 48:21 (2015), 289–295.
    • (2015) IFAC-PapersOnLine , vol.48 , Issue.21 , pp. 289-295
    • Combastel, C.1
  • 29
    • 85028734842 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015, Also Available at: arXiv preprint arXiv:1502.03167.
    • S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015, Also Available at: arXiv preprint arXiv:1502.03167.
    • Ioffe, S.1    Szegedy, C.2
  • 31
    • 85028714057 scopus 로고    scopus 로고
    • On Large-Batch Training For Deep Learning: Generalization Gap and Sharp Minima, 2016, Also Available at: arXiv preprint arXiv:1609.04836.
    • N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P.T.P. Tang, On Large-Batch Training For Deep Learning: Generalization Gap and Sharp Minima, 2016, Also Available at: arXiv preprint arXiv:1609.04836.
    • Keskar, N.S.1    Mudigere, D.2    Nocedal, J.3    Smelyanskiy, M.4    Tang, P.T.P.5
  • 32
    • 85028727137 scopus 로고    scopus 로고
    • Revisiting Batch Normalization For Practical Domain Adaptation, 2016, Also Available at: arXiv preprint arXiv:1603.04779.
    • Y. Li, N. Wang, J. Shi, J. Liu, X. Hou, Revisiting Batch Normalization For Practical Domain Adaptation, 2016, Also Available at: arXiv preprint arXiv:1603.04779.
    • Li, Y.1    Wang, N.2    Shi, J.3    Liu, J.4    Hou, X.5
  • 33
    • 70350346030 scopus 로고    scopus 로고
    • Ensemble learning
    • Zhou, Z.H., Ensemble learning. Encyclop. Biomet., 2015, 411–416.
    • (2015) Encyclop. Biomet. , pp. 411-416
    • Zhou, Z.H.1
  • 34
    • 85028721958 scopus 로고    scopus 로고
    • Adam: A Method for Stochastic Optimization, 2014, Also Available at: arXiv preprint arXiv:1412.6980.
    • D. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, 2014, Also Available at: arXiv preprint arXiv:1412.6980.
    • Kingma, D.1    Ba, J.2
  • 35
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • Lou, X., Loparo, K.A., Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal Process. 18:5 (2004), 1077–1095.
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.5 , pp. 1077-1095
    • Lou, X.1    Loparo, K.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.