-
1
-
-
84929376682
-
A survey of fault diagnosis and fault-tolerant techniques—Part I: fault diagnosis with model-based and signal-based approaches
-
Gao, Z., Cecati, C., Ding, S.X., A survey of fault diagnosis and fault-tolerant techniques—Part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62:6 (2015), 3757–3767.
-
(2015)
IEEE Trans. Ind. Electron.
, vol.62
, Issue.6
, pp. 3757-3767
-
-
Gao, Z.1
Cecati, C.2
Ding, S.X.3
-
2
-
-
84890044969
-
Condition monitoring and fault diagnosis of planetary gearboxes: a review
-
Lei, Y., Lin, J., Zuo, M.J., He, Z., Condition monitoring and fault diagnosis of planetary gearboxes: a review. Measurement 48 (2014), 292–305.
-
(2014)
Measurement
, vol.48
, pp. 292-305
-
-
Lei, Y.1
Lin, J.2
Zuo, M.J.3
He, Z.4
-
3
-
-
0035475725
-
An intelligent online machine fault diagnosis system
-
Fong, A.C.M., Hui, S.C., An intelligent online machine fault diagnosis system. Comput. Control Eng. J. 12:5 (2001), 217–223.
-
(2001)
Comput. Control Eng. J.
, vol.12
, Issue.5
, pp. 217-223
-
-
Fong, A.C.M.1
Hui, S.C.2
-
4
-
-
0034297837
-
Neural-network-based motor rolling bearing fault diagnosis
-
Li, B., Chow, M.Y., Tipsuwan, Y., Hung, J.C., Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 47:5 (2000), 1060–1069.
-
(2000)
IEEE Trans. Ind. Electron.
, vol.47
, Issue.5
, pp. 1060-1069
-
-
Li, B.1
Chow, M.Y.2
Tipsuwan, Y.3
Hung, J.C.4
-
5
-
-
84870442060
-
Roller element bearing fault diagnosis using singular spectrum analysis
-
Muruganatham, B., Sanjith, M.A., Krishnakumar, B., Murty, S.S., Roller element bearing fault diagnosis using singular spectrum analysis. Mech. Syst. Signal Process. 35:1 (2013), 150–166.
-
(2013)
Mech. Syst. Signal Process.
, vol.35
, Issue.1
, pp. 150-166
-
-
Muruganatham, B.1
Sanjith, M.A.2
Krishnakumar, B.3
Murty, S.S.4
-
6
-
-
85028717061
-
-
Convolutional-Recursive Deep Learning for 3D Object Classification, In NIPS, vol. 3, No. 7, 2012, December, p. 8.
-
R. Socher, B. Huval, B.P. Bath, C.D. Manning, A.Y. Ng, Convolutional-Recursive Deep Learning for 3D Object Classification, In NIPS, vol. 3, No. 7, 2012, December, p. 8.
-
-
-
Socher, R.1
Huval, B.2
Bath, B.P.3
Manning, C.D.4
Ng, A.Y.5
-
7
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521:7553 (2015), 436–444.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
8
-
-
84890491198
-
Recent advances in deep learning for speech research at Microsoft
-
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013 May, pp. 8604-8608, IEEE.
-
L. Deng, J. Li, J.T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams, Y. Gong, Recent advances in deep learning for speech research at Microsoft, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013 May, pp. 8604-8608, IEEE.
-
(2013)
-
-
Deng, L.1
Li, J.2
Huang, J.T.3
Yao, K.4
Yu, D.5
Seide, F.6
Seltzer, M.7
Zweig, G.8
He, X.9
Williams, J.10
Gong, Y.11
-
9
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
-
Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B., Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Magaz. 29:6 (2012), 82–97.
-
(2012)
IEEE Signal Process. Magaz.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.R.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
Kingsbury, B.11
-
10
-
-
84982792319
-
Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
-
Lu, C., Wang, Z.Y., Qin, W.L., Ma, J., Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Process. 130 (2017), 377–388.
-
(2017)
Signal Process.
, vol.130
, pp. 377-388
-
-
Lu, C.1
Wang, Z.Y.2
Qin, W.L.3
Ma, J.4
-
11
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
Jia, F., Lei, Y., Lin, J., Zhou, X., Lu, N., Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72 (2016), 303–315.
-
(2016)
Mech. Syst. Signal Process.
, vol.72
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
12
-
-
84978805885
-
Fault diagnosis of hydraulic pump based on stacked autoencoders
-
12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), vol. 1, 2015, July, pp. 58–62, IEEE.
-
Z. Huijie, R. Ting, W. Xinqing, Z. You, F. Husheng, Fault diagnosis of hydraulic pump based on stacked autoencoders, in: 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), vol. 1, 2015, July, pp. 58–62, IEEE.
-
(2015)
-
-
Huijie, Z.1
Ting, R.2
Xinqing, W.3
You, Z.4
Husheng, F.5
-
13
-
-
84962118969
-
Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring
-
Guo, L., Gao, H., Huang, H., He, X., Li, S., Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring. Shock Vib., 2016.
-
(2016)
Shock Vib.
-
-
Guo, L.1
Gao, H.2
Huang, H.3
He, X.4
Li, S.5
-
14
-
-
84888870402
-
Intelligent condition based monitoring of rotating machines using sparse auto-encoders
-
IEEE Conference on Prognostics and Health Management (PHM), 2013, June, pp. 1–7, IEEE.
-
N.K. Verma, V.K. Gupta, M. Sharma, R.K. Sevakula, Intelligent condition based monitoring of rotating machines using sparse auto-encoders, in: 2013 IEEE Conference on Prognostics and Health Management (PHM), 2013, June, pp. 1–7, IEEE.
-
(2013)
-
-
Verma, N.K.1
Gupta, V.K.2
Sharma, M.3
Sevakula, R.K.4
-
15
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
16
-
-
85028715280
-
-
Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014 Also available at: arXiv preprint arXiv:1409.1556.
-
K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014 Also available at: arXiv preprint arXiv:1409.1556.
-
-
-
Simonyan, K.1
Zisserman, A.2
-
17
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
85028728599
-
-
Inception-v4, Inception-Resnet And The Impact of Residual Connections On Learning, 2016, Also available at: arXiv preprint arXiv:1602.07261.
-
C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, Inception-Resnet And The Impact of Residual Connections On Learning, 2016, Also available at: arXiv preprint arXiv:1602.07261.
-
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
Alemi, A.4
-
19
-
-
84973470244
-
Convolutional neural network based fault detection for rotating machinery
-
Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S., Van de Walle, R., Van Hoecke, S., Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 377 (2016), 331–345.
-
(2016)
J. Sound Vib.
, vol.377
, pp. 331-345
-
-
Janssens, O.1
Slavkovikj, V.2
Vervisch, B.3
Stockman, K.4
Loccufier, M.5
Verstockt, S.6
Van de Walle, R.7
Van Hoecke, S.8
-
20
-
-
84997079451
-
Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
-
Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J., Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388 (2017), 154–170.
-
(2017)
J. Sound Vib.
, vol.388
, pp. 154-170
-
-
Abdeljaber, O.1
Avci, O.2
Kiranyaz, S.3
Gabbouj, M.4
Inman, D.J.5
-
21
-
-
85013858722
-
A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals
-
Zhang, W., Peng, G., Li, C., Chen, Y., Zhang, Z., A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors, 17(2), 2017, 425.
-
(2017)
Sensors
, vol.17
, Issue.2
, pp. 425
-
-
Zhang, W.1
Peng, G.2
Li, C.3
Chen, Y.4
Zhang, Z.5
-
22
-
-
84955504842
-
Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
-
Gan, M., Wang, C., Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 72 (2016), 92–104.
-
(2016)
Mech. Syst. Signal Process.
, vol.72
, pp. 92-104
-
-
Gan, M.1
Wang, C.2
-
23
-
-
84975124887
-
Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning
-
Li, C., Sánchez, R.V., Zurita, G., Cerrada, M., Cabrera, D., Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning. Sensors, 16(6), 2016, 895.
-
(2016)
Sensors
, vol.16
, Issue.6
, pp. 895
-
-
Li, C.1
Sánchez, R.V.2
Zurita, G.3
Cerrada, M.4
Cabrera, D.5
-
24
-
-
85028695601
-
-
Deep Learning Using Linear Support Vector Machines, 2013, Also Available at: arXiv preprint arXiv:1306.0239.
-
Y. Tang, Deep Learning Using Linear Support Vector Machines, 2013, Also Available at: arXiv preprint arXiv:1306.0239.
-
-
-
Tang, Y.1
-
25
-
-
84966312391
-
Bearing fault diagnosis based on svd feature extraction and transfer learning classification
-
Prognostics and System Health Management Conference (PHM), 2015, 2015, October, pp. 1–6, IEEE.
-
F. Shen, C. Chen, R. Yan, R.X. Gao, Bearing fault diagnosis based on svd feature extraction and transfer learning classification, in: Prognostics and System Health Management Conference (PHM), 2015, 2015, October, pp. 1–6, IEEE.
-
-
-
Shen, F.1
Chen, C.2
Yan, R.3
Gao, R.X.4
-
26
-
-
85049474688
-
Deep model based domain adaptation for fault diagnosis
-
Lu, W., Liang, B., Cheng, Y., Meng, D., Yang, J., Zhang, T., Deep model based domain adaptation for fault diagnosis. IEEE Trans. Ind. Electron., 2016.
-
(2016)
IEEE Trans. Ind. Electron.
-
-
Lu, W.1
Liang, B.2
Cheng, Y.3
Meng, D.4
Yang, J.5
Zhang, T.6
-
27
-
-
84919933755
-
Vibration spectrum imaging: A novel bearing fault classification approach
-
Amar, M., Gondal, I., Wilson, C., Vibration spectrum imaging: A novel bearing fault classification approach. IEEE Trans. Ind. Electron. 62:1 (2015), 494–502.
-
(2015)
IEEE Trans. Ind. Electron.
, vol.62
, Issue.1
, pp. 494-502
-
-
Amar, M.1
Gondal, I.2
Wilson, C.3
-
28
-
-
84992499952
-
Merging kalman filtering and zonotopic state bounding for robust fault detection under noisy environment
-
Combastel, C., Merging kalman filtering and zonotopic state bounding for robust fault detection under noisy environment. IFAC-PapersOnLine 48:21 (2015), 289–295.
-
(2015)
IFAC-PapersOnLine
, vol.48
, Issue.21
, pp. 289-295
-
-
Combastel, C.1
-
29
-
-
85028734842
-
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015, Also Available at: arXiv preprint arXiv:1502.03167.
-
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015, Also Available at: arXiv preprint arXiv:1502.03167.
-
-
-
Ioffe, S.1
Szegedy, C.2
-
30
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:1 (2014), 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
31
-
-
85028714057
-
-
On Large-Batch Training For Deep Learning: Generalization Gap and Sharp Minima, 2016, Also Available at: arXiv preprint arXiv:1609.04836.
-
N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P.T.P. Tang, On Large-Batch Training For Deep Learning: Generalization Gap and Sharp Minima, 2016, Also Available at: arXiv preprint arXiv:1609.04836.
-
-
-
Keskar, N.S.1
Mudigere, D.2
Nocedal, J.3
Smelyanskiy, M.4
Tang, P.T.P.5
-
32
-
-
85028727137
-
-
Revisiting Batch Normalization For Practical Domain Adaptation, 2016, Also Available at: arXiv preprint arXiv:1603.04779.
-
Y. Li, N. Wang, J. Shi, J. Liu, X. Hou, Revisiting Batch Normalization For Practical Domain Adaptation, 2016, Also Available at: arXiv preprint arXiv:1603.04779.
-
-
-
Li, Y.1
Wang, N.2
Shi, J.3
Liu, J.4
Hou, X.5
-
33
-
-
70350346030
-
Ensemble learning
-
Zhou, Z.H., Ensemble learning. Encyclop. Biomet., 2015, 411–416.
-
(2015)
Encyclop. Biomet.
, pp. 411-416
-
-
Zhou, Z.H.1
-
34
-
-
85028721958
-
-
Adam: A Method for Stochastic Optimization, 2014, Also Available at: arXiv preprint arXiv:1412.6980.
-
D. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, 2014, Also Available at: arXiv preprint arXiv:1412.6980.
-
-
-
Kingma, D.1
Ba, J.2
-
35
-
-
2942525326
-
Bearing fault diagnosis based on wavelet transform and fuzzy inference
-
Lou, X., Loparo, K.A., Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal Process. 18:5 (2004), 1077–1095.
-
(2004)
Mech. Syst. Signal Process.
, vol.18
, Issue.5
, pp. 1077-1095
-
-
Lou, X.1
Loparo, K.A.2
-
36
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
|