-
1
-
-
0001578518
-
A learning algorithm for Boltzmann machines
-
[1] Ackley, D.H., Hinton, G.E., Sejnowski, T.J., A learning algorithm for Boltzmann machines. Cogn. Sci. 9 (1985), 147–169.
-
(1985)
Cogn. Sci.
, vol.9
, pp. 147-169
-
-
Ackley, D.H.1
Hinton, G.E.2
Sejnowski, T.J.3
-
2
-
-
84894439375
-
Fast decorrelated neural network ensembles with random weights
-
[2] Alhamdoosh, M., Wang, D., Fast decorrelated neural network ensembles with random weights. Inf. Sci. 264 (2014), 104–117.
-
(2014)
Inf. Sci.
, vol.264
, pp. 104-117
-
-
Alhamdoosh, M.1
Wang, D.2
-
3
-
-
67651049775
-
Justifying and generalizing contrastive divergence
-
[3] Bengio, Y., Delalleau, O., Justifying and generalizing contrastive divergence. Neural Comput. 21:6 (2009), 1601–1621.
-
(2009)
Neural Comput.
, vol.21
, Issue.6
, pp. 1601-1621
-
-
Bengio, Y.1
Delalleau, O.2
-
4
-
-
84857855190
-
Random search for hyper-parameter optimization
-
[4] Bergstra, J., Bengio, Y., Random search for hyper-parameter optimization. J. Mach. Learn. Res., 2011, 281–305.
-
(2011)
J. Mach. Learn. Res.
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
5
-
-
70349505264
-
-
4th edition Wiley
-
[5] Box, G., Jenkins, G., Reinsel, G., Time Series Analysis: Forecasting and Control, 4th edition, 2008, Wiley.
-
(2008)
Time Series Analysis: Forecasting and Control
-
-
Box, G.1
Jenkins, G.2
Reinsel, G.3
-
6
-
-
84875891731
-
Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits
-
[6] Chakrabartty, S., Shaga, R.K., Aono, K., Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits. IEEE Trans. Neural Netw. Learn. Syst. 24:4 (2013), 554–565.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, Issue.4
, pp. 554-565
-
-
Chakrabartty, S.1
Shaga, R.K.2
Aono, K.3
-
7
-
-
77957577961
-
Fixed-size LS-SVM applied to the Wiener–Hammerstein benchmark
-
[7] De Brabanter, K., Dreesen, P., Karsmakers, P., Pelckmans, K., De Brabanter, J., Suykens, J.A.K., De Moor, B., Fixed-size LS-SVM applied to the Wiener–Hammerstein benchmark. Proceedings of the 15th IFAC Symposium on System Identification, 2009, 826–831.
-
(2009)
Proceedings of the 15th IFAC Symposium on System Identification
, pp. 826-831
-
-
De Brabanter, K.1
Dreesen, P.2
Karsmakers, P.3
Pelckmans, K.4
De Brabanter, J.5
Suykens, J.A.K.6
De Moor, B.7
-
8
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
[8] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Why does unsupervised pre-training help deep learning?. J. Mach. Learn. Res. 11 (2010), 625–660.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.A.4
Vincent, P.5
-
10
-
-
84965379669
-
Learning and relearning in Boltzmann machines
-
MIT Press Cambridge, MA
-
[10] Hinton, G.E., Sejnowski, T.J., Learning and relearning in Boltzmann machines. Parallel Distributed Processing : Explorations in the Microstructure of Cognition, vol. 1, 1986, MIT Press, Cambridge, MA, 282–317.
-
(1986)
Parallel Distributed Processing, : Explorations in the Microstructure of Cognition
, vol.1
, pp. 282-317
-
-
Hinton, G.E.1
Sejnowski, T.J.2
-
11
-
-
84866791477
-
System identification: a Wiener–Hammerstein benchmark
-
[11] Hjalmarsson, H., Rojas, C.R., Rivera, D.E., System identification: a Wiener–Hammerstein benchmark. Control Eng. Pract. 20 (2012), 1095–1096.
-
(2012)
Control Eng. Pract.
, vol.20
, pp. 1095-1096
-
-
Hjalmarsson, H.1
Rojas, C.R.2
Rivera, D.E.3
-
12
-
-
0029403793
-
Stochastic choice of basis functions in adaptive function approximation and the functional-link net
-
[12] Igelnik, B., Pao, Y.-H., Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans. Neural Netw. 6:2 (1995), 1320–1329.
-
(1995)
IEEE Trans. Neural Netw.
, vol.6
, Issue.2
, pp. 1320-1329
-
-
Igelnik, B.1
Pao, Y.-H.2
-
13
-
-
0030410676
-
Identification of nonlinear dynamical systems using multilayered neural networks
-
[13] Jagannathan, S., Lewis, F.L., Identification of nonlinear dynamical systems using multilayered neural networks. Automatica 32:12 (1996), 1707–1712.
-
(1996)
Automatica
, vol.32
, Issue.12
, pp. 1707-1712
-
-
Jagannathan, S.1
Lewis, F.L.2
-
14
-
-
0027601884
-
ANFIS: Adaptive-network-based fuzzy inference system
-
[14] Jang, J.S., ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23 (1993), 665–685.
-
(1993)
IEEE Trans. Syst. Man Cybern.
, vol.23
, pp. 665-685
-
-
Jang, J.S.1
-
15
-
-
0037276988
-
Tuning of the structure and parameters of a neural network using an improved genetic algorithm
-
[15] Leung, F.H.F., Lam, H.K., Ling, S.H., Tam, P.K.S., Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans. Neural Netw. 14 (2003), 79–88.
-
(2003)
IEEE Trans. Neural Netw.
, vol.14
, pp. 79-88
-
-
Leung, F.H.F.1
Lam, H.K.2
Ling, S.H.3
Tam, P.K.S.4
-
16
-
-
84913556325
-
Hybrid manifold embedding
-
[16] Liu, Y., Chan, K., Hua, K.A., Hybrid manifold embedding. IEEE Trans. Neural Netw. Learn. Syst. 25:12 (2014), 2295–2302.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.25
, Issue.12
, pp. 2295-2302
-
-
Liu, Y.1
Chan, K.2
Hua, K.A.3
-
17
-
-
0000169232
-
An algorithm for least-squares estimation of nonlinear parameters
-
[17] Marquardt, D., An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11:2 (1963), 431–441.
-
(1963)
SIAM J. Appl. Math.
, vol.11
, Issue.2
, pp. 431-441
-
-
Marquardt, D.1
-
18
-
-
0034187785
-
Neuro-fuzzy rule generation: survey in soft computing framework
-
[18] Mitra, S., Hayashi, Y., Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Trans. Neural Netw. 11:3 (2000), 748–769.
-
(2000)
IEEE Trans. Neural Netw.
, vol.11
, Issue.3
, pp. 748-769
-
-
Mitra, S.1
Hayashi, Y.2
-
19
-
-
0026117466
-
Gradient methods for optimization of dynamical systems containing neural networks
-
[19] Narendra, K.S., Parthasarathy, K., Gradient methods for optimization of dynamical systems containing neural networks. IEEE Trans. Neural Netw. 3:2 (1991), 252–262.
-
(1991)
IEEE Trans. Neural Netw.
, vol.3
, Issue.2
, pp. 252-262
-
-
Narendra, K.S.1
Parthasarathy, K.2
-
20
-
-
0042525842
-
Neural-network construction and selection in nonlinear modeling
-
[20] Rivals, I., Personnaz, L., Neural-network construction and selection in nonlinear modeling. IEEE Trans. Neural Netw. 14:4 (2003), 804–820.
-
(2003)
IEEE Trans. Neural Netw.
, vol.14
, Issue.4
, pp. 804-820
-
-
Rivals, I.1
Personnaz, L.2
-
21
-
-
85051374302
-
Feedforward neural networks with random weights
-
The Hague, Netherlands
-
[21] Schmidt, W.F., Kraaijveld, M.A., Duin, R.P.W., Feedforward neural networks with random weights. Proceedings of the 11th IAPR International Conference on Pattern Recognition, 1992, The Hague, Netherlands, 1–4.
-
(1992)
Proceedings of the 11th IAPR International Conference on Pattern Recognition
, pp. 1-4
-
-
Schmidt, W.F.1
Kraaijveld, M.A.2
Duin, R.P.W.3
-
22
-
-
84874149987
-
Wiener–Hammerstein benchmark
-
Saint-Malo, France
-
[22] Schoukens, J., Suykens, J., Ljung, L., Wiener–Hammerstein benchmark. Proceedings of the 15th IFAC Symposium on System Identification, 2009, Saint-Malo, France.
-
(2009)
Proceedings of the 15th IFAC Symposium on System Identification
-
-
Schoukens, J.1
Suykens, J.2
Ljung, L.3
-
23
-
-
83655163812
-
Robust initialization of a Jordan network with recurrent constrained learning
-
[23] Song, Q., Robust initialization of a Jordan network with recurrent constrained learning. IEEE Trans. Neural Netw. 22:12 (2011), 2460–2473.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.12
, pp. 2460-2473
-
-
Song, Q.1
-
24
-
-
0027544110
-
A fuzzy logic based approach to qualitative modeling
-
[24] Sugeno, M., Yasukawa, T., A fuzzy logic based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1:1 (1993), 7–31.
-
(1993)
IEEE Trans. Fuzzy Syst.
, vol.1
, Issue.1
, pp. 7-31
-
-
Sugeno, M.1
Yasukawa, T.2
-
25
-
-
84880787590
-
Learning the pseudoinverse solution to network weights
-
[25] J. Tapson, A. van Schaik, Learning the pseudoinverse solution to network weights, Neural Netw. 45 (2013) 94–100.
-
(2013)
Neural Netw.
, vol.45
, pp. 94-100
-
-
Tapson, J.1
van Schaik, A.2
-
26
-
-
0030087291
-
Complex systems modeling via fuzzy logic
-
[26] Wang, L., Langari, R., Complex systems modeling via fuzzy logic. IEEE Trans. Syst. Man Cybern. 26:1 (1996), 100–106.
-
(1996)
IEEE Trans. Syst. Man Cybern.
, vol.26
, Issue.1
, pp. 100-106
-
-
Wang, L.1
Langari, R.2
-
27
-
-
77958067568
-
Automated nonlinear system modeling with multiple fuzzy neural networks and kernel smoothing
-
[27] Yu, W., Li, X., Automated nonlinear system modeling with multiple fuzzy neural networks and kernel smoothing. Int. J. Neural Syst. 20:5 (2010), 429–435.
-
(2010)
Int. J. Neural Syst.
, vol.20
, Issue.5
, pp. 429-435
-
-
Yu, W.1
Li, X.2
|