메뉴 건너뛰기




Volumn 76-77, Issue , 2016, Pages 283-293

Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals

Author keywords

Acoustic emission; Data fusion; Deep learning; Gearbox; Vibration signal

Indexed keywords

ACOUSTIC EMISSION TESTING; ACOUSTIC EMISSIONS; COMPUTER AIDED DIAGNOSIS; DATA FUSION; DATABASE SYSTEMS; DECISION TREES; FAILURE ANALYSIS; GEARS; PACKET NETWORKS;

EID: 84963864627     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2016.02.007     Document Type: Article
Times cited : (425)

References (39)
  • 1
    • 84925386908 scopus 로고    scopus 로고
    • Context awareness for maintenance decision making: A diagnosis and prognosis approach
    • D. Galar, A. Thaduri, M. Catelani, and L. Ciani Context awareness for maintenance decision making: a diagnosis and prognosis approach Measurement 67 2015 137 150
    • (2015) Measurement , vol.67 , pp. 137-150
    • Galar, D.1    Thaduri, A.2    Catelani, M.3    Ciani, L.4
  • 2
    • 84922250446 scopus 로고    scopus 로고
    • Two new features for condition monitoring and fault diagnosis of planetary gearboxes
    • Y. Lei, N. Li, and J. Lin Two new features for condition monitoring and fault diagnosis of planetary gearboxes J. Vib. Control 21 2015 755 764
    • (2015) J. Vib. Control , vol.21 , pp. 755-764
    • Lei, Y.1    Li, N.2    Lin, J.3
  • 3
    • 84871645990 scopus 로고    scopus 로고
    • Application of a near-field acoustic holography-based diagnosis technique in gearbox fault diagnosis
    • J.J. Hou, W.K. Jiang, and W.B. Lu Application of a near-field acoustic holography-based diagnosis technique in gearbox fault diagnosis J. Vib. Control 19 2013 3 13
    • (2013) J. Vib. Control , vol.19 , pp. 3-13
    • Hou, J.J.1    Jiang, W.K.2    Lu, W.B.3
  • 4
    • 80054911915 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rotating machinery using infrared thermal image
    • A.M.D. Younus, and B.S. Yang Intelligent fault diagnosis of rotating machinery using infrared thermal image Expert Syst. Appl. 39 2012 2082 2091
    • (2012) Expert Syst. Appl. , vol.39 , pp. 2082-2091
    • Younus, A.M.D.1    Yang, B.S.2
  • 5
    • 84878288252 scopus 로고    scopus 로고
    • Condition monitoring of gearboxes using synchronously averaged electric motor signals
    • J.R. Ottewill, and M. Orkisz Condition monitoring of gearboxes using synchronously averaged electric motor signals Mech. Syst. Signal Process. 38 2013 482 498
    • (2013) Mech. Syst. Signal Process. , vol.38 , pp. 482-498
    • Ottewill, J.R.1    Orkisz, M.2
  • 6
    • 79960864184 scopus 로고    scopus 로고
    • Extraction of oil debris signature using integral enhanced empirical mode decomposition and correlated reconstruction
    • C. Li, and M. Liang Extraction of oil debris signature using integral enhanced empirical mode decomposition and correlated reconstruction Meas. Sci. Technol. 22 2011 085701
    • (2011) Meas. Sci. Technol. , vol.22 , pp. 085701
    • Li, C.1    Liang, M.2
  • 7
    • 84862540801 scopus 로고    scopus 로고
    • An order tracking technique for the gear fault diagnosis using local mean decomposition method
    • J. Cheng, K. Zhang, and Y. Yang An order tracking technique for the gear fault diagnosis using local mean decomposition method Mech. Mach. Theory 55 2012 67 76
    • (2012) Mech. Mach. Theory , vol.55 , pp. 67-76
    • Cheng, J.1    Zhang, K.2    Yang, Y.3
  • 8
    • 67349227757 scopus 로고    scopus 로고
    • Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition
    • D. Wang, Q. Miao, and R. Kang Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition J. Sound Vib. 324 2009 1141 1157
    • (2009) J. Sound Vib. , vol.324 , pp. 1141-1157
    • Wang, D.1    Miao, Q.2    Kang, R.3
  • 9
    • 84859884263 scopus 로고    scopus 로고
    • Fault detection of planetary gearboxes using new diagnostic parameters
    • Y. Lei, D. Kong, J. Lin, and M.J. Zuo Fault detection of planetary gearboxes using new diagnostic parameters Meas. Sci. Technol. 23 2012 055605
    • (2012) Meas. Sci. Technol. , vol.23 , pp. 055605
    • Lei, Y.1    Kong, D.2    Lin, J.3    Zuo, M.J.4
  • 10
    • 84880319056 scopus 로고    scopus 로고
    • Gear fault detection using adaptive morphological gradient lifting wavelet
    • B. Li, P.L. Zhang, Q. Mao, S.S. Mi, and P.Y. Liu Gear fault detection using adaptive morphological gradient lifting wavelet J. Vib. Control 19 2013 1646 1657
    • (2013) J. Vib. Control , vol.19 , pp. 1646-1657
    • Li, B.1    Zhang, P.L.2    Mao, Q.3    Mi, S.S.4    Liu, P.Y.5
  • 12
    • 84891817327 scopus 로고    scopus 로고
    • Investigation of the influence of oil film thickness on helical gear defect detection using Acoustic Emission
    • M. Hamel, A. Addali, and D. Mba Investigation of the influence of oil film thickness on helical gear defect detection using Acoustic Emission Appl. Acoust. 79 2014 42 46
    • (2014) Appl. Acoust. , vol.79 , pp. 42-46
    • Hamel, M.1    Addali, A.2    Mba, D.3
  • 13
    • 84878125777 scopus 로고    scopus 로고
    • Discrete wavelet transform and artificial neural network for gearbox fault detection based on acoustic signals
    • M.R.A.A. Abad, H. Ahmadi, A. Moosavian, M. Khazaee, M.R. Kohan, and M. Mohammadi Discrete wavelet transform and artificial neural network for gearbox fault detection based on acoustic signals J. Vibroeng. 15 2013 459 463
    • (2013) J. Vibroeng. , vol.15 , pp. 459-463
    • Abad, M.R.A.A.1    Ahmadi, H.2    Moosavian, A.3    Khazaee, M.4    Kohan, M.R.5    Mohammadi, M.6
  • 14
    • 84907016382 scopus 로고    scopus 로고
    • Detection of gearbox failures by combined acoustic emission and vibration sensing in rotating machinery
    • S. Rafael, A. Romero, S. Soua, T.H. Gan, J. Neasham, and G. Goodfellow Detection of gearbox failures by combined acoustic emission and vibration sensing in rotating machinery Insight 56 2014 422 425
    • (2014) Insight , vol.56 , pp. 422-425
    • Rafael, S.1    Romero, A.2    Soua, S.3    Gan, T.H.4    Neasham, J.5    Goodfellow, G.6
  • 15
    • 84920561426 scopus 로고    scopus 로고
    • Investigation on fault detection for split torque gearbox using acoustic emission and vibration signals
    • San Diego, CA, USA
    • R.Y. Li, D. He, E. Bechhoefer, Investigation on fault detection for split torque gearbox using acoustic emission and vibration signals, in: Annual Conference of the Prognostics and Health Management Society, San Diego, CA, USA, 2009, pp. 1-11.
    • (2009) Annual Conference of the Prognostics and Health Management Society , pp. 1-11
    • Li, R.Y.1    He, D.2    Bechhoefer, E.3
  • 16
    • 84867625999 scopus 로고    scopus 로고
    • Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring
    • S. Soua, P.V. Lieshout, A. Perera, T.H. Gan, and B. Bridge Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring Renew. Energy 51 2013 175 181
    • (2013) Renew. Energy , vol.51 , pp. 175-181
    • Soua, S.1    Lieshout, P.V.2    Perera, A.3    Gan, T.H.4    Bridge, B.5
  • 17
    • 84975689739 scopus 로고    scopus 로고
    • Classifier fusion of vibration and acoustic signals for fault diagnosis and classification of planetary gears based on Dempster-Shafer evidence theory
    • M. Khazaee, H. Ahmadi, M. Omid, A. Moosavian, and M. Khazaee Classifier fusion of vibration and acoustic signals for fault diagnosis and classification of planetary gears based on Dempster-Shafer evidence theory Proc. Inst. Mech. Eng. E - J. Process Mech. Eng. 228 2014 21 32
    • (2014) Proc. Inst. Mech. Eng. e - J. Process Mech. Eng. , vol.228 , pp. 21-32
    • Khazaee, M.1    Ahmadi, H.2    Omid, M.3    Moosavian, A.4    Khazaee, M.5
  • 18
    • 84866620291 scopus 로고    scopus 로고
    • Continuous-scale mathematical morphology-based optimal scale band demodulation of impulsive feature for bearing defect diagnosis
    • C. Li, and M. Liang Continuous-scale mathematical morphology-based optimal scale band demodulation of impulsive feature for bearing defect diagnosis J. Sound Vib. 331 2012 5864 5879
    • (2012) J. Sound Vib. , vol.331 , pp. 5864-5879
    • Li, C.1    Liang, M.2
  • 19
    • 38349013413 scopus 로고    scopus 로고
    • Indicators of cyclostationarity: Theory and application to gear fault monitoring
    • A. Raad, J. Antoni, and M. Sidahmed Indicators of cyclostationarity: theory and application to gear fault monitoring Mech. Syst. Signal Process. 22 2008 574 587
    • (2008) Mech. Syst. Signal Process. , vol.22 , pp. 574-587
    • Raad, A.1    Antoni, J.2    Sidahmed, M.3
  • 20
    • 84937813448 scopus 로고    scopus 로고
    • Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals
    • C. Li, M. Liang, and T. Wang Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals Mech. Syst. Signal Process. 64-65 2015 132 148
    • (2015) Mech. Syst. Signal Process. , vol.64-65 , pp. 132-148
    • Li, C.1    Liang, M.2    Wang, T.3
  • 21
    • 84870249587 scopus 로고    scopus 로고
    • A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm
    • F. Chen, B. Tang, and R. Chen A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm Measurement 46 2013 220 232
    • (2013) Measurement , vol.46 , pp. 220-232
    • Chen, F.1    Tang, B.2    Chen, R.3
  • 22
    • 80054980152 scopus 로고    scopus 로고
    • Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform
    • C. Li, and M. Liang Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform Mech. Syst. Signal Process. 26 1 2012 205 217
    • (2012) Mech. Syst. Signal Process. , vol.26 , Issue.1 , pp. 205-217
    • Li, C.1    Liang, M.2
  • 23
    • 84959493847 scopus 로고    scopus 로고
    • Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement
    • C. Li, V. Sanchez, G. Zurita, C.M. Lozada, and D. Cabrera Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement ISA Trans. 60 2016 274 284
    • (2016) ISA Trans. , vol.60 , pp. 274-284
    • Li, C.1    Sanchez, V.2    Zurita, G.3    Lozada, C.M.4    Cabrera, D.5
  • 24
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E. Hinton, and R.R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 2006 504 507
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 26
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • T.N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A. Mohamed, G. Dahl, and B. Ramabhadran Deep convolutional neural networks for multi-modality isointense infant brain image segmentation NeuroImage 108 2015 214 224
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Sainath, T.N.1    Kingsbury, B.2    Saon, G.3    Soltau, H.4    Mohamed, A.5    Dahl, G.6    Ramabhadran, B.7
  • 27
    • 84951879294 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models
    • Y. Bai, Z. Chen, J. Xie, and C. Li Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models J. Hydrol. 532 2016 193 206
    • (2016) J. Hydrol. , vol.532 , pp. 193-206
    • Bai, Y.1    Chen, Z.2    Xie, J.3    Li, C.4
  • 28
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
    • V.T. Tran, F.A. Thobiani, and A. Ball An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks Expert Syst. Appl. 41 2014 4113 4122
    • (2014) Expert Syst. Appl. , vol.41 , pp. 4113-4122
    • Tran, V.T.1    Thobiani, F.A.2    Ball, A.3
  • 29
    • 84944323318 scopus 로고    scopus 로고
    • Multi-layer neural network with deep belief network for gearbox fault diagnosis
    • Z. Chen, C. Li, and R.V. Sanchez Multi-layer neural network with deep belief network for gearbox fault diagnosis J. Vibroeng. 17 5 2015 2379 2392
    • (2015) J. Vibroeng. , vol.17 , Issue.5 , pp. 2379-2392
    • Chen, Z.1    Li, C.2    Sanchez, R.V.3
  • 30
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • P. Tamilselvan, and P. Wang Failure diagnosis using deep belief learning based health state classification Reliab. Eng. Syst. Saf. 115 2013 124 135
    • (2013) Reliab. Eng. Syst. Saf. , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 31
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: A review with applications
    • R. Yan, R.X. Gao, and X. Chen Wavelets for fault diagnosis of rotary machines: a review with applications Signal Process. 96 2014 1 15
    • (2014) Signal Process. , vol.96 , pp. 1-15
    • Yan, R.1    Gao, R.X.2    Chen, X.3
  • 32
    • 84937818415 scopus 로고    scopus 로고
    • Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
    • C. Li, R.V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R.E. Vásquez Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis Neurocomputing 168 2015 119 127
    • (2015) Neurocomputing , vol.168 , pp. 119-127
    • Li, C.1    Sanchez, R.V.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5    Vásquez, R.E.6
  • 33
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber Deep learning in neural networks: an overview Neural Netw. 61 2015 85 117
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 34
    • 84910597067 scopus 로고    scopus 로고
    • Learning deep and wide: A spectral method for learning deep networks
    • L. Shao, D. Wu, and X. Li Learning deep and wide: a spectral method for learning deep networks IEEE Trans. Neural Netw. Learn. Syst. 25 2014 2303 2308
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , pp. 2303-2308
    • Shao, L.1    Wu, D.2    Li, X.3
  • 35
    • 84896505268 scopus 로고    scopus 로고
    • Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms
    • D.J. Bordoloi, and R. Tiwari Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms Mech. Mach. Theory 73 2014 49 60
    • (2014) Mech. Mach. Theory , vol.73 , pp. 49-60
    • Bordoloi, D.J.1    Tiwari, R.2
  • 36
    • 79959342724 scopus 로고    scopus 로고
    • Improved learning of Gaussian-Bernoulli restricted Boltzmann machines
    • K. Cho, A. Ilin, and T. Raiko Improved learning of Gaussian-Bernoulli restricted Boltzmann machines Lect. Notes Comput. Sci. 6791 2011 10 17
    • (2011) Lect. Notes Comput. Sci. , vol.6791 , pp. 10-17
    • Cho, K.1    Ilin, A.2    Raiko, T.3
  • 38
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 2001 5 32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 39
    • 84874125782 scopus 로고    scopus 로고
    • An efficient learning procedure for deep Boltzmann machines
    • R. Salakhutdinov, and G. Hinton An efficient learning procedure for deep Boltzmann machines Neural Comput. 24 2012 1967 2006
    • (2012) Neural Comput. , vol.24 , pp. 1967-2006
    • Salakhutdinov, R.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.