메뉴 건너뛰기




Volumn 108, Issue , 2018, Pages 33-47

Artificial intelligence for fault diagnosis of rotating machinery: A review

Author keywords

Artificial intelligence; Artificial neural network; Deep learning; Fault diagnosis; k Nearest neighbour; Naive Bayes; Rotating machinery; Support vector machine

Indexed keywords

ACCIDENT PREVENTION; ARTIFICIAL INTELLIGENCE; CLASSIFIERS; DEEP LEARNING; FAILURE ANALYSIS; MACHINERY; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; ROTATING MACHINERY; SUPPORT VECTOR MACHINES;

EID: 85042943940     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2018.02.016     Document Type: Review
Times cited : (1715)

References (110)
  • 1
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • Jardine, A.K., Lin, D., Banjevic, D., A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Sign. Process. 20:7 (2006), 1483–1510.
    • (2006) Mech. Syst. Sign. Process. , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.1    Lin, D.2    Banjevic, D.3
  • 2
    • 4344678288 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearings using basis pursuit
    • Yang, H., Mathew, J., Ma, L., Fault diagnosis of rolling element bearings using basis pursuit. Mech. Syst. Sign. Process. 19:2 (2005), 341–356.
    • (2005) Mech. Syst. Sign. Process. , vol.19 , Issue.2 , pp. 341-356
    • Yang, H.1    Mathew, J.2    Ma, L.3
  • 3
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 4
    • 84960946676 scopus 로고    scopus 로고
    • K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: revisited
    • Wang, D., K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: revisited. Mech. Syst. Sign. Process. 70 (2016), 201–208.
    • (2016) Mech. Syst. Sign. Process. , vol.70 , pp. 201-208
    • Wang, D.1
  • 5
    • 84923230928 scopus 로고    scopus 로고
    • Comparing the treatment of uncertainty in bayesian networks and fuzzy expert systems used for a human reliability analysis application
    • Baraldi, P., Podofillini, L., Mkrtchyan, L., Zio, E., Dang, V.N., Comparing the treatment of uncertainty in bayesian networks and fuzzy expert systems used for a human reliability analysis application. Reliab. Eng. Syst. Saf. 138 (2015), 176–193.
    • (2015) Reliab. Eng. Syst. Saf. , vol.138 , pp. 176-193
    • Baraldi, P.1    Podofillini, L.2    Mkrtchyan, L.3    Zio, E.4    Dang, V.N.5
  • 6
    • 0003450542 scopus 로고    scopus 로고
    • The Nature of Statistical Learning Theory
    • Springer Science & Business Media
    • Vapnik, V., The Nature of Statistical Learning Theory. 2013, Springer Science & Business Media.
    • (2013)
    • Vapnik, V.1
  • 8
    • 85042923932 scopus 로고    scopus 로고
    • An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data.
    • Y. Lei, F. Jia, J. Lin, S. Xing, S. Ding, An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data.
    • Lei, Y.1    Jia, F.2    Lin, J.3    Xing, S.4    Ding, S.5
  • 9
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover, T., Hart, P., Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 13:1 (1967), 21–27.
    • (1967) IEEE Trans. Inform. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 10
    • 85042926546 scopus 로고    scopus 로고
    • Supervised Machine Learning: A Review of Classification Techniques;
    • S.B. Kotsiantis, I. Zaharakis, P. Pintelas, Supervised Machine Learning: A Review of Classification Techniques; 2007.
    • (2007)
    • Kotsiantis, S.B.1    Zaharakis, I.2    Pintelas, P.3
  • 11
    • 85042915817 scopus 로고    scopus 로고
    • Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression; 2005. Manuscript available at <>.
    • T. Mitchell, Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression; 2005. Manuscript available at < http://www.cs.cm.edu/∼tom/NewChapters.html>.
    • Mitchell, T.1
  • 12
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • Widodo, A., Yang, B.-S., Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Sign. Process. 21:6 (2007), 2560–2574.
    • (2007) Mech. Syst. Sign. Process. , vol.21 , Issue.6 , pp. 2560-2574
    • Widodo, A.1    Yang, B.-S.2
  • 13
    • 0003798635 scopus 로고    scopus 로고
    • An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
    • Cambridge University Press
    • Cristianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. 2000, Cambridge University Press.
    • (2000)
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 14
    • 0004094721 scopus 로고    scopus 로고
    • Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
    • MIT Press
    • Scholkopf, B., Smola, A.J., Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. 2001, MIT Press.
    • (2001)
    • Scholkopf, B.1    Smola, A.J.2
  • 15
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • Bengio, Y., Learning deep architectures for ai. Found. Trends®Mach. Learn. 2:1 (2009), 1–127.
    • (2009) Found. Trends®Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 16
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 17
    • 84955504842 scopus 로고    scopus 로고
    • Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
    • Gan, M., Wang, C., et al. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Sign. Process. 72 (2016), 92–104.
    • (2016) Mech. Syst. Sign. Process. , vol.72 , pp. 92-104
    • Gan, M.1    Wang, C.2
  • 18
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18:7 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 20
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model, in: Advances in Neural Information Processing Systems
    • C. Poultney, S. Chopra, Y.L. Cun, et al., Efficient learning of sparse representations with an energy-based model, in: Advances in Neural Information Processing Systems, 2006, pp. 1137–1144.
    • (2006) , pp. 1137-1144
    • Poultney, C.1    Chopra, S.2    Cun, Y.L.3
  • 21
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521:7553 (2015), 436–444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 22
    • 85020626243 scopus 로고    scopus 로고
    • Dislocated time series convolutional neural architecture: an intelligent fault diagnosis approach for electric machine
    • Liu, R., Meng, G., Yang, B., Sun, C., Chen, X., Dislocated time series convolutional neural architecture: an intelligent fault diagnosis approach for electric machine. IEEE Trans. Ind. Infor. 13:3 (2017), 1310–1320, 10.1109/TII.2016.2645238.
    • (2017) IEEE Trans. Ind. Infor. , vol.13 , Issue.3 , pp. 1310-1320
    • Liu, R.1    Meng, G.2    Yang, B.3    Sun, C.4    Chen, X.5
  • 23
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Lei, Y., Lin, J., He, Z., Zuo, M.J., A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Sign. Process. 35:1 (2013), 108–126.
    • (2013) Mech. Syst. Sign. Process. , vol.35 , Issue.1 , pp. 108-126
    • Lei, Y.1    Lin, J.2    He, Z.3    Zuo, M.J.4
  • 24
    • 18144399334 scopus 로고    scopus 로고
    • A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing
    • Peng, Z., Peter, W.T., Chu, F., A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech. Syst. Sign. Process. 19:5 (2005), 974–988.
    • (2005) Mech. Syst. Sign. Process. , vol.19 , Issue.5 , pp. 974-988
    • Peng, Z.1    Peter, W.T.2    Chu, F.3
  • 25
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: a review with applications
    • Yan, R., Gao, R.X., Chen, X., Wavelets for fault diagnosis of rotary machines: a review with applications. Sign. Process. 96 (2014), 1–15.
    • (2014) Sign. Process. , vol.96 , pp. 1-15
    • Yan, R.1    Gao, R.X.2    Chen, X.3
  • 26
    • 85020641208 scopus 로고    scopus 로고
    • Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant K-SVD
    • Yang, B., Liu, R., Chen, X., Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant K-SVD. IEEE Trans. Ind. Infor. 13:3 (2017), 1321–1331, 10.1109/TII.2017.2662215.
    • (2017) IEEE Trans. Ind. Infor. , vol.13 , Issue.3 , pp. 1321-1331
    • Yang, B.1    Liu, R.2    Chen, X.3
  • 27
    • 84963934455 scopus 로고    scopus 로고
    • An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
    • Lei, Y., Jia, F., Lin, J., Xing, S., Ding, S.X., An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Ind. Electron. 63:5 (2016), 3137–3147.
    • (2016) IEEE Trans. Ind. Electron. , vol.63 , Issue.5 , pp. 3137-3147
    • Lei, Y.1    Jia, F.2    Lin, J.3    Xing, S.4    Ding, S.X.5
  • 28
    • 84867336190 scopus 로고    scopus 로고
    • Multisensor data fusion: a review of the state-of-the-art
    • Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N., Multisensor data fusion: a review of the state-of-the-art. Inform. Fusion 14:1 (2013), 28–44.
    • (2013) Inform. Fusion , vol.14 , Issue.1 , pp. 28-44
    • Khaleghi, B.1    Khamis, A.2    Karray, F.O.3    Razavi, S.N.4
  • 29
    • 84916607767 scopus 로고    scopus 로고
    • Development of a generic rotating machinery fault diagnosis approach insensitive to machine speed and support type
    • Nembhard, A.D., Sinha, J.K., Yunusa-Kaltungo, A., Development of a generic rotating machinery fault diagnosis approach insensitive to machine speed and support type. J. Sound Vib. 337 (2015), 321–341.
    • (2015) J. Sound Vib. , vol.337 , pp. 321-341
    • Nembhard, A.D.1    Sinha, J.K.2    Yunusa-Kaltungo, A.3
  • 30
    • 84870240953 scopus 로고    scopus 로고
    • A future possibility of vibration based condition monitoring of rotating machines
    • Sinha, J.K., Elbhbah, K., A future possibility of vibration based condition monitoring of rotating machines. Mech. Syst. Sign. Process. 34:1 (2013), 231–240.
    • (2013) Mech. Syst. Sign. Process. , vol.34 , Issue.1 , pp. 231-240
    • Sinha, J.K.1    Elbhbah, K.2
  • 31
    • 84875210101 scopus 로고    scopus 로고
    • Vibration-based condition monitoring of rotating machines using a machine composite spectrum
    • Elbhbah, K., Sinha, J.K., Vibration-based condition monitoring of rotating machines using a machine composite spectrum. J. Sound Vib. 332:11 (2013), 2831–2845.
    • (2013) J. Sound Vib. , vol.332 , Issue.11 , pp. 2831-2845
    • Elbhbah, K.1    Sinha, J.K.2
  • 32
    • 84907833961 scopus 로고    scopus 로고
    • An improved data fusion technique for faults diagnosis in rotating machines
    • Yunusa-Kaltungo, A., Sinha, J.K., Elbhbah, K., An improved data fusion technique for faults diagnosis in rotating machines. Measurement 58 (2014), 27–32.
    • (2014) Measurement , vol.58 , pp. 27-32
    • Yunusa-Kaltungo, A.1    Sinha, J.K.2    Elbhbah, K.3
  • 33
    • 84948733371 scopus 로고    scopus 로고
    • A novel fault diagnosis technique for enhancing maintenance and reliability of rotating machines
    • Yunusa-Kaltungo, A., Sinha, J.K., Nembhard, A.D., A novel fault diagnosis technique for enhancing maintenance and reliability of rotating machines. Struct. Health Monit. 14:6 (2015), 604–621.
    • (2015) Struct. Health Monit. , vol.14 , Issue.6 , pp. 604-621
    • Yunusa-Kaltungo, A.1    Sinha, J.K.2    Nembhard, A.D.3
  • 34
    • 84927154803 scopus 로고    scopus 로고
    • Use of composite higher order spectra for faults diagnosis of rotating machines with different foundation flexibilities
    • Yunusa-Kaltungo, A., Sinha, J.K., Nembhard, A.D., Use of composite higher order spectra for faults diagnosis of rotating machines with different foundation flexibilities. Measurement 70 (2015), 47–61.
    • (2015) Measurement , vol.70 , pp. 47-61
    • Yunusa-Kaltungo, A.1    Sinha, J.K.2    Nembhard, A.D.3
  • 35
    • 84985961089 scopus 로고    scopus 로고
    • Sensitivity analysis of higher order coherent spectra in machine faults diagnosis
    • Yunusa-Kaltungo, A., Sinha, J.K., Sensitivity analysis of higher order coherent spectra in machine faults diagnosis. Struct. Health Monit. 15:5 (2016), 555–567.
    • (2016) Struct. Health Monit. , vol.15 , Issue.5 , pp. 555-567
    • Yunusa-Kaltungo, A.1    Sinha, J.K.2
  • 36
    • 84931004694 scopus 로고    scopus 로고
    • Wavelet energy-based visualization and classification of high-dimensional signal for bearing fault detection
    • Jung, U., Koh, B.-H., Wavelet energy-based visualization and classification of high-dimensional signal for bearing fault detection. Knowl. Inform. Syst. 44:1 (2015), 197–215.
    • (2015) Knowl. Inform. Syst. , vol.44 , Issue.1 , pp. 197-215
    • Jung, U.1    Koh, B.-H.2
  • 37
    • 84875368599 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN
    • Pandya, D., Upadhyay, S., Harsha, S., Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert Syst. Appl. 40:10 (2013), 4137–4145.
    • (2013) Expert Syst. Appl. , vol.40 , Issue.10 , pp. 4137-4145
    • Pandya, D.1    Upadhyay, S.2    Harsha, S.3
  • 38
    • 84876224648 scopus 로고    scopus 로고
    • Plastic bearing fault diagnosis based on a two-step data mining approach
    • He, D., Li, R., Zhu, J., Plastic bearing fault diagnosis based on a two-step data mining approach. IEEE Trans. Ind. Electron. 60:8 (2013), 3429–3440.
    • (2013) IEEE Trans. Ind. Electron. , vol.60 , Issue.8 , pp. 3429-3440
    • He, D.1    Li, R.2    Zhu, J.3
  • 39
    • 84857063471 scopus 로고    scopus 로고
    • Inchoate fault detection framework: adaptive selection of wavelet nodes and cumulant orders
    • Yaqub, M.F., Gondal, I., Kamruzzaman, J., Inchoate fault detection framework: adaptive selection of wavelet nodes and cumulant orders. IEEE Trans. Instrum. Meas. 61:3 (2012), 685–695.
    • (2012) IEEE Trans. Instrum. Meas. , vol.61 , Issue.3 , pp. 685-695
    • Yaqub, M.F.1    Gondal, I.2    Kamruzzaman, J.3
  • 40
    • 63449085547 scopus 로고    scopus 로고
    • Gear crack level identification based on weighted k nearest neighbor classification algorithm
    • Lei, Y., Zuo, M.J., Gear crack level identification based on weighted k nearest neighbor classification algorithm. Mech. Syst. Sign. Process. 23:5 (2009), 1535–1547.
    • (2009) Mech. Syst. Sign. Process. , vol.23 , Issue.5 , pp. 1535-1547
    • Lei, Y.1    Zuo, M.J.2
  • 41
    • 84870239552 scopus 로고    scopus 로고
    • Blind vibration component separation and nonlinear feature extraction applied to the nonstationary vibration signals for the gearbox multi-fault diagnosis
    • Li, Z., Yan, X., Tian, Z., Yuan, C., Peng, Z., Li, L., Blind vibration component separation and nonlinear feature extraction applied to the nonstationary vibration signals for the gearbox multi-fault diagnosis. Measurement 46:1 (2013), 259–271.
    • (2013) Measurement , vol.46 , Issue.1 , pp. 259-271
    • Li, Z.1    Yan, X.2    Tian, Z.3    Yuan, C.4    Peng, Z.5    Li, L.6
  • 42
    • 84899736273 scopus 로고    scopus 로고
    • Life grade recognition method based on supervised uncorrelated orthogonal locality preserving projection and k-nearest neighbor classifier
    • Li, F., Wang, J., Tang, B., Tian, D., Life grade recognition method based on supervised uncorrelated orthogonal locality preserving projection and k-nearest neighbor classifier. Neurocomputing 138 (2014), 271–282.
    • (2014) Neurocomputing , vol.138 , pp. 271-282
    • Li, F.1    Wang, J.2    Tang, B.3    Tian, D.4
  • 43
    • 84962408476 scopus 로고    scopus 로고
    • Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with k-nearest neighbor distance analysis
    • Tian, J., Morillo, C., Azarian, M.H., Pecht, M., Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with k-nearest neighbor distance analysis. IEEE Trans. Ind. Electron. 63:3 (2016), 1793–1803.
    • (2016) IEEE Trans. Ind. Electron. , vol.63 , Issue.3 , pp. 1793-1803
    • Tian, J.1    Morillo, C.2    Azarian, M.H.3    Pecht, M.4
  • 44
    • 84887493381 scopus 로고    scopus 로고
    • Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
    • Safizadeh, M., Latifi, S., Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. Inform. Fusion 18 (2014), 1–8.
    • (2014) Inform. Fusion , vol.18 , pp. 1-8
    • Safizadeh, M.1    Latifi, S.2
  • 45
    • 84963838167 scopus 로고    scopus 로고
    • Fault isolation based on k-nearest neighbor rule for industrial processes
    • Zhou, Z., Wen, C., Yang, C., Fault isolation based on k-nearest neighbor rule for industrial processes. IEEE Trans. Ind. Electron. 63:4 (2016), 2578–2586.
    • (2016) IEEE Trans. Ind. Electron. , vol.63 , Issue.4 , pp. 2578-2586
    • Zhou, Z.1    Wen, C.2    Yang, C.3
  • 46
    • 84876401752 scopus 로고    scopus 로고
    • Comparison of two classifiers; k-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing
    • Moosavian, A., Ahmadi, H., Tabatabaeefar, A., Khazaee, M., Comparison of two classifiers; k-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing. Shock Vib. 20:2 (2013), 263–272.
    • (2013) Shock Vib. , vol.20 , Issue.2 , pp. 263-272
    • Moosavian, A.1    Ahmadi, H.2    Tabatabaeefar, A.3    Khazaee, M.4
  • 47
    • 84971299226 scopus 로고    scopus 로고
    • Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery
    • Dou, D., Zhou, S., Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery. Appl. Soft Comput. 46 (2016), 459–468.
    • (2016) Appl. Soft Comput. , vol.46 , pp. 459-468
    • Dou, D.1    Zhou, S.2
  • 49
    • 84861900936 scopus 로고    scopus 로고
    • A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis
    • Muralidharan, V., Sugumaran, V., A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis. Appl. Soft Comput. 12:8 (2012), 2023–2029.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.8 , pp. 2023-2029
    • Muralidharan, V.1    Sugumaran, V.2
  • 50
    • 84897486841 scopus 로고    scopus 로고
    • Vibration analysis based interturn fault diagnosis in induction machines
    • Seshadrinath, J., Singh, B., Panigrahi, B., Vibration analysis based interturn fault diagnosis in induction machines. IEEE Trans. Ind. Infor. 10:1 (2014), 340–350.
    • (2014) IEEE Trans. Ind. Infor. , vol.10 , Issue.1 , pp. 340-350
    • Seshadrinath, J.1    Singh, B.2    Panigrahi, B.3
  • 51
    • 84868709704 scopus 로고    scopus 로고
    • Current envelope analysis for defect identification and diagnosis in induction motors
    • Wang, J., Liu, S., Gao, R.X., Yan, R., Current envelope analysis for defect identification and diagnosis in induction motors. J. Manuf. Syst. 31:4 (2012), 380–387.
    • (2012) J. Manuf. Syst. , vol.31 , Issue.4 , pp. 380-387
    • Wang, J.1    Liu, S.2    Gao, R.X.3    Yan, R.4
  • 52
    • 84933556220 scopus 로고    scopus 로고
    • A comprehensive evaluation of intelligent classifiers for fault identification in three-phase induction motors
    • Palácios, R.H.C., da Silva, I.N., Goedtel, A., Godoy, W.F., A comprehensive evaluation of intelligent classifiers for fault identification in three-phase induction motors. Electr. Power Syst. Res. 127 (2015), 249–258.
    • (2015) Electr. Power Syst. Res. , vol.127 , pp. 249-258
    • Palácios, R.H.C.1    da Silva, I.N.2    Goedtel, A.3    Godoy, W.F.4
  • 53
    • 84946211882 scopus 로고    scopus 로고
    • Multifault diagnosis of rolling element bearings using a wavelet kurtogram and vector median-based feature analysis
    • Article ID 320508
    • Nguyen, P.H., Kim, J.-M., Multifault diagnosis of rolling element bearings using a wavelet kurtogram and vector median-based feature analysis. Shock Vib., 2015, 2015, 14, 10.1155/2015/320508 Article ID 320508.
    • (2015) Shock Vib. , vol.2015 , pp. 14
    • Nguyen, P.H.1    Kim, J.-M.2
  • 54
    • 84945310824 scopus 로고    scopus 로고
    • A critical study of different dimensionality reduction methods for gear crack degradation assessment under different operating conditions
    • Wan, X., Wang, D., Peter, W.T., Xu, G., Zhang, Q., A critical study of different dimensionality reduction methods for gear crack degradation assessment under different operating conditions. Measurement 78 (2016), 138–150.
    • (2016) Measurement , vol.78 , pp. 138-150
    • Wan, X.1    Wang, D.2    Peter, W.T.3    Xu, G.4    Zhang, Q.5
  • 55
    • 84955463643 scopus 로고    scopus 로고
    • Fault detection and diagnosis of diesel engine valve trains
    • Flett, J., Bone, G.M., Fault detection and diagnosis of diesel engine valve trains. Mech. Syst. Sign. Process. 72 (2016), 316–327.
    • (2016) Mech. Syst. Sign. Process. , vol.72 , pp. 316-327
    • Flett, J.1    Bone, G.M.2
  • 56
    • 84975263124 scopus 로고    scopus 로고
    • Segmented infrared image analysis for rotating machinery fault diagnosis
    • Duan, L., Yao, M., Wang, J., Bai, T., Zhang, L., Segmented infrared image analysis for rotating machinery fault diagnosis. Infrared Phys. Technol. 77 (2016), 267–276.
    • (2016) Infrared Phys. Technol. , vol.77 , pp. 267-276
    • Duan, L.1    Yao, M.2    Wang, J.3    Bai, T.4    Zhang, L.5
  • 57
    • 33746943954 scopus 로고    scopus 로고
    • Compound rub malfunctions feature extraction based on full-spectrum cascade analysis and SVM
    • Fengqi, W., Meng, G., Compound rub malfunctions feature extraction based on full-spectrum cascade analysis and SVM. Mech. Syst. Sign. Process. 20:8 (2006), 2007–2021.
    • (2006) Mech. Syst. Sign. Process. , vol.20 , Issue.8 , pp. 2007-2021
    • Fengqi, W.1    Meng, G.2
  • 58
    • 77955232331 scopus 로고    scopus 로고
    • Multi-fault classification based on support vector machine trained by chaos particle swarm optimization
    • Tang, X., Zhuang, L., Cai, J., Li, C., Multi-fault classification based on support vector machine trained by chaos particle swarm optimization. Knowl.-Based Syst. 23:5 (2010), 486–490.
    • (2010) Knowl.-Based Syst. , vol.23 , Issue.5 , pp. 486-490
    • Tang, X.1    Zhuang, L.2    Cai, J.3    Li, C.4
  • 59
    • 78649823076 scopus 로고    scopus 로고
    • Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers
    • Salahshoor, K., Kordestani, M., Khoshro, M.S., Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers. Energy 35:12 (2010), 5472–5482.
    • (2010) Energy , vol.35 , Issue.12 , pp. 5472-5482
    • Salahshoor, K.1    Kordestani, M.2    Khoshro, M.S.3
  • 60
    • 78650707295 scopus 로고    scopus 로고
    • Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine
    • Saimurugan, M., Ramachandran, K., Sugumaran, V., Sakthivel, N., Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine. Expert Syst. Appl. 38:4 (2011), 3819–3826.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.4 , pp. 3819-3826
    • Saimurugan, M.1    Ramachandran, K.2    Sugumaran, V.3    Sakthivel, N.4
  • 61
    • 79956155898 scopus 로고    scopus 로고
    • Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)
    • Konar, P., Chattopadhyay, P., Bearing fault detection of induction motor using wavelet and support vector machines (SVMs). Appl. Soft Comput. 11:6 (2011), 4203–4211.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.6 , pp. 4203-4211
    • Konar, P.1    Chattopadhyay, P.2
  • 62
    • 80053462472 scopus 로고    scopus 로고
    • The application of AE signal in early cracked rotor fault diagnosis with PWVD and SVM
    • Li, X., Wang, K., Jiang, L., The application of AE signal in early cracked rotor fault diagnosis with PWVD and SVM. JSW 6:10 (2011), 1969–1976.
    • (2011) JSW , vol.6 , Issue.10 , pp. 1969-1976
    • Li, X.1    Wang, K.2    Jiang, L.3
  • 63
    • 84857366453 scopus 로고    scopus 로고
    • Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine
    • Li, N., Zhou, R., Hu, Q., Liu, X., Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine. Mech. Syst. Sign. Process. 28 (2012), 608–621.
    • (2012) Mech. Syst. Sign. Process. , vol.28 , pp. 608-621
    • Li, N.1    Zhou, R.2    Hu, Q.3    Liu, X.4
  • 64
    • 84961285424 scopus 로고    scopus 로고
    • Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis, Mech. Syst. Sign. Process.
    • R. Liu, B. Yang, X. Zhang, S. Wang, X. Chen, Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis, Mech. Syst. Sign. Process. 75 (2016) 345–370.
    • (2016) , vol.75 , pp. 345-370
    • Liu, R.1    Yang, B.2    Zhang, X.3    Wang, S.4    Chen, X.5
  • 65
    • 84865606945 scopus 로고    scopus 로고
    • Multi-sensor data fusion using support vector machine for motor fault detection
    • Banerjee, T.P., Das, S., Multi-sensor data fusion using support vector machine for motor fault detection. Inform. Sci. 217 (2012), 96–107.
    • (2012) Inform. Sci. , vol.217 , pp. 96-107
    • Banerjee, T.P.1    Das, S.2
  • 66
    • 84918513007 scopus 로고    scopus 로고
    • Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression
    • Soualhi, A., Medjaher, K., Zerhouni, N., Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression. IEEE Trans. Instrum. Meas. 64:1 (2015), 52–62.
    • (2015) IEEE Trans. Instrum. Meas. , vol.64 , Issue.1 , pp. 52-62
    • Soualhi, A.1    Medjaher, K.2    Zerhouni, N.3
  • 67
    • 81855201771 scopus 로고    scopus 로고
    • A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM
    • Shen, Z., Chen, X., Zhang, X., He, Z., A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM. Measurement 45:1 (2012), 30–40.
    • (2012) Measurement , vol.45 , Issue.1 , pp. 30-40
    • Shen, Z.1    Chen, X.2    Zhang, X.3    He, Z.4
  • 68
    • 84855783889 scopus 로고    scopus 로고
    • A support vector machine approach based on physical model training for rolling element bearing fault detection in industrial environments
    • Gryllias, K.C., Antoniadis, I.A., A support vector machine approach based on physical model training for rolling element bearing fault detection in industrial environments. Eng. Appl. Artif. Intell. 25:2 (2012), 326–344.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , Issue.2 , pp. 326-344
    • Gryllias, K.C.1    Antoniadis, I.A.2
  • 69
    • 84867863746 scopus 로고    scopus 로고
    • Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings
    • Liu, Z., Cao, H., Chen, X., He, Z., Shen, Z., Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings. Neurocomputing 99 (2013), 399–410.
    • (2013) Neurocomputing , vol.99 , pp. 399-410
    • Liu, Z.1    Cao, H.2    Chen, X.3    He, Z.4    Shen, Z.5
  • 70
    • 84885611750 scopus 로고    scopus 로고
    • Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines
    • Zhang, X., Zhou, J., Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines. Mech. Syst. Sign. Process. 41:1 (2013), 127–140.
    • (2013) Mech. Syst. Sign. Process. , vol.41 , Issue.1 , pp. 127-140
    • Zhang, X.1    Zhou, J.2
  • 71
    • 84873028042 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier
    • Shen, C., Wang, D., Kong, F., Peter, W.T., Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier. Measurement 46:4 (2013), 1551–1564.
    • (2013) Measurement , vol.46 , Issue.4 , pp. 1551-1564
    • Shen, C.1    Wang, D.2    Kong, F.3    Peter, W.T.4
  • 72
    • 84924530099 scopus 로고    scopus 로고
    • System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection
    • Zhao, W., Tao, T., Zio, E., System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection. Appl. Soft Comput. 30 (2015), 792–802.
    • (2015) Appl. Soft Comput. , vol.30 , pp. 792-802
    • Zhao, W.1    Tao, T.2    Zio, E.3
  • 73
    • 84870453135 scopus 로고    scopus 로고
    • An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO
    • Xu, H., Chen, G., An intelligent fault identification method of rolling bearings based on LSSVM optimized by improved PSO. Mech. Syst. Sign. Process. 35:1 (2013), 167–175.
    • (2013) Mech. Syst. Sign. Process. , vol.35 , Issue.1 , pp. 167-175
    • Xu, H.1    Chen, G.2
  • 74
    • 84880675844 scopus 로고    scopus 로고
    • Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine
    • Tang, B., Song, T., Li, F., Deng, L., Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine. Renew. Energy 62 (2014), 1–9.
    • (2014) Renew. Energy , vol.62 , pp. 1-9
    • Tang, B.1    Song, T.2    Li, F.3    Deng, L.4
  • 75
    • 84881092393 scopus 로고    scopus 로고
    • An intelligent approach for engine fault diagnosis based on Hilbert–Huang transform and support vector machine
    • Wang, Y., Ma, Q., Zhu, Q., Liu, X., Zhao, L., An intelligent approach for engine fault diagnosis based on Hilbert–Huang transform and support vector machine. Appl. Acoust. 75 (2014), 1–9.
    • (2014) Appl. Acoust. , vol.75 , pp. 1-9
    • Wang, Y.1    Ma, Q.2    Zhu, Q.3    Liu, X.4    Zhao, L.5
  • 76
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • Samanta, B., Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mech. Syst. Sign. Process. 18:3 (2004), 625–644.
    • (2004) Mech. Syst. Sign. Process. , vol.18 , Issue.3 , pp. 625-644
    • Samanta, B.1
  • 77
    • 70350129432 scopus 로고    scopus 로고
    • Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM)
    • Saravanan, N., Siddabattuni, V.K., Ramachandran, K., Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM). Appl. Soft Comput. 10:1 (2010), 344–360.
    • (2010) Appl. Soft Comput. , vol.10 , Issue.1 , pp. 344-360
    • Saravanan, N.1    Siddabattuni, V.K.2    Ramachandran, K.3
  • 78
    • 78049528234 scopus 로고    scopus 로고
    • Fault diagnosis of ball bearings using machine learning methods
    • Kankar, P., Sharma, S.C., Harsha, S., Fault diagnosis of ball bearings using machine learning methods. Expert Syst. Appl. 38:3 (2011), 1876–1886.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.3 , pp. 1876-1886
    • Kankar, P.1    Sharma, S.C.2    Harsha, S.3
  • 79
    • 84866458649 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling bearing based on kernel neighborhood rough sets and statistical features
    • Zhu, X., Zhang, Y., Zhu, Y., Intelligent fault diagnosis of rolling bearing based on kernel neighborhood rough sets and statistical features. J. Mech. Sci. Technol. 26:9 (2012), 2649–2657.
    • (2012) J. Mech. Sci. Technol. , vol.26 , Issue.9 , pp. 2649-2657
    • Zhu, X.1    Zhang, Y.2    Zhu, Y.3
  • 80
    • 85056920994 scopus 로고    scopus 로고
    • Handbook of Neural Network Signal Processing
    • CRC Press
    • Hu, Y.H., Hwang, J.-N., Handbook of Neural Network Signal Processing. 2001, CRC Press.
    • (2001)
    • Hu, Y.H.1    Hwang, J.-N.2
  • 81
    • 33846850208 scopus 로고    scopus 로고
    • Intelligent condition monitoring of a gearbox using artificial neural network
    • Rafiee, J., Arvani, F., Harifi, A., Sadeghi, M., Intelligent condition monitoring of a gearbox using artificial neural network. Mech. Syst. Sign. Process. 21:4 (2007), 1746–1754.
    • (2007) Mech. Syst. Sign. Process. , vol.21 , Issue.4 , pp. 1746-1754
    • Rafiee, J.1    Arvani, F.2    Harifi, A.3    Sadeghi, M.4
  • 82
    • 46149111957 scopus 로고    scopus 로고
    • Confidence estimation of the multi-layer perceptron and its application in fault detection systems
    • Mrugalski, M., Witczak, M., Korbicz, J., Confidence estimation of the multi-layer perceptron and its application in fault detection systems. Eng. Appl. Artif. Intell. 21:6 (2008), 895–906.
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , Issue.6 , pp. 895-906
    • Mrugalski, M.1    Witczak, M.2    Korbicz, J.3
  • 83
    • 67649604414 scopus 로고    scopus 로고
    • Online detection of broken rotor bars in induction motors by wavelet packet decomposition and artificial neural networks
    • Sadeghian, A., Ye, Z., Wu, B., Online detection of broken rotor bars in induction motors by wavelet packet decomposition and artificial neural networks. IEEE Trans. Instrum. Meas. 58:7 (2009), 2253–2263.
    • (2009) IEEE Trans. Instrum. Meas. , vol.58 , Issue.7 , pp. 2253-2263
    • Sadeghian, A.1    Ye, Z.2    Wu, B.3
  • 84
    • 84863455277 scopus 로고    scopus 로고
    • Gear dynamics monitoring using discrete wavelet transformation and multi-layer perceptron neural networks
    • Sanz, J., Perera, R., Huerta, C., Gear dynamics monitoring using discrete wavelet transformation and multi-layer perceptron neural networks. Appl. Soft Comput. 12:9 (2012), 2867–2878.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.9 , pp. 2867-2878
    • Sanz, J.1    Perera, R.2    Huerta, C.3
  • 85
    • 82255174981 scopus 로고    scopus 로고
    • Early fault diagnosis of rotating machinery based on wavelet packetsłempirical mode decomposition feature extraction and neural network
    • Bin, G., Gao, J., Li, X., Dhillon, B., Early fault diagnosis of rotating machinery based on wavelet packetsłempirical mode decomposition feature extraction and neural network. Mech. Syst. Sign. Process. 27 (2012), 696–711.
    • (2012) Mech. Syst. Sign. Process. , vol.27 , pp. 696-711
    • Bin, G.1    Gao, J.2    Li, X.3    Dhillon, B.4
  • 86
    • 48349147430 scopus 로고    scopus 로고
    • Vibration response of a cracked rotor in presence of rotor–stator rub
    • Patel, T.H., Darpe, A.K., Vibration response of a cracked rotor in presence of rotor–stator rub. J. Sound Vib. 317:3 (2008), 841–865.
    • (2008) J. Sound Vib. , vol.317 , Issue.3 , pp. 841-865
    • Patel, T.H.1    Darpe, A.K.2
  • 87
    • 84955481570 scopus 로고    scopus 로고
    • Fault detection in rotor bearing systems using time frequency techniques
    • Chandra, N.H., Sekhar, A., Fault detection in rotor bearing systems using time frequency techniques. Mech. Syst. Sign. Process. 72 (2016), 105–133.
    • (2016) Mech. Syst. Sign. Process. , vol.72 , pp. 105-133
    • Chandra, N.H.1    Sekhar, A.2
  • 88
    • 77953261575 scopus 로고    scopus 로고
    • Application of ann, fuzzy logic and wavelet transform in machine fault diagnosis using vibration signal analysis
    • Jayaswal, P., Verma, S., Wadhwani, A., Application of ann, fuzzy logic and wavelet transform in machine fault diagnosis using vibration signal analysis. J. Qual. Maint. Eng. 16:2 (2010), 190–213.
    • (2010) J. Qual. Maint. Eng. , vol.16 , Issue.2 , pp. 190-213
    • Jayaswal, P.1    Verma, S.2    Wadhwani, A.3
  • 89
    • 80052803250 scopus 로고    scopus 로고
    • Rotor fault condition monitoring techniques for squirrel-cage induction machine? A review
    • Mehrjou, M.R., Mariun, N., Marhaban, M.H., Misron, N., Rotor fault condition monitoring techniques for squirrel-cage induction machine? A review. Mech. Syst. Sign. Process. 25:8 (2011), 2827–2848.
    • (2011) Mech. Syst. Sign. Process. , vol.25 , Issue.8 , pp. 2827-2848
    • Mehrjou, M.R.1    Mariun, N.2    Marhaban, M.H.3    Misron, N.4
  • 90
    • 84863400123 scopus 로고    scopus 로고
    • Vibration-based fault diagnosis of a rotor bearing system using artificial neural network and support vector machine
    • Kankar, P.K., Sharma, S.C., Harsha, S.P., Vibration-based fault diagnosis of a rotor bearing system using artificial neural network and support vector machine. Int. J. Modell. Ident. Contr. 15:3 (2012), 185–198.
    • (2012) Int. J. Modell. Ident. Contr. , vol.15 , Issue.3 , pp. 185-198
    • Kankar, P.K.1    Sharma, S.C.2    Harsha, S.P.3
  • 91
    • 0037862841 scopus 로고    scopus 로고
    • A comprehensive review for industrial applicability of artificial neural networks
    • Meireles, M.R., Almeida, P.E., Simões, M.G., A comprehensive review for industrial applicability of artificial neural networks. IEEE Trans. Ind. Electron. 50:3 (2003), 585–601.
    • (2003) IEEE Trans. Ind. Electron. , vol.50 , Issue.3 , pp. 585-601
    • Meireles, M.R.1    Almeida, P.E.2    Simões, M.G.3
  • 92
    • 1342286914 scopus 로고    scopus 로고
    • Induction machine fault detection using SOM-based RBF neural networks
    • Wu, S., Chow, T.W., Induction machine fault detection using SOM-based RBF neural networks. IEEE Trans. Ind. Electron. 51:1 (2004), 183–194.
    • (2004) IEEE Trans. Ind. Electron. , vol.51 , Issue.1 , pp. 183-194
    • Wu, S.1    Chow, T.W.2
  • 93
    • 64049098473 scopus 로고    scopus 로고
    • Application of an intelligent classification method to mechanical fault diagnosis
    • Lei, Y., He, Z., Zi, Y., Application of an intelligent classification method to mechanical fault diagnosis. Expert Syst. Appl. 36:6 (2009), 9941–9948.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.6 , pp. 9941-9948
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 94
    • 80052944609 scopus 로고    scopus 로고
    • Feature selection for high-dimensional machinery fault diagnosis data using multiple models and radial basis function networks
    • Zhang, K., Li, Y., Scarf, P., Ball, A., Feature selection for high-dimensional machinery fault diagnosis data using multiple models and radial basis function networks. Neurocomputing 74:17 (2011), 2941–2952.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 2941-2952
    • Zhang, K.1    Li, Y.2    Scarf, P.3    Ball, A.4
  • 95
    • 78650320165 scopus 로고    scopus 로고
    • The fault diagnosis approach for gears using multidimensional features and intelligent classifier
    • Li, Z., Yan, X., Yuan, C., Zhao, J., Peng, Z., The fault diagnosis approach for gears using multidimensional features and intelligent classifier. Noise Vib. Worldwide 41:10 (2010), 76–86.
    • (2010) Noise Vib. Worldwide , vol.41 , Issue.10 , pp. 76-86
    • Li, Z.1    Yan, X.2    Yuan, C.3    Zhao, J.4    Peng, Z.5
  • 96
    • 79952630284 scopus 로고    scopus 로고
    • Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network
    • Wang, H., Chen, P., Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network. Comput. Ind. Eng. 60:4 (2011), 511–518.
    • (2011) Comput. Ind. Eng. , vol.60 , Issue.4 , pp. 511-518
    • Wang, H.1    Chen, P.2
  • 97
    • 79957997927 scopus 로고    scopus 로고
    • Artificial neural network approach for locating internal faults in salient-pole synchronous generator
    • Yaghobi, H., Mashhadi, H.R., Ansari, K., Artificial neural network approach for locating internal faults in salient-pole synchronous generator. Expert Syst. Appl. 38:10 (2011), 13328–13341.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.10 , pp. 13328-13341
    • Yaghobi, H.1    Mashhadi, H.R.2    Ansari, K.3
  • 98
    • 84934972178 scopus 로고    scopus 로고
    • Time-frequency fault feature extraction for rolling bearing based on the tensor manifold method
    • Article ID 198362
    • Wang, F., Chen, S., Sun, J., Yan, D., Wang, L., Zhang, L., Time-frequency fault feature extraction for rolling bearing based on the tensor manifold method. Math. Probl. Eng., 2014, 2014, 15, 10.1155/2014/198362 Article ID 198362.
    • (2014) Math. Probl. Eng. , vol.2014 , pp. 15
    • Wang, F.1    Chen, S.2    Sun, J.3    Yan, D.4    Wang, L.5    Zhang, L.6
  • 99
    • 29444460051 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithm for bearing fault detection
    • Samanta, B., Al-Balushi, K.R., Al-Araimi, S.A., Artificial neural networks and genetic algorithm for bearing fault detection. Soft Comput. 10:3 (2006), 264–271.
    • (2006) Soft Comput. , vol.10 , Issue.3 , pp. 264-271
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 100
    • 0033149653 scopus 로고    scopus 로고
    • Artificial intelligence in engineering
    • Pham, D., Pham, P., Artificial intelligence in engineering. Int. J. Mach. Tools Manuf. 39:6 (1999), 937–949.
    • (1999) Int. J. Mach. Tools Manuf. , vol.39 , Issue.6 , pp. 937-949
    • Pham, D.1    Pham, P.2
  • 101
    • 84876248148 scopus 로고    scopus 로고
    • Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
    • Prieto, M.D., Cirrincione, G., Espinosa, A.G., Ortega, J.A., Henao, H., Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks. IEEE Trans. Ind. Electron. 60:8 (2013), 3398–3407.
    • (2013) IEEE Trans. Ind. Electron. , vol.60 , Issue.8 , pp. 3398-3407
    • Prieto, M.D.1    Cirrincione, G.2    Espinosa, A.G.3    Ortega, J.A.4    Henao, H.5
  • 102
    • 85027917035 scopus 로고    scopus 로고
    • An adaptive method for health trend prediction of rotating bearings
    • Hong, S., Zhou, Z., Zio, E., Wang, W., An adaptive method for health trend prediction of rotating bearings. Digit. Sign. Process. 35 (2014), 117–123.
    • (2014) Digit. Sign. Process. , vol.35 , pp. 117-123
    • Hong, S.1    Zhou, Z.2    Zio, E.3    Wang, W.4
  • 104
    • 84966322221 scopus 로고    scopus 로고
    • Study on signal recognition and diagnosis for spacecraft based on deep learning method
    • IEEE
    • Li, K., Wang, Q., Study on signal recognition and diagnosis for spacecraft based on deep learning method. 2015 Prognostics and System Health Management Conference (PHM), 2015, IEEE, 1–5.
    • (2015) 2015 Prognostics and System Health Management Conference (PHM) , pp. 1-5
    • Li, K.1    Wang, Q.2
  • 105
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jia, F., Lei, Y., Lin, J., Zhou, X., Lu, N., Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Sign. Process. 72 (2016), 303–315.
    • (2016) Mech. Syst. Sign. Process. , vol.72 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 106
    • 84946064662 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis using an optimization deep belief network
    • Shao, H., Jiang, H., Zhang, X., Niu, M., Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol., 26(11), 2015, 115002.
    • (2015) Meas. Sci. Technol. , vol.26 , Issue.11 , pp. 115002
    • Shao, H.1    Jiang, H.2    Zhang, X.3    Niu, M.4
  • 107
    • 85027924373 scopus 로고    scopus 로고
    • Fuzzy classification with restricted Boltzman machines and echo-state networks for predicting potential railway door system failures
    • Fink, O., Zio, E., Weidmann, U., Fuzzy classification with restricted Boltzman machines and echo-state networks for predicting potential railway door system failures. IEEE Trans. Reliab. 64:3 (2015), 861–868.
    • (2015) IEEE Trans. Reliab. , vol.64 , Issue.3 , pp. 861-868
    • Fink, O.1    Zio, E.2    Weidmann, U.3
  • 108
    • 84937818415 scopus 로고    scopus 로고
    • Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
    • Li, C., Sanchez, R.-V., Zurita, G., Cerrada, M., Cabrera, D., Vásquez, R.E., Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis. Neurocomputing 168 (2015), 119–127.
    • (2015) Neurocomputing , vol.168 , pp. 119-127
    • Li, C.1    Sanchez, R.-V.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5    Vásquez, R.E.6
  • 109
    • 84994128794 scopus 로고    scopus 로고
    • Feature vector regression with efficient hyperparameters tuning and geometric interpretation
    • Liu, J., Zio, E., Feature vector regression with efficient hyperparameters tuning and geometric interpretation. Neurocomputing 218 (2016), 411–422.
    • (2016) Neurocomputing , vol.218 , pp. 411-422
    • Liu, J.1    Zio, E.2
  • 110
    • 38349031393 scopus 로고    scopus 로고
    • Machine learning: a review of classification and combining techniques
    • Kotsiantis, S.B., Zaharakis, I.D., Pintelas, P.E., Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26:3 (2006), 159–190.
    • (2006) Artif. Intell. Rev. , vol.26 , Issue.3 , pp. 159-190
    • Kotsiantis, S.B.1    Zaharakis, I.D.2    Pintelas, P.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.