-
1
-
-
29244467991
-
Condition monitoring and fault diagnosis of electrical motors-A review
-
Dec.
-
S. Nandi, H. A. Toliyat, and X. Li, "Condition monitoring and fault diagnosis of electrical motors-A review, " IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 719-729, Dec. 2005.
-
(2005)
IEEE Trans. Energy Convers.
, vol.20
, Issue.4
, pp. 719-729
-
-
Nandi, S.1
Toliyat, H.A.2
Li, X.3
-
2
-
-
85041196149
-
Nonconvex sparse regularization and convex optimization for bearing fault diagnosis
-
S. Wang, I. Selesnick, G. Cai, Y. Feng, X. Sui, and X. Chen, "Nonconvex sparse regularization and convex optimization for bearing fault diagnosis, " IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 7332-7342, 2018.
-
(2018)
IEEE Trans. Ind. Electron.
, vol.65
, Issue.9
, pp. 7332-7342
-
-
Wang, S.1
Selesnick, I.2
Cai, G.3
Feng, Y.4
Sui, X.5
Chen, X.6
-
3
-
-
84957801663
-
Support vector machine-based Grassmann manifold distance for health monitoring of viscoelastic sandwich structure with material ageing
-
C. Sun, Z. Zhang and X. Luo, "Support vector machine-based Grassmann manifold distance for health monitoring of viscoelastic sandwich structure with material ageing, " J. Sound Vib., vol. 368, pp. 249-263, 2016.
-
(2016)
J. Sound Vib.
, vol.368
, pp. 249-263
-
-
Sun, C.1
Zhang, Z.2
Luo, X.3
-
4
-
-
0034295565
-
Recent developments of induction motor drives fault diagnosis using AI techniques
-
F. Filippetti, G. Franceschini, and C. Tassoni, "Recent developments of induction motor drives fault diagnosis using AI techniques, " IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 994-1004, 2000.
-
(2000)
IEEE Trans. Ind. Electron.
, vol.47
, Issue.5
, pp. 994-1004
-
-
Filippetti, F.1
Franceschini, G.2
Tassoni, C.3
-
5
-
-
79956155898
-
Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)
-
P. Konar and P. Chattopadhyay, "Bearing fault detection of induction motor using wavelet and support vector machines (SVMs), " Appl. Soft Comput., vol. 11, no. 6, pp. 4203-4211, 2011.
-
(2011)
Appl. Soft Comput.
, vol.11
, Issue.6
, pp. 4203-4211
-
-
Konar, P.1
Chattopadhyay, P.2
-
6
-
-
84865606945
-
Multi-sensor data fusion using support vector machine for motor fault detection
-
T. P. Banerjee and S. Das, "Multi-sensor data fusion using support vector machine for motor fault detection, " Inf. Sci., vol. 217, pp. 96-107, 2012.
-
(2012)
Inf. Sci.
, vol.217
, pp. 96-107
-
-
Banerjee, T.P.1
Das, S.2
-
7
-
-
81855170055
-
Induction motors bearing fault detection using pattern recognition techniques
-
J. Zarei, "Induction motors bearing fault detection using pattern recognition techniques, " Expert Syst. Appl., vol. 39, no. 1, pp. 68-73, 2012.
-
(2012)
Expert Syst. Appl.
, vol.39
, Issue.1
, pp. 68-73
-
-
Zarei, J.1
-
8
-
-
0034297837
-
Neural-network-based motor rolling bearing fault diagnosis
-
Oct.
-
B. Li, M. Y. Chow, Y. Tipsuwan, and J. C. Hung, "Neural-network-based motor rolling bearing fault diagnosis, " IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 1060-1069, Oct. 2000.
-
(2000)
IEEE Trans. Ind. Electron.
, vol.47
, Issue.5
, pp. 1060-1069
-
-
Li, B.1
Chow, M.Y.2
Tipsuwan, Y.3
Hung, J.C.4
-
9
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning, " Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
10
-
-
85042082491
-
A review on the application of deep learning in system health management
-
S. Khan, and T. Yairi, "A review on the application of deep learning in system health management, " Mech. Syst. Signal Process., vol. 107, pp. 241-265, 2018.
-
(2018)
Mech. Syst. Signal Process.
, vol.107
, pp. 241-265
-
-
Khan, S.1
Yairi, T.2
-
11
-
-
84957837518
-
Deep learning for visual understanding: A review
-
Y. Guo, Y. Liu, and A. Oerlemans, "Deep learning for visual understanding: A review, " Neurocomputing, vol. 187, pp. 27-48, 2016.
-
(2016)
Neurocomputing
, vol.187
, pp. 27-48
-
-
Guo, Y.1
Liu, Y.2
Oerlemans, A.3
-
12
-
-
84955504842
-
Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
-
M. Gan and C. Wang, "Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings, " Mech. Syst. Signal Process., vol. 72, pp. 92-104, 2016.
-
(2016)
Mech. Syst. Signal Process.
, vol.72
, pp. 92-104
-
-
Gan, M.1
Wang, C.2
-
13
-
-
85020626243
-
Dislocated time series convolutional neural architecture: An intelligent fault diagnosis approach for electric machine
-
Jun.
-
R. Liu, G. Meng, B. Yang, and X. F. Chen, "Dislocated time series convolutional neural architecture: An intelligent fault diagnosis approach for electric machine, " IEEE Trans. Ind. Inform., vol. 13, no. 3, pp. 1310-1320, Jun. 2017.
-
(2017)
IEEE Trans. Ind. Inform.
, vol.13
, Issue.3
, pp. 1310-1320
-
-
Liu, R.1
Meng, G.2
Yang, B.3
Chen, X.F.4
-
14
-
-
85020653384
-
Convolutional discriminative feature learning for induction motor fault diagnosis
-
Jun.
-
W. Sun, R. Zhao, and R. Q. Yan., "Convolutional discriminative feature learning for induction motor fault diagnosis, " IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 1350-1359, Jun. 2017.
-
(2017)
IEEE Trans. Ind. Informat.
, vol.13
, Issue.3
, pp. 1350-1359
-
-
Sun, W.1
Zhao, R.2
Yan, R.Q.3
-
15
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, " Mech. Syst. Signal Process., vol. 72, pp. 303-315, 2016.
-
(2016)
Mech. Syst. Signal Process.
, vol.72
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
16
-
-
84964855691
-
A sparse auto-encoder-based deep neural network approach for induction motor faults classification
-
W. Sun, S. Shao, R. Zhao, and R. Q. Yan, "A sparse auto-encoder-based deep neural network approach for induction motor faults classification, " Measurement, vol. 89, pp. 171-178, 2016.
-
(2016)
Measurement
, vol.89
, pp. 171-178
-
-
Sun, W.1
Shao, S.2
Zhao, R.3
Yan, R.Q.4
-
17
-
-
85028524352
-
Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network
-
Mar.
-
H. Shao, H. Jiang, and H. Zhang, "Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network, " IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2727-2736, Mar. 2018.
-
(2018)
IEEE Trans. Ind. Electron.
, vol.65
, Issue.3
, pp. 2727-2736
-
-
Shao, H.1
Jiang, H.2
Zhang, H.3
-
18
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification
-
P. Tamilselvan and P. Wang, "Failure diagnosis using deep belief learning based health state classification, " Reliab. Eng. Syst. Saf., vol. 115, pp. 124-135, 2013.
-
(2013)
Reliab. Eng. Syst. Saf.
, vol.115
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.2
-
19
-
-
85028452247
-
Discriminative deep belief networks with ant colony optimization for health status assessment of machine
-
Dec.
-
M. Ma, C. Sun, and X. Chen, "Discriminative deep belief networks with ant colony optimization for health status assessment of machine, " IEEE Trans. Instrum. Meas., vol. 66, no. 12, pp. 3115-3125, Dec. 2017.
-
(2017)
IEEE Trans. Instrum. Meas.
, vol.66
, Issue.12
, pp. 3115-3125
-
-
Ma, M.1
Sun, C.2
Chen, X.3
-
20
-
-
85008219650
-
An enhancement deep feature fusion method for rotating machinery fault diagnosis
-
H. Shao, H. Jiang, and F. Wang, "An enhancement deep feature fusion method for rotating machinery fault diagnosis, " Knowl.-Based Syst., vol. 119, pp. 200-220, 2017.
-
(2017)
Knowl.-Based Syst.
, vol.119
, pp. 200-220
-
-
Shao, H.1
Jiang, H.2
Wang, F.3
-
21
-
-
85016125628
-
Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
-
Z. Chen andW. Li, "Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network, " IEEE Trans. Instrum. Meas., vol. 66, no. 7, pp. 1693-1702, 2017.
-
(2017)
IEEE Trans. Instrum. Meas.
, vol.66
, Issue.7
, pp. 1693-1702
-
-
Chen, Z.1
Li, W.2
-
22
-
-
85041212822
-
Deep coupling autoencoder for fault diagnosis with multimodal sensory data
-
Mar.
-
M. Ma, C. Sun, and X. Chen, "Deep coupling autoencoder for fault diagnosis with multimodal sensory data, " IEEE Trans. Ind. Informat., vol. 14, no. 3, pp. 1137-1145, Mar. 2018.
-
(2018)
IEEE Trans. Ind. Informat.
, vol.14
, Issue.3
, pp. 1137-1145
-
-
Ma, M.1
Sun, C.2
Chen, X.3
-
23
-
-
84879301618
-
Tensor deep stacking networks
-
Aug.
-
B. Hutchinson, L. Deng, and D. Yu, "Tensor deep stacking networks, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1944-1957, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1944-1957
-
-
Hutchinson, B.1
Deng, L.2
Yu, D.3
-
24
-
-
84903724014
-
Deep learning: Methods and applications
-
L. Deng and D. Yu, "Deep learning: Methods and applications, " Found. Trends Signal Process., vol. 7, no. 3-4, pp. 197-387, 2013.
-
(2013)
Found. Trends Signal Process.
, vol.7
, Issue.3-4
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
25
-
-
84865768819
-
Deep convex networks: A scalable architecture for speech pattern classification
-
L. Deng and D. Yu, "Deep convex networks: A scalable architecture for speech pattern classification, " in Proc. 12th Annu. Conf. Int. Speech Commun. Assoc., 2011, pp. 2285-2288.
-
(2011)
Proc. 12th Annu. Conf. Int. Speech Commun. Assoc.
, pp. 2285-2288
-
-
Deng, L.1
Yu, D.2
-
27
-
-
33846798101
-
Subspace-based gearbox condition monitoring by kernel principal component analysis
-
Q. He, F. Kong, and R Yan, "Subspace-based gearbox condition monitoring by kernel principal component analysis, " Mech. Syst. Signal Process., vol. 21, no. 4, pp. 1755-1772, 2007.
-
(2007)
Mech. Syst. Signal Process.
, vol.21
, Issue.4
, pp. 1755-1772
-
-
He, Q.1
Kong, F.2
Yan, R.3
-
28
-
-
84867865623
-
Kernel ridge regression with lagged-dependent variable: Applications to prediction of internal bond strength in a medium density fiberboard process
-
Nov.
-
N. Kim, Y. S. Jeong, and M. K. Jeong, "Kernel ridge regression with lagged-dependent variable: Applications to prediction of internal bond strength in a medium density fiberboard process, " IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 42, no. 6, pp. 1011-1020, Nov. 2012.
-
(2012)
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.
, vol.42
, Issue.6
, pp. 1011-1020
-
-
Kim, N.1
Jeong, Y.S.2
Jeong, M.K.3
-
30
-
-
84946567189
-
-
Accessed Mar. 2018
-
Bearing data set. [Online]. Available: http://csegroups. case. edu/ bearingdatacenter. Accessed Mar. 2018.
-
Bearing Data Set
-
-
-
31
-
-
85027957439
-
A nonprobabilistic metric derived from condition information for operational reliability assessment of aero-engines
-
Mar.
-
C. Sun, Z. He, H. Cao, Z. Zhang, X. Chen, and M. J. Zuo, "A nonprobabilistic metric derived from condition information for operational reliability assessment of aero-engines, " IEEE Trans. Reliab., vol. 64, no. 1, pp. 167-181, Mar. 2015.
-
(2015)
IEEE Trans. Reliab.
, vol.64
, Issue.1
, pp. 167-181
-
-
Sun, C.1
He, Z.2
Cao, H.3
Zhang, Z.4
Chen, X.5
Zuo, M.J.6
|