-
1
-
-
84937975641
-
Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study [J]
-
Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study [J]. Mechanical Systems & Signal Processing, 2015, s 64-65:100-131.
-
(2015)
Mechanical Systems & Signal Processing
, vol.64-65
, pp. 100-131
-
-
Smith, W.A.1
Randall, R.B.2
-
2
-
-
5044252073
-
Robust performance degradation assessment methods for enhanced rolling element bearing prognostics[J]
-
Qiu H, Lee J, Lin J, et al. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics[J]. Advanced Engineering Informatics, 2003, 17 (3):127-140.
-
(2003)
Advanced Engineering Informatics
, vol.17
, Issue.3
, pp. 127-140
-
-
Qiu, H.1
Lee, J.2
Lin, J.3
-
3
-
-
0034297837
-
Neural-network-based motor rolling bearing fault diagnosis[J]
-
Li B, Chow M Y, Tipsuwan Y, et al. Neural-network-based motor rolling bearing fault diagnosis[J]. Industrial Electronics IEEE Transactions on, 2000, 47 (5):1060-1069.
-
(2000)
Industrial Electronics IEEE Transactions on
, vol.47
, Issue.5
, pp. 1060-1069
-
-
Li, B.1
Chow, M.Y.2
Tipsuwan, Y.3
-
4
-
-
84876248148
-
Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks[j]
-
Prieto M D, Cirrincione G, Espinosa A G, et al. Bearing Fault Detection by a Novel Condition-Monitoring Scheme Based on Statistical-Time Features and Neural Networks[J]. IEEE Transactions on Industrial Electronics, 2013, 60 (8):3398-3407.
-
(2013)
IEEE Transactions on Industrial Electronics
, vol.60
, Issue.8
, pp. 3398-3407
-
-
Prieto, M.D.1
Cirrincione, G.2
Espinosa, A.G.3
-
5
-
-
84879854889
-
Representation learning: A review and new perspectives[j]
-
Bengio Y, Courville A, Vincent P. Representation Learning: A Review and New Perspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35 (8):1798-828.
-
(2013)
IEEE Transactions on Pattern Analysis & Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
6
-
-
33745805403
-
A fast learning algorithm for deep belief nets[j]
-
Hinton G E, Osindero S, Teh Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18 (7):1527.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
7
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]
-
Jia F, Lei Y, Lin J, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems & Signal Processing, 2016, 72-73:303-315.
-
(2016)
Mechanical Systems & Signal Processing
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
-
8
-
-
84962118969
-
Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring[j]
-
(2016-2-28), 2016
-
Guo L, Gao H, Huang H, et al. Multifeatures Fusion and Nonlinear Dimension Reduction for Intelligent Bearing Condition Monitoring[J]. Shock and Vibration, 2016, (2016-2-28), 2016, 2016:1-10.
-
(2016)
Shock and Vibration
, vol.2016
, pp. 1-10
-
-
Guo, L.1
Gao, H.2
Huang, H.3
-
9
-
-
84888870402
-
Intelligent condition based monitoring of rotating machines using sparse auto-encoders[C]
-
Verma N K, Gupta V K, Sharma M, et al. Intelligent condition based monitoring of rotating machines using sparse auto-encoders[C]. Prognostics and Health Management. IEEE, 2013:1-7.
-
(2013)
Prognostics and Health Management. IEEE
, pp. 1-7
-
-
Verma, N.K.1
Gupta, V.K.2
Sharma, M.3
-
10
-
-
84982792319
-
Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]
-
Lu C, Wang Z Y, Qin W L, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130 (C):377-388.
-
(2017)
Signal Processing
, vol.130
, Issue.C
, pp. 377-388
-
-
Lu, C.1
Wang, Z.Y.2
Qin, W.L.3
-
12
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification[J]
-
Tamilselvan P, Wang P. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115 (7):124-135.
-
(2013)
Reliability Engineering & System Safety
, vol.115
, Issue.7
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.2
-
13
-
-
84979085360
-
Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]
-
Guo X, Chen L, Shen C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93:490-502.
-
(2016)
Measurement
, vol.93
, pp. 490-502
-
-
Guo, X.1
Chen, L.2
Shen, C.3
-
14
-
-
85028727944
-
A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]
-
Zhang W, Li C, Peng G, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems & Signal Processing, 2018, 100:439-453.
-
(2018)
Mechanical Systems & Signal Processing
, vol.100
, pp. 439-453
-
-
Zhang, W.1
Li, C.2
Peng, G.3
-
15
-
-
85013858722
-
A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals [j]
-
Zhang W, Peng G, Li C, et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals [J]. Sensors, 2017, 17 (2):425.
-
(2017)
Sensors
, vol.17
, Issue.2
, pp. 425
-
-
Zhang, W.1
Peng, G.2
Li, C.3
-
16
-
-
84958543676
-
Time series classification using multi-channels deep convolutional neural networks[m]
-
Springer International Publishing
-
Zheng Y, Liu Q, Chen E, et al. Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks[M]. Web-Age Information Management. Springer International Publishing, 2014:298-310.
-
(2014)
Web-Age Information Management
, pp. 298-310
-
-
Zheng, Y.1
Liu, Q.2
Chen, E.3
-
20
-
-
0032203257
-
Gradient-based learning applied to document recognition[J]
-
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 2001, 86 (11):2278-2324.
-
(2001)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
-
22
-
-
85048210317
-
-
http://csegroups. case. edu/bearingdatacenter/pages/download-data-file
-
-
-
|