메뉴 건너뛰기




Volumn , Issue , 2018, Pages 1-6

Intelligent fault diagnosis of rolling bearing using one-dimensional multi-scale deep convolutional neural network based health state classification

Author keywords

convolutional neural networks; fault diagnosis; multi scale

Indexed keywords

COMPUTER AIDED DIAGNOSIS; CONVOLUTION; DEEP NEURAL NETWORKS; DIGITAL SIGNAL PROCESSING; FAILURE ANALYSIS; LEARNING ALGORITHMS; NEURAL NETWORKS; ROLLER BEARINGS; VIBRATION ANALYSIS;

EID: 85048242203     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICNSC.2018.8361296     Document Type: Conference Paper
Times cited : (76)

References (22)
  • 1
    • 84937975641 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study [J]
    • Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study [J]. Mechanical Systems & Signal Processing, 2015, s 64-65:100-131.
    • (2015) Mechanical Systems & Signal Processing , vol.64-65 , pp. 100-131
    • Smith, W.A.1    Randall, R.B.2
  • 2
    • 5044252073 scopus 로고    scopus 로고
    • Robust performance degradation assessment methods for enhanced rolling element bearing prognostics[J]
    • Qiu H, Lee J, Lin J, et al. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics[J]. Advanced Engineering Informatics, 2003, 17 (3):127-140.
    • (2003) Advanced Engineering Informatics , vol.17 , Issue.3 , pp. 127-140
    • Qiu, H.1    Lee, J.2    Lin, J.3
  • 4
    • 84876248148 scopus 로고    scopus 로고
    • Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks[j]
    • Prieto M D, Cirrincione G, Espinosa A G, et al. Bearing Fault Detection by a Novel Condition-Monitoring Scheme Based on Statistical-Time Features and Neural Networks[J]. IEEE Transactions on Industrial Electronics, 2013, 60 (8):3398-3407.
    • (2013) IEEE Transactions on Industrial Electronics , vol.60 , Issue.8 , pp. 3398-3407
    • Prieto, M.D.1    Cirrincione, G.2    Espinosa, A.G.3
  • 6
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets[j]
    • Hinton G E, Osindero S, Teh Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18 (7):1527.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 7
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]
    • Jia F, Lei Y, Lin J, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems & Signal Processing, 2016, 72-73:303-315.
    • (2016) Mechanical Systems & Signal Processing , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3
  • 8
    • 84962118969 scopus 로고    scopus 로고
    • Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring[j]
    • (2016-2-28), 2016
    • Guo L, Gao H, Huang H, et al. Multifeatures Fusion and Nonlinear Dimension Reduction for Intelligent Bearing Condition Monitoring[J]. Shock and Vibration, 2016, (2016-2-28), 2016, 2016:1-10.
    • (2016) Shock and Vibration , vol.2016 , pp. 1-10
    • Guo, L.1    Gao, H.2    Huang, H.3
  • 9
    • 84888870402 scopus 로고    scopus 로고
    • Intelligent condition based monitoring of rotating machines using sparse auto-encoders[C]
    • Verma N K, Gupta V K, Sharma M, et al. Intelligent condition based monitoring of rotating machines using sparse auto-encoders[C]. Prognostics and Health Management. IEEE, 2013:1-7.
    • (2013) Prognostics and Health Management. IEEE , pp. 1-7
    • Verma, N.K.1    Gupta, V.K.2    Sharma, M.3
  • 10
    • 84982792319 scopus 로고    scopus 로고
    • Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]
    • Lu C, Wang Z Y, Qin W L, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130 (C):377-388.
    • (2017) Signal Processing , vol.130 , Issue.C , pp. 377-388
    • Lu, C.1    Wang, Z.Y.2    Qin, W.L.3
  • 12
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification[J]
    • Tamilselvan P, Wang P. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115 (7):124-135.
    • (2013) Reliability Engineering & System Safety , vol.115 , Issue.7 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 13
    • 84979085360 scopus 로고    scopus 로고
    • Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]
    • Guo X, Chen L, Shen C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93:490-502.
    • (2016) Measurement , vol.93 , pp. 490-502
    • Guo, X.1    Chen, L.2    Shen, C.3
  • 14
    • 85028727944 scopus 로고    scopus 로고
    • A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]
    • Zhang W, Li C, Peng G, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems & Signal Processing, 2018, 100:439-453.
    • (2018) Mechanical Systems & Signal Processing , vol.100 , pp. 439-453
    • Zhang, W.1    Li, C.2    Peng, G.3
  • 15
    • 85013858722 scopus 로고    scopus 로고
    • A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals [j]
    • Zhang W, Peng G, Li C, et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals [J]. Sensors, 2017, 17 (2):425.
    • (2017) Sensors , vol.17 , Issue.2 , pp. 425
    • Zhang, W.1    Peng, G.2    Li, C.3
  • 16
    • 84958543676 scopus 로고    scopus 로고
    • Time series classification using multi-channels deep convolutional neural networks[m]
    • Springer International Publishing
    • Zheng Y, Liu Q, Chen E, et al. Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks[M]. Web-Age Information Management. Springer International Publishing, 2014:298-310.
    • (2014) Web-Age Information Management , pp. 298-310
    • Zheng, Y.1    Liu, Q.2    Chen, E.3
  • 20
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition[J]
    • Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 2001, 86 (11):2278-2324.
    • (2001) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3
  • 22
    • 85048210317 scopus 로고    scopus 로고
    • http://csegroups. case. edu/bearingdatacenter/pages/download-data-file


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.