메뉴 건너뛰기




Volumn 65, Issue 5, 2018, Pages 4290-4300

Deep Residual Networks with Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes

Author keywords

Deep residual learning; fault diagnosis; feature learning; planetary gearbox; wavelet packet transform

Indexed keywords

DEEP LEARNING; FAILURE ANALYSIS; FREQUENCY BANDS; GEARS; LEARNING ALGORITHMS; WAVELET ANALYSIS; WAVELET TRANSFORMS;

EID: 85031806343     PISSN: 02780046     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIE.2017.2762639     Document Type: Article
Times cited : (360)

References (27)
  • 1
    • 79251500330 scopus 로고    scopus 로고
    • Comparative study between mechanical and magnetic planetary gears
    • Feb
    • E. Gouda, S. Mezani, L. Baghli, and A. Rezzoug, "Comparative study between mechanical and magnetic planetary gears," IEEE Trans. Magn., vol. 47, no. 2, pp. 439-450, Feb. 2011.
    • (2011) IEEE Trans. Magn , vol.47 , Issue.2 , pp. 439-450
    • Gouda, E.1    Mezani, S.2    Baghli, L.3    Rezzoug, A.4
  • 2
    • 84941343835 scopus 로고    scopus 로고
    • Sparse feature identification based on union of redundant dictionary for wind turbine gearbox fault diagnosis
    • Oct
    • Z. Du, X. Chen, H. Zhang, and R. Yan, "Sparse feature identification based on union of redundant dictionary for wind turbine gearbox fault diagnosis," IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6594-6605, Oct. 2015.
    • (2015) IEEE Trans. Ind. Electron , vol.62 , Issue.10 , pp. 6594-6605
    • Du, Z.1    Chen, X.2    Zhang, H.3    Yan, R.4
  • 3
    • 33646769250 scopus 로고    scopus 로고
    • Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking
    • F. Chaari, T. Fakhfakh, and M. Haddar, "Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking," J. Failure Anal. Prevent., vol. 6, no. 2, pp. 73-78, 2006.
    • (2006) J. Failure Anal. Prevent , vol.6 , Issue.2 , pp. 73-78
    • Chaari, F.1    Fakhfakh, T.2    Haddar, M.3
  • 4
    • 84890044969 scopus 로고    scopus 로고
    • Condition monitoring and fault diagnosis of planetary gearboxes: A review
    • Y. Lei, J. Lin, M. Zuo, and Z. He, "Condition monitoring and fault diagnosis of planetary gearboxes: A review," Measurement, vol. 48, pp. 292-305, 2014.
    • (2014) Measurement , vol.48 , pp. 292-305
    • Lei, Y.1    Lin, J.2    Zuo, M.3    He, Z.4
  • 5
    • 84887056149 scopus 로고    scopus 로고
    • Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications
    • J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel, "Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications," Mech. Syst. Signal Process., vol. 42, nos. 1/2, pp. 314-334, 2014.
    • (2014) Mech. Syst. Signal Process , vol.42 , Issue.1-2 , pp. 314-334
    • Lee, J.1    Wu, F.2    Zhao, W.3    Ghaffari, M.4    Liao, L.5    Siegel, D.6
  • 6
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 7
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data," Mech. Syst. Signal Process., vol. 72/73, pp. 303-315, 2016.
    • (2016) Mech. Syst. Signal Process , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 8
    • 85010986655 scopus 로고    scopus 로고
    • An integrated approach to planetary gearbox fault diagnosis using deep belief networks
    • H. Chen, J. Wang, B. Tang, K. Xiao, and J. Li, "An integrated approach to planetary gearbox fault diagnosis using deep belief networks," Meas. Sci. Technol., vol. 28, no. 2, 2016, Art. no. 025010.
    • (2016) Meas. Sci. Technol , vol.28 , Issue.2
    • Chen, H.1    Wang, J.2    Tang, B.3    Xiao, K.4    Li, J.5
  • 9
    • 84963934455 scopus 로고    scopus 로고
    • An intelligent fault diagnosis method using unsupervised feature learning towardsmechanical big data
    • May
    • Y. Lei, F. Jia, J. Lin, S. Xing, and S. Ding, "An intelligent fault diagnosis method using unsupervised feature learning towardsmechanical big data," IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 3137-3147, May 2016.
    • (2016) IEEE Trans. Ind. Electron , vol.63 , Issue.5 , pp. 3137-3147
    • Lei, Y.1    Jia, F.2    Lin, J.3    Xing, S.4    Ding, S.5
  • 10
    • 84994474581 scopus 로고    scopus 로고
    • Real-time motor fault detection by 1-D convolutional neural networks
    • Nov
    • T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, "Real-time motor fault detection by 1-D convolutional neural networks," IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 7067-7075, Nov. 2016.
    • (2016) IEEE Trans. Ind. Electron , vol.63 , Issue.11 , pp. 7067-7075
    • Ince, T.1    Kiranyaz, S.2    Eren, L.3    Askar, M.4    Gabbouj, M.5
  • 11
    • 85013831942 scopus 로고    scopus 로고
    • An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox
    • L. Jing, T. Wang, M. Zhao, and P. Wang, "An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox," Sensors, vol. 17, no. 2, pp. 414(1)- 414(15), 2017.
    • (2017) Sensors , vol.17 , Issue.2 , pp. 4141-41415
    • Jing, L.1    Wang, T.2    Zhao, M.3    Wang, P.4
  • 12
    • 84973470244 scopus 로고    scopus 로고
    • Convolutional neural network based fault detection for rotating machinery
    • O. Janssens et al., "Convolutional neural network based fault detection for rotating machinery," J. Sound Vib., vol. 377, pp. 331-345, 2016.
    • (2016) J. Sound Vib , vol.377 , pp. 331-345
    • Janssens, O.1
  • 13
    • 85015852225 scopus 로고    scopus 로고
    • Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis
    • Aug
    • X. Ding and Q. He, "Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis," IEEE Trans. Instrum. Meas., vol. 66, no. 8, pp. 1926-1935, Aug. 2017.
    • (2017) IEEE Trans. Instrum. Meas , vol.66 , Issue.8 , pp. 1926-1935
    • Ding, X.1    He, Q.2
  • 14
    • 84946042100 scopus 로고    scopus 로고
    • Gearbox fault identification and classification with convolutional neural networks
    • Z. Chen, C. Li, and R. Sanchez, "Gearbox fault identification and classification with convolutional neural networks," Shock Vib., vol. 2015, pp. 1- 10, 2015.
    • (2015) Shock Vib , vol.2015 , pp. 1-10
    • Chen, Z.1    Li, C.2    Sanchez, R.3
  • 16
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
    • Santiago, Chile, Dec. 13-16
    • K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification," in Proc. Int. Conf. Comput. Vis., Santiago, Chile, Dec. 13-16, 2015, pp. 1026- 1034.
    • (2015) Proc. Int. Conf. Comput. Vis , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov
    • Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278- 2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Lake Tahoe, NA, USA, Dec. 3-6
    • A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. 25th Int. Conf. Neural Inf. Process. Syst., Lake Tahoe, NA, USA, Dec. 3-6, 2012, pp. 1097-1105.
    • (2012) Proc. 25th Int. Conf. Neural Inf. Process. Syst , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 19
    • 84990050094 scopus 로고    scopus 로고
    • Identity mappings in deep residual networks
    • Amsterdam, Netherlands, Oct. 8-16
    • K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks," in Proc. 14th Eur. Conf. Comput. Vis., Amsterdam, Netherlands, Oct. 8-16, 2016, pp. 630-645.
    • (2016) Proc. 14th Eur. Conf. Comput. Vis , pp. 630-645
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 24
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Lille, France, Jul. 7-9
    • S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc. 32nd Int. Conf. Mach. Learn., Lille, France, Jul. 7-9, 2015, pp. 448-456.
    • (2015) Proc. 32nd Int. Conf. Mach. Learn , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 25
    • 0032281654 scopus 로고    scopus 로고
    • Learning criteria for training neural network classifiers
    • P. Zhou and J. Austin, "Learning criteria for training neural network classifiers," Neural Comput. Appl., vol. 7, no. 4, pp. 334-342, 1998.
    • (1998) Neural Comput. Appl , vol.7 , Issue.4 , pp. 334-342
    • Zhou, P.1    Austin, J.2
  • 26
    • 84887125031 scopus 로고    scopus 로고
    • Motor bearing fault diagnosis using trace ratio linear discriminant analysis
    • May
    • X. Jin, M. Zhao, T. W. S. Chow, and M. Pecht, "Motor bearing fault diagnosis using trace ratio linear discriminant analysis," IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2441-2451, May 2014.
    • (2014) IEEE Trans. Ind. Electron , vol.61 , Issue.5 , pp. 2441-2451
    • Jin, X.1    Zhao, M.2    Chow, T.W.S.3    Pecht, M.4
  • 27
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing high-dimensional data using t-SNE
    • L. J. P. van der Maaten and G. E. Hinton, "Visualizing high-dimensional data using t-SNE," J. Mach. Learn. Res., vol. 9, pp. 2579-2605, 2008.
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 2579-2605
    • Van Der Maaten, L.J.P.1    Hinton, G.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.