-
1
-
-
79251500330
-
Comparative study between mechanical and magnetic planetary gears
-
Feb
-
E. Gouda, S. Mezani, L. Baghli, and A. Rezzoug, "Comparative study between mechanical and magnetic planetary gears," IEEE Trans. Magn., vol. 47, no. 2, pp. 439-450, Feb. 2011.
-
(2011)
IEEE Trans. Magn
, vol.47
, Issue.2
, pp. 439-450
-
-
Gouda, E.1
Mezani, S.2
Baghli, L.3
Rezzoug, A.4
-
2
-
-
84941343835
-
Sparse feature identification based on union of redundant dictionary for wind turbine gearbox fault diagnosis
-
Oct
-
Z. Du, X. Chen, H. Zhang, and R. Yan, "Sparse feature identification based on union of redundant dictionary for wind turbine gearbox fault diagnosis," IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6594-6605, Oct. 2015.
-
(2015)
IEEE Trans. Ind. Electron
, vol.62
, Issue.10
, pp. 6594-6605
-
-
Du, Z.1
Chen, X.2
Zhang, H.3
Yan, R.4
-
3
-
-
33646769250
-
Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking
-
F. Chaari, T. Fakhfakh, and M. Haddar, "Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking," J. Failure Anal. Prevent., vol. 6, no. 2, pp. 73-78, 2006.
-
(2006)
J. Failure Anal. Prevent
, vol.6
, Issue.2
, pp. 73-78
-
-
Chaari, F.1
Fakhfakh, T.2
Haddar, M.3
-
4
-
-
84890044969
-
Condition monitoring and fault diagnosis of planetary gearboxes: A review
-
Y. Lei, J. Lin, M. Zuo, and Z. He, "Condition monitoring and fault diagnosis of planetary gearboxes: A review," Measurement, vol. 48, pp. 292-305, 2014.
-
(2014)
Measurement
, vol.48
, pp. 292-305
-
-
Lei, Y.1
Lin, J.2
Zuo, M.3
He, Z.4
-
5
-
-
84887056149
-
Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications
-
J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel, "Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications," Mech. Syst. Signal Process., vol. 42, nos. 1/2, pp. 314-334, 2014.
-
(2014)
Mech. Syst. Signal Process
, vol.42
, Issue.1-2
, pp. 314-334
-
-
Lee, J.1
Wu, F.2
Zhao, W.3
Ghaffari, M.4
Liao, L.5
Siegel, D.6
-
6
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
7
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data," Mech. Syst. Signal Process., vol. 72/73, pp. 303-315, 2016.
-
(2016)
Mech. Syst. Signal Process
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
8
-
-
85010986655
-
An integrated approach to planetary gearbox fault diagnosis using deep belief networks
-
H. Chen, J. Wang, B. Tang, K. Xiao, and J. Li, "An integrated approach to planetary gearbox fault diagnosis using deep belief networks," Meas. Sci. Technol., vol. 28, no. 2, 2016, Art. no. 025010.
-
(2016)
Meas. Sci. Technol
, vol.28
, Issue.2
-
-
Chen, H.1
Wang, J.2
Tang, B.3
Xiao, K.4
Li, J.5
-
9
-
-
84963934455
-
An intelligent fault diagnosis method using unsupervised feature learning towardsmechanical big data
-
May
-
Y. Lei, F. Jia, J. Lin, S. Xing, and S. Ding, "An intelligent fault diagnosis method using unsupervised feature learning towardsmechanical big data," IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 3137-3147, May 2016.
-
(2016)
IEEE Trans. Ind. Electron
, vol.63
, Issue.5
, pp. 3137-3147
-
-
Lei, Y.1
Jia, F.2
Lin, J.3
Xing, S.4
Ding, S.5
-
10
-
-
84994474581
-
Real-time motor fault detection by 1-D convolutional neural networks
-
Nov
-
T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, "Real-time motor fault detection by 1-D convolutional neural networks," IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 7067-7075, Nov. 2016.
-
(2016)
IEEE Trans. Ind. Electron
, vol.63
, Issue.11
, pp. 7067-7075
-
-
Ince, T.1
Kiranyaz, S.2
Eren, L.3
Askar, M.4
Gabbouj, M.5
-
11
-
-
85013831942
-
An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox
-
L. Jing, T. Wang, M. Zhao, and P. Wang, "An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox," Sensors, vol. 17, no. 2, pp. 414(1)- 414(15), 2017.
-
(2017)
Sensors
, vol.17
, Issue.2
, pp. 4141-41415
-
-
Jing, L.1
Wang, T.2
Zhao, M.3
Wang, P.4
-
12
-
-
84973470244
-
Convolutional neural network based fault detection for rotating machinery
-
O. Janssens et al., "Convolutional neural network based fault detection for rotating machinery," J. Sound Vib., vol. 377, pp. 331-345, 2016.
-
(2016)
J. Sound Vib
, vol.377
, pp. 331-345
-
-
Janssens, O.1
-
13
-
-
85015852225
-
Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis
-
Aug
-
X. Ding and Q. He, "Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis," IEEE Trans. Instrum. Meas., vol. 66, no. 8, pp. 1926-1935, Aug. 2017.
-
(2017)
IEEE Trans. Instrum. Meas
, vol.66
, Issue.8
, pp. 1926-1935
-
-
Ding, X.1
He, Q.2
-
14
-
-
84946042100
-
Gearbox fault identification and classification with convolutional neural networks
-
Z. Chen, C. Li, and R. Sanchez, "Gearbox fault identification and classification with convolutional neural networks," Shock Vib., vol. 2015, pp. 1- 10, 2015.
-
(2015)
Shock Vib
, vol.2015
, pp. 1-10
-
-
Chen, Z.1
Li, C.2
Sanchez, R.3
-
15
-
-
84986274465
-
Deep residual learning for image recognition
-
Seattle, WA, USA, Jun. 27-30
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Seattle, WA, USA, Jun. 27-30, 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
16
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
-
Santiago, Chile, Dec. 13-16
-
K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification," in Proc. Int. Conf. Comput. Vis., Santiago, Chile, Dec. 13-16, 2015, pp. 1026- 1034.
-
(2015)
Proc. Int. Conf. Comput. Vis
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
17
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov
-
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278- 2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
18
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Lake Tahoe, NA, USA, Dec. 3-6
-
A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. 25th Int. Conf. Neural Inf. Process. Syst., Lake Tahoe, NA, USA, Dec. 3-6, 2012, pp. 1097-1105.
-
(2012)
Proc. 25th Int. Conf. Neural Inf. Process. Syst
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
19
-
-
84990050094
-
Identity mappings in deep residual networks
-
Amsterdam, Netherlands, Oct. 8-16
-
K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks," in Proc. 14th Eur. Conf. Comput. Vis., Amsterdam, Netherlands, Oct. 8-16, 2016, pp. 630-645.
-
(2016)
Proc. 14th Eur. Conf. Comput. Vis
, pp. 630-645
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
22
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
LasVegas, NA, USA, Jun. 26-Jul
-
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," in Proc. 29th IEEE Conf. Comput. Vis. Pattern Recognit., LasVegas, NA, USA, Jun. 26-Jul. 1, 2016, pp. 2818-2826.
-
(2016)
Proc. 29th IEEE Conf. Comput. Vis. Pattern Recognit
, vol.1
, pp. 2818-2826
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
23
-
-
84862294866
-
Deep sparse rectifier neural networks
-
Fort Lauderdale, FL, USA, Apr. 11-13
-
X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural networks," in Proc. 14th Int. Conf. Artif. Intell. Statist., Fort Lauderdale, FL, USA, Apr. 11-13, 2011, pp. 315-323.
-
(2011)
Proc. 14th Int. Conf. Artif. Intell. Statist
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
24
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Lille, France, Jul. 7-9
-
S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc. 32nd Int. Conf. Mach. Learn., Lille, France, Jul. 7-9, 2015, pp. 448-456.
-
(2015)
Proc. 32nd Int. Conf. Mach. Learn
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
25
-
-
0032281654
-
Learning criteria for training neural network classifiers
-
P. Zhou and J. Austin, "Learning criteria for training neural network classifiers," Neural Comput. Appl., vol. 7, no. 4, pp. 334-342, 1998.
-
(1998)
Neural Comput. Appl
, vol.7
, Issue.4
, pp. 334-342
-
-
Zhou, P.1
Austin, J.2
-
26
-
-
84887125031
-
Motor bearing fault diagnosis using trace ratio linear discriminant analysis
-
May
-
X. Jin, M. Zhao, T. W. S. Chow, and M. Pecht, "Motor bearing fault diagnosis using trace ratio linear discriminant analysis," IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2441-2451, May 2014.
-
(2014)
IEEE Trans. Ind. Electron
, vol.61
, Issue.5
, pp. 2441-2451
-
-
Jin, X.1
Zhao, M.2
Chow, T.W.S.3
Pecht, M.4
-
27
-
-
57249084011
-
Visualizing high-dimensional data using t-SNE
-
L. J. P. van der Maaten and G. E. Hinton, "Visualizing high-dimensional data using t-SNE," J. Mach. Learn. Res., vol. 9, pp. 2579-2605, 2008.
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 2579-2605
-
-
Van Der Maaten, L.J.P.1
Hinton, G.E.2
|