메뉴 건너뛰기




Volumn 17, Issue 2, 2017, Pages

Learning to monitor machine health with convolutional Bi-directional LSTM networks

Author keywords

Bi directional long short term memory network; Convolutional neural network; Machine health monitoring; Recurrent neural network; Tool wear prediction

Indexed keywords

BRAIN; CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; FEATURE EXTRACTION; FORECASTING; HEALTH; INDUSTRIAL RESEARCH; MANUFACTURE; MONITORING; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS; REGRESSION ANALYSIS; WEAR OF MATERIALS;

EID: 85011676262     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s17020273     Document Type: Article
Times cited : (678)

References (50)
  • 1
    • 84919906918 scopus 로고    scopus 로고
    • Data-Based Techniques Focused on Modern Industry: An Overview
    • Yin, S, Li, X, Gao, H, Kaynak, O. Data-Based Techniques Focused on Modern Industry: An Overview. IEEE Trans. Ind. Electron. 2015, 62, 657-667.
    • (2015) IEEE Trans. Ind. Electron , vol.62 , pp. 657-667
    • Yin, S.1    Li, X.2    Gao, H.3    Kaynak, O.4
  • 2
    • 84892255300 scopus 로고    scopus 로고
    • System health monitoring and prognostics-a review of current paradigms and practices
    • Springer: Berlin/Heidelberg, Germany
    • Kothamasu, R, Huang, S.H, VerDuin, W.H. System health monitoring and prognostics-a review of current paradigms and practices. In Handbook of Maintenance Management and Engineering; Springer: Berlin/Heidelberg, Germany, 2009, 337-362.
    • (2009) Handbook of Maintenance Management and Engineering , pp. 337-362
    • Kothamasu, R.1    Huang, S.H.2    Verduin, W.H.3
  • 3
    • 84969837177 scopus 로고    scopus 로고
    • Wind turbine condition monitoring and fault diagnosis in China
    • Chen, X, Yan, R, Liu, Y. Wind turbine condition monitoring and fault diagnosis in China. IEEE Instrum. Meas. Mag. 2016, 19, 22-28.
    • (2016) IEEE Instrum. Meas. Mag , vol.19 , pp. 22-28
    • Chen, X.1    Yan, R.2    Liu, Y.3
  • 4
    • 84971635842 scopus 로고    scopus 로고
    • Tool Condition Monitoring and Remaining Useful Life Prognostic Based on aWireless Sensor in Dry Milling Operations
    • Zhang, C, Yao, X, Zhang, J, Jin, H. Tool Condition Monitoring and Remaining Useful Life Prognostic Based on aWireless Sensor in Dry Milling Operations. Sensors 2016, 16, 795.
    • (2016) Sensors , vol.16 , pp. 795
    • Zhang, C.1    Yao, X.2    Zhang, J.3    Jin, H.4
  • 5
    • 84928693259 scopus 로고    scopus 로고
    • A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines
    • Lasheras, F, Nieto, P, de Cos Juez, F, Bayón, R, Suárez, V. A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines. Sensors 2015, 15, 7062-7083.
    • (2015) Sensors , vol.15 , pp. 7062-7083
    • Lasheras, F.1    Nieto, P.2    De Cos Juez, F.3    Bayón, R.4    Suárez, V.5
  • 6
    • 84887433963 scopus 로고    scopus 로고
    • Wavelets for fault diagnosis of rotary machines: A review with applications
    • Yan, R, Gao, R.X, Chen, X. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Process. 2014, 96, 1-15.
    • (2014) Signal Process. , vol.96 , pp. 1-15
    • Yan, R.1    Gao, R.X.2    Chen, X.3
  • 7
    • 84959357929 scopus 로고    scopus 로고
    • Remaining Useful Life Prediction of Rolling Bearings Using an Enhanced Particle Filter
    • Qian, Y, Yan, R. Remaining Useful Life Prediction of Rolling Bearings Using an Enhanced Particle Filter. IEEE Trans. Instrum. Meas. 2015, 64, 2696-2707.
    • (2015) IEEE Trans. Instrum. Meas , vol.64 , pp. 2696-2707
    • Qian, Y.1    Yan, R.2
  • 8
    • 84963826974 scopus 로고    scopus 로고
    • Health Index-Based Prognostics for Remaining Useful Life Predictions in Electrical Machines
    • Yang, F, Habibullah, M.S, Zhang, T, Xu, Z, Lim, P, Nadarajan, S. Health Index-Based Prognostics for Remaining Useful Life Predictions in Electrical Machines. IEEE Trans. Ind. Electron. 2016, 63, 2633-2644.
    • (2016) IEEE Trans. Ind. Electron , vol.63 , pp. 2633-2644
    • Yang, F.1    Habibullah, M.S.2    Zhang, T.3    Xu, Z.4    Lim, P.5    Nadarajan, S.6
  • 9
    • 84897573267 scopus 로고    scopus 로고
    • Integration of EEMD and ICA for wind turbine gearbox diagnosis
    • Wang, J, Gao, R.X, Yan, R. Integration of EEMD and ICA for wind turbine gearbox diagnosis. Wind Energy 2014, 17, 757-773.
    • (2014) Wind Energy , vol.17 , pp. 757-773
    • Wang, J.1    Gao, R.X.2    Yan, R.3
  • 10
    • 84888323450 scopus 로고    scopus 로고
    • Dual-scale cascaded adaptive stochastic resonance for rotary machine health monitoring
    • Zhao, R, Yan, R, Gao, R.X. Dual-scale cascaded adaptive stochastic resonance for rotary machine health monitoring. J. Manuf. Syst. 2013, 32, 529-535.
    • (2013) J. Manuf. Syst , vol.32 , pp. 529-535
    • Zhao, R.1    Yan, R.2    Gao, R.X.3
  • 11
    • 84988517218 scopus 로고    scopus 로고
    • Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis
    • Jiang, W, Xie, C, Zhuang, M, Shou, Y, Tang, Y. Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis. Sensors 2016, 16, 1509.
    • (2016) Sensors , vol.16 , pp. 1509
    • Jiang, W.1    Xie, C.2    Zhuang, M.3    Shou, Y.4    Tang, Y.5
  • 12
    • 84880880923 scopus 로고    scopus 로고
    • Model-based prognosis for hybrid systems with mode-dependent degradation behaviors
    • Yu, M, Wang, D, Luo, M. Model-based prognosis for hybrid systems with mode-dependent degradation behaviors. IEEE Trans. Ind. Electron. 2014, 61, 546-554.
    • (2014) IEEE Trans. Ind. Electron , vol.61 , pp. 546-554
    • Yu, M.1    Wang, D.2    Luo, M.3
  • 13
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • Jardine, A.K, Lin, D, Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483-1510.
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 1483-1510
    • Jardine, A.K.1    Lin, D.2    Banjevic, D.3
  • 14
    • 0034266703 scopus 로고    scopus 로고
    • Stochastic prognostics for rolling element bearings
    • Li, Y, Kurfess, T, Liang, S. Stochastic prognostics for rolling element bearings. Mech. Syst. Signal Process. 2000, 14, 747-762.
    • (2000) Mech. Syst. Signal Process , vol.14 , pp. 747-762
    • Li, Y.1    Kurfess, T.2    Liang, S.3
  • 15
    • 0036411894 scopus 로고    scopus 로고
    • Physically based diagnosis and prognosis of cracked rotor shafts
    • Oppenheimer, C.H, Loparo, K.A. Physically based diagnosis and prognosis of cracked rotor shafts. Proc. SPIE 2002, 4733, doi:10.1117/12.475502.
    • (2002) Proc. SPIE , vol.4733
    • Oppenheimer, C.H.1    Loparo, K.A.2
  • 16
    • 84942280120 scopus 로고    scopus 로고
    • Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy
    • Taborri, J, Scalona, E, Palermo, E, Rossi, S, Cappa, P. Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy. Sensors 2015, 15, 24514-24529.
    • (2015) Sensors , vol.15 , pp. 24514-24529
    • Taborri, J.1    Scalona, E.2    Palermo, E.3    Rossi, S.4    Cappa, P.5
  • 17
    • 79952075015 scopus 로고    scopus 로고
    • Mobile Location with NLOS Identification and Mitigation Based on Modified Kalman Filtering
    • Ke, W, Wu, L. Mobile Location with NLOS Identification and Mitigation Based on Modified Kalman Filtering. Sensors 2011, 11, 1641-1656.
    • (2011) Sensors , vol.11 , pp. 1641-1656
    • Ke, W.1    Wu, L.2
  • 18
    • 84919782569 scopus 로고    scopus 로고
    • Sign Language Recognition with the Kinect Sensor Based on Conditional Random Fields
    • Yang, H.D. Sign Language Recognition with the Kinect Sensor Based on Conditional Random Fields. Sensors 2014, 15, 135-147.
    • (2014) Sensors , vol.15 , pp. 135-147
    • Yang, H.D.1
  • 24
    • 84944699289 scopus 로고    scopus 로고
    • Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing
    • D’Addona, D.M, Ullah, A.S, Matarazzo, D. Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. J. Intell. Manuf. 2015, 1-17, doi:10.1007/s10845-015-1155-0.
    • (2015) J. Intell. Manuf , pp. 1-17
    • D’Addona, D.M.1    Ullah, A.S.2    Matarazzo, D.3
  • 28
    • 84958548988 scopus 로고    scopus 로고
    • Local Tiled Deep Networks for Recognition of Vehicle Make and Model
    • Gao, Y, Lee, H. Local Tiled Deep Networks for Recognition of Vehicle Make and Model. Sensors 2016, 16, 226.
    • (2016) Sensors , vol.16 , pp. 226
    • Gao, Y.1    Lee, H.2
  • 30
    • 85015208563 scopus 로고    scopus 로고
    • Convolutional neural networks for sentence classification
    • Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
    • Arxiv 2014, Arxiv , vol.1408 , pp. 5882
    • Kim, Y.1
  • 31
    • 85009909879 scopus 로고    scopus 로고
    • Topic-Aware Deep Compositional Models for Sentence Classification
    • Zhao, R, Mao, K. Topic-Aware Deep Compositional Models for Sentence Classification. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 248-260.
    • (2017) IEEE/ACM Trans. Audio Speech Lang. Process , vol.25 , pp. 248-260
    • Zhao, R.1    Mao, K.2
  • 32
    • 33947363928 scopus 로고    scopus 로고
    • Induction Machine Condition Monitoring Using Neural Network Modeling
    • Su, H, Chong, K.T. Induction Machine Condition Monitoring Using Neural Network Modeling. IEEE Trans. Ind. Electron. 2007, 54, 241-249.
    • (2007) IEEE Trans. Ind. Electron , vol.54 , pp. 241-249
    • Su, H.1    Chong, K.T.2
  • 33
    • 84866123983 scopus 로고    scopus 로고
    • Algorithm learning based neural network integrating feature selection and classification
    • Yoon, H, Park, C.S, Kim, J.S, Baek, J.G. Algorithm learning based neural network integrating feature selection and classification. Expert Syst. Appl. 2013, 40, 231-241.
    • (2013) Expert Syst. Appl , vol.40 , pp. 231-241
    • Yoon, H.1    Park, C.S.2    Kim, J.S.3    Baek, J.G.4
  • 34
    • 33846850208 scopus 로고    scopus 로고
    • Intelligent condition monitoring of a gearbox using artificial neural network
    • Rafiee, J, Arvani, F, Harifi, A, Sadeghi, M. Intelligent condition monitoring of a gearbox using artificial neural network. Mech. Syst. Signal Process. 2007, 21, 1746-1754.
    • (2007) Mech. Syst. Signal Process , vol.21 , pp. 1746-1754
    • Rafiee, J.1    Arvani, F.2    Harifi, A.3    Sadeghi, M.4
  • 35
    • 84964855691 scopus 로고    scopus 로고
    • A sparse auto-encoder-based deep neural network approach for induction motor faults classification
    • Sun, W, Shao, S, Zhao, R, Yan, R, Zhang, X, Chen, X. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 2016, 89, 171-178.
    • (2016) Measurement , vol.89 , pp. 171-178
    • Sun, W.1    Shao, S.2    Zhao, R.3    Yan, R.4    Zhang, X.5    Chen, X.6
  • 36
    • 79951660524 scopus 로고    scopus 로고
    • Prognosis of Defect Propagation Based on Recurrent Neural Networks
    • Malhi, A, Yan, R, Gao, R.X. Prognosis of Defect Propagation Based on Recurrent Neural Networks. IEEE Trans. Instrum. Meas. 2011, 60, 703-711.
    • (2011) IEEE Trans. Instrum. Meas , vol.60 , pp. 703-711
    • Malhi, A.1    Yan, R.2    Gao, R.X.3
  • 37
    • 0032643704 scopus 로고    scopus 로고
    • Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
    • Tse, P, Atherton, D. Prediction of machine deterioration using vibration based fault trends and recurrent neural networks. Jo. Vib. Acoust. 1999, 121, 355-362.
    • (1999) Jo. Vib. Acoust. , vol.121 , pp. 355-362
    • Tse, P.1    Atherton, D.2
  • 40
    • 84861558493 scopus 로고    scopus 로고
    • An Intelligent Diagnosis Method for Rotating Machinery Using Least Squares Mapping and a Fuzzy Neural Network
    • Li, K, Chen, P, Wang, S. An Intelligent Diagnosis Method for Rotating Machinery Using Least Squares Mapping and a Fuzzy Neural Network. Sensors 2012, 12, 5919-5939.
    • (2012) Sensors , vol.12 , pp. 5919-5939
    • Li, K.1    Chen, P.2    Wang, S.3
  • 41
    • 84944128390 scopus 로고    scopus 로고
    • Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal
    • Cerrada, M, Sánchez, R, Cabrera, D, Zurita, G, Li, C. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal. Sensors 2015, 15, 23903-23926.
    • (2015) Sensors , vol.15 , pp. 23903-23926
    • Cerrada, M.1    Sánchez, R.2    Cabrera, D.3    Zurita, G.4    Li, C.5
  • 42
    • 77953681757 scopus 로고    scopus 로고
    • A Multi-Fault Diagnosis Method for Sensor Systems Based on Principle Component Analysis
    • Zhu, D, Bai, J, Yang, S.X. A Multi-Fault Diagnosis Method for Sensor Systems Based on Principle Component Analysis. Sensors 2009, 10, 241-253.
    • (2009) Sensors , vol.10 , pp. 241-253
    • Zhu, D.1    Bai, J.2    Yang, S.X.3
  • 44
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • Gers, F.A, Schmidhuber, J, Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451-2471.
    • (2000) Neural Comput , vol.12 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 45
    • 35348818718 scopus 로고    scopus 로고
    • Learning multiple layers of representation
    • Hinton, G.E. Learning multiple layers of representation. Trends Cognit. Sci. 2007, 11, 428-434.
    • (2007) Trends Cognit. Sci , vol.11 , pp. 428-434
    • Hinton, G.E.1
  • 46
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI. Found
    • Bengio, Y. Learning deep architectures for AI. Found. Trends R Mach. Learn. 2009, 2, 1-127.
    • (2009) Trends R Mach. Learn , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 47
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • Tieleman, T, Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. 2012, 4, 2.
    • (2012) COURSERA Neural Netw. Mach. Learn , vol.4 , pp. 2
    • Tieleman, T.1    Hinton, G.2
  • 50
    • 85006371048 scopus 로고    scopus 로고
    • Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing
    • Wang, J, Xie, J, Zhao, R, Zhang, L, Duan, L. Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing. Robot. Comput. Integr. Manuf. 2017, 45, 47-58.
    • (2017) Robot. Comput. Integr. Manuf , vol.45 , pp. 47-58
    • Wang, J.1    Xie, J.2    Zhao, R.3    Zhang, L.4    Duan, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.