-
1
-
-
84875269406
-
An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
-
[1] Jiang, H.K., Li, C.L., Li, H.X., An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mech. Syst. Signal Process. 36 (2013), 225–239.
-
(2013)
Mech. Syst. Signal Process.
, vol.36
, pp. 225-239
-
-
Jiang, H.K.1
Li, C.L.2
Li, H.X.3
-
2
-
-
84887125031
-
Motor bearing fault diagnosis using trace ratio linear discriminant analysis
-
[2] Jin, X., Zhao, M., Chow, T.W.S., Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans. Ind. Electron. 61 (2014), 2441–2451.
-
(2014)
IEEE Trans. Ind. Electron.
, vol.61
, pp. 2441-2451
-
-
Jin, X.1
Zhao, M.2
Chow, T.W.S.3
-
3
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
[3] Jia, F., Lei, Y.G., Lin, J., Zhou, X., Lu, N., Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72-73 (2016), 303–315.
-
(2016)
Mech. Syst. Signal Process.
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.G.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
4
-
-
79951581707
-
EEMD method and WNN for fault diagnosis of locomotive roller bearings
-
[4] Lei, Y.G., He, Z.J., Zi, Y.Y., EEMD method and WNN for fault diagnosis of locomotive roller bearings. Expert Syst. Appl. 38 (2011), 7334–7341.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 7334-7341
-
-
Lei, Y.G.1
He, Z.J.2
Zi, Y.Y.3
-
5
-
-
84894063847
-
A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings
-
[5] Liu, H.H., Han, M.H., A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings. Mech. Mach. Theory 75 (2014), 67–78.
-
(2014)
Mech. Mach. Theory
, vol.75
, pp. 67-78
-
-
Liu, H.H.1
Han, M.H.2
-
6
-
-
84870442060
-
Roller element bearing fault diagnosis using singular spectrum analysis
-
[6] Muruganatham, B., Sanjith, M.A., Krishnakumar, B., Roller element bearing fault diagnosis using singular spectrum analysis. Mech. Syst. Signal Process. 35 (2013), 150–166.
-
(2013)
Mech. Syst. Signal Process.
, vol.35
, pp. 150-166
-
-
Muruganatham, B.1
Sanjith, M.A.2
Krishnakumar, B.3
-
7
-
-
33646519024
-
A roller bearing fault diagnosis method based on EMD energy entropy and ANN
-
[7] Yu, Y., Yu, D.J., Cheng, J.S., A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294 (2006), 269–277.
-
(2006)
J. Sound Vib.
, vol.294
, pp. 269-277
-
-
Yu, Y.1
Yu, D.J.2
Cheng, J.S.3
-
8
-
-
84944355420
-
Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
-
[8] Zhang, X.L., Wang, B.J., Chen, X.F., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl.-Based Syst. 89 (2015), 56–85.
-
(2015)
Knowl.-Based Syst.
, vol.89
, pp. 56-85
-
-
Zhang, X.L.1
Wang, B.J.2
Chen, X.F.3
-
9
-
-
84960297163
-
A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling
-
[9] Hussein, A., Irina, T., A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling. J. Sound Vib. 369 (2016), 246–265.
-
(2016)
J. Sound Vib.
, vol.369
, pp. 246-265
-
-
Hussein, A.1
Irina, T.2
-
10
-
-
84952894365
-
Hierarchical fuzzy entropy and improved support vector machine based binary tree approach for rolling bearing fault diagnosis
-
[10] Li, Y.B., Xu, M.Q., Zhao, H.Y., Huang, W.H., Hierarchical fuzzy entropy and improved support vector machine based binary tree approach for rolling bearing fault diagnosis. Mech. Mach. Theory 98 (2016), 114–132.
-
(2016)
Mech. Mach. Theory
, vol.98
, pp. 114-132
-
-
Li, Y.B.1
Xu, M.Q.2
Zhao, H.Y.3
Huang, W.H.4
-
11
-
-
84961285424
-
Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis
-
[11] Liu, R.N., Yang, B.Y., Zhang, X.L., Wang, S.B., Chen, X.F., Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis. Mech. Syst. Signal Process. 75 (2016), 345–370.
-
(2016)
Mech. Syst. Signal Process.
, vol.75
, pp. 345-370
-
-
Liu, R.N.1
Yang, B.Y.2
Zhang, X.L.3
Wang, S.B.4
Chen, X.F.5
-
12
-
-
84955757234
-
A novel identification method of Volterra series in rotor-bearing system for fault diagnosis
-
[12] Xia, X., Zhou, J.Z., Xiao, J., A novel identification method of Volterra series in rotor-bearing system for fault diagnosis. Mech. Syst. Signal Process. 66-67 (2016), 557–567.
-
(2016)
Mech. Syst. Signal Process.
, vol.66-67
, pp. 557-567
-
-
Xia, X.1
Zhou, J.Z.2
Xiao, J.3
-
13
-
-
84922897041
-
Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery
-
[13] Lu, N., Xiao, Z.H., Malik, O.P, Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 52-53 (2015), 393–415.
-
(2015)
Mech. Syst. Signal Process.
, vol.52-53
, pp. 393-415
-
-
Lu, N.1
Xiao, Z.H.2
Malik, O.P.3
-
14
-
-
79955607648
-
Rotor fault diagnosis system based on sGA-based individual neural networks
-
[14] Chen, C.S., Chen, J.S., Rotor fault diagnosis system based on sGA-based individual neural networks. Expert Syst. Appl. 38 (2011), 10822–10830.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 10822-10830
-
-
Chen, C.S.1
Chen, J.S.2
-
15
-
-
84873857181
-
Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet SVM
-
[15] Keskes, H., Braham, A., Lachiri, Z., Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet SVM. Electr. Power Syst. Res. 97 (2013), 151–157.
-
(2013)
Electr. Power Syst. Res.
, vol.97
, pp. 151-157
-
-
Keskes, H.1
Braham, A.2
Lachiri, Z.3
-
16
-
-
84963631019
-
Detecting broken rotor bars in induction motors with model-based support vector classifiers
-
[16] Mustafa, M.O., Varagnolo, D., Nikolakopoulos, G., Detecting broken rotor bars in induction motors with model-based support vector classifiers. Control Eng. Pract. 52 (2016), 15–23.
-
(2016)
Control Eng. Pract.
, vol.52
, pp. 15-23
-
-
Mustafa, M.O.1
Varagnolo, D.2
Nikolakopoulos, G.3
-
17
-
-
84930630277
-
Review: deep learning
-
[17] LeCun, Y., Bengio, Y., Hinton, G.E., Review: deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.E.3
-
18
-
-
84946064662
-
Rolling bearing fault diagnosis using an optimization deep belief network
-
[18] Shao, H.D., Jiang, H.K., Zhang, X., Niu, M.G., Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol., 26, 2015, 115002.
-
(2015)
Meas. Sci. Technol.
, vol.26
-
-
Shao, H.D.1
Jiang, H.K.2
Zhang, X.3
Niu, M.G.4
-
19
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification
-
[19] Tamilselvan, P., Wang, P.F., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 115 (2013), 124–135.
-
(2013)
Reliab. Eng. Syst. Saf.
, vol.115
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.F.2
-
20
-
-
84893464266
-
An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks
-
[20] Tran, V.T., AlThobiani, F., Ball, A., An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Syst. Appl. 41 (2014), 4113–4122.
-
(2014)
Expert Syst. Appl.
, vol.41
, pp. 4113-4122
-
-
Tran, V.T.1
AlThobiani, F.2
Ball, A.3
-
21
-
-
84973470244
-
Convolutional neural network based fault detection for rotating machinery
-
[21] Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S., Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 377 (2016), 331–345.
-
(2016)
J. Sound Vib.
, vol.377
, pp. 331-345
-
-
Janssens, O.1
Slavkovikj, V.2
Vervisch, B.3
Stockman, K.4
Loccufier, M.5
Verstockt, S.6
-
22
-
-
84946042100
-
Gearbox fault identification and classification with convolutional neural networks
-
[22] Chen, Z.Q., Li, C., Sanchez, R.V., Gearbox fault identification and classification with convolutional neural networks. Shock Vib. 2 (2015), 1–10.
-
(2015)
Shock Vib.
, vol.2
, pp. 1-10
-
-
Chen, Z.Q.1
Li, C.2
Sanchez, R.V.3
-
23
-
-
84964855691
-
A sparse auto-encoder-based deep neural network approach for induction motor faults classification
-
[23] Sun, W.J., Shao, S.Y, Zhao, R., Yan, R.Q., Zhang, X.W., Chen, X.F., A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 89 (2016), 171–178.
-
(2016)
Measurement
, vol.89
, pp. 171-178
-
-
Sun, W.J.1
Shao, S.Y.2
Zhao, R.3
Yan, R.Q.4
Zhang, X.W.5
Chen, X.F.6
-
24
-
-
84978003686
-
A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm
-
[24] Leng, J.W., Jiang, P.Y., A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm. Knowl.-Based Syst. 100 (2016), 188–199.
-
(2016)
Knowl.-Based Syst.
, vol.100
, pp. 188-199
-
-
Leng, J.W.1
Jiang, P.Y.2
-
25
-
-
79551480483
-
stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
-
[25] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
26
-
-
84922351373
-
Two-layer contractive encodings for learning stable nonlinear features
-
[26] Schulza, H., Chob, K., Raikob, T., Behnkea, S., Two-layer contractive encodings for learning stable nonlinear features. Neural Netw. 64 (2015), 4–11.
-
(2015)
Neural Netw.
, vol.64
, pp. 4-11
-
-
Schulza, H.1
Chob, K.2
Raikob, T.3
Behnkea, S.4
-
27
-
-
84961588241
-
ECG signal enhancement based on improved denoising auto-encoder
-
[27] Xiong, P., Wang, H.R., Liu, M., Zhou, S.P., Hou, Z.G., Liu, X.L., ECG signal enhancement based on improved denoising auto-encoder. Eng. Appl. Artif. Intell. 52 (2016), 194–202.
-
(2016)
Eng. Appl. Artif. Intell.
, vol.52
, pp. 194-202
-
-
Xiong, P.1
Wang, H.R.2
Liu, M.3
Zhou, S.P.4
Hou, Z.G.5
Liu, X.L.6
-
28
-
-
84961344134
-
Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
-
[28] Zabalza, J., Ren, J.C, Zheng, J.B, Zhao, H.M, Qing, C.M, Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185 (2016), 1–10.
-
(2016)
Neurocomputing
, vol.185
, pp. 1-10
-
-
Zabalza, J.1
Ren, J.C.2
Zheng, J.B.3
Zhao, H.M.4
Qing, C.M.5
-
29
-
-
84912032961
-
A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification
-
[29] Ding, X.X., He, Q.B., Luo, N.W., A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification. J. Sound Vib. 335 (2015), 367–383.
-
(2015)
J. Sound Vib.
, vol.335
, pp. 367-383
-
-
Ding, X.X.1
He, Q.B.2
Luo, N.W.3
-
30
-
-
79960043301
-
Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models
-
[30] Yu, J.B., Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models. Mech. Syst. Signal Process. 25 (2011), 2573–2588.
-
(2011)
Mech. Syst. Signal Process.
, vol.25
, pp. 2573-2588
-
-
Yu, J.B.1
-
31
-
-
84967211780
-
Multiple empirical kernel learning with locality preserving constraint
-
[31] Fan, Q., Gao, D.Q., Wang, Z., Multiple empirical kernel learning with locality preserving constraint. Knowl.-Based Syst. 105 (2016), 107–118.
-
(2016)
Knowl.-Based Syst.
, vol.105
, pp. 107-118
-
-
Fan, Q.1
Gao, D.Q.2
Wang, Z.3
-
32
-
-
84879854889
-
A review and new perspectives
-
[32] Bengio, Y., Courville, A., Learning, Representation, A review and new perspectives. IEEE Trans. Softw. Eng. 35 (2013), 1798–1828.
-
(2013)
IEEE Trans. Softw. Eng.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Learning, R.3
-
33
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
[33] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S., Why does unsupervised pre-training help deep learning?. J. Mach. Learn. Res. 11 (2010), 625–660.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.A.4
Vincent, P.5
Bengio, S.6
-
34
-
-
84983314971
-
Randomized algorithms for nonlinear system identification with deep learning modification
-
[34] Rosa, E.D.L, Yu, W., Randomized algorithms for nonlinear system identification with deep learning modification. Inf. Sci. 364–365 (2016), 197–212.
-
(2016)
Inf. Sci.
, vol.364-365
, pp. 197-212
-
-
Rosa, E.D.L.1
Yu, W.2
-
35
-
-
84929944640
-
Deep learning with support vector data description
-
[35] Kim, S., Choi, Y., Lee, M., Deep learning with support vector data description. Neurocomputing 165 (2015), 111–117.
-
(2015)
Neurocomputing
, vol.165
, pp. 111-117
-
-
Kim, S.1
Choi, Y.2
Lee, M.3
-
36
-
-
84997402909
-
Automatic multi-fault recognition in TFDS based on convolutional neural network
-
[36] Sun, J.H., Xiao, Z.W., Xie, Y.X., Automatic multi-fault recognition in TFDS based on convolutional neural network. Neurocomputing 222 (2017), 127–136.
-
(2017)
Neurocomputing
, vol.222
, pp. 127-136
-
-
Sun, J.H.1
Xiao, Z.W.2
Xie, Y.X.3
-
37
-
-
85010258311
-
-
[37] http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website, 2003.
-
(2003)
-
-
-
38
-
-
85010269545
-
-
[38] http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/, 2007.
-
(2007)
-
-
-
39
-
-
84922001304
-
Condition diagnosis of multiple bearings using adaptive operator probabilities in genetic algorithms and back propagation neural networks
-
[39] Wulandhari, L.A., Wibowo, A., Desa, M.I., Condition diagnosis of multiple bearings using adaptive operator probabilities in genetic algorithms and back propagation neural networks. Neural Comput. Appl. 26 (2015), 57–65.
-
(2015)
Neural Comput. Appl.
, vol.26
, pp. 57-65
-
-
Wulandhari, L.A.1
Wibowo, A.2
Desa, M.I.3
-
40
-
-
33644547646
-
Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
-
[40] Qiu, H., Lee, J., Lin, J., Yu, G., Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J. Sound Vib. 289 (2006), 1066–1090.
-
(2006)
J. Sound Vib.
, vol.289
, pp. 1066-1090
-
-
Qiu, H.1
Lee, J.2
Lin, J.3
Yu, G.4
-
41
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
[41] Demsar, J., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
42
-
-
58149287952
-
An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
-
[42] Garcia, S., Herrera, F., An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J. Mach. Learn. Res. 9 (2008), 2677–2694.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2677-2694
-
-
Garcia, S.1
Herrera, F.2
|