메뉴 건너뛰기




Volumn 119, Issue , 2017, Pages 200-220

An enhancement deep feature fusion method for rotating machinery fault diagnosis

Author keywords

Deep feature fusion; Fault diagnosis; Feature enhancement; Locality preserving projection; Rotating machinery

Indexed keywords

FAILURE ANALYSIS; LEARNING SYSTEMS; MACHINERY; ROTATING MACHINERY;

EID: 85008219650     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2016.12.012     Document Type: Article
Times cited : (285)

References (42)
  • 1
    • 84875269406 scopus 로고    scopus 로고
    • An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
    • [1] Jiang, H.K., Li, C.L., Li, H.X., An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mech. Syst. Signal Process. 36 (2013), 225–239.
    • (2013) Mech. Syst. Signal Process. , vol.36 , pp. 225-239
    • Jiang, H.K.1    Li, C.L.2    Li, H.X.3
  • 2
    • 84887125031 scopus 로고    scopus 로고
    • Motor bearing fault diagnosis using trace ratio linear discriminant analysis
    • [2] Jin, X., Zhao, M., Chow, T.W.S., Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans. Ind. Electron. 61 (2014), 2441–2451.
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , pp. 2441-2451
    • Jin, X.1    Zhao, M.2    Chow, T.W.S.3
  • 3
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • [3] Jia, F., Lei, Y.G., Lin, J., Zhou, X., Lu, N., Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 72-73 (2016), 303–315.
    • (2016) Mech. Syst. Signal Process. , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.G.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 4
    • 79951581707 scopus 로고    scopus 로고
    • EEMD method and WNN for fault diagnosis of locomotive roller bearings
    • [4] Lei, Y.G., He, Z.J., Zi, Y.Y., EEMD method and WNN for fault diagnosis of locomotive roller bearings. Expert Syst. Appl. 38 (2011), 7334–7341.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 7334-7341
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 5
    • 84894063847 scopus 로고    scopus 로고
    • A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings
    • [5] Liu, H.H., Han, M.H., A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings. Mech. Mach. Theory 75 (2014), 67–78.
    • (2014) Mech. Mach. Theory , vol.75 , pp. 67-78
    • Liu, H.H.1    Han, M.H.2
  • 6
    • 84870442060 scopus 로고    scopus 로고
    • Roller element bearing fault diagnosis using singular spectrum analysis
    • [6] Muruganatham, B., Sanjith, M.A., Krishnakumar, B., Roller element bearing fault diagnosis using singular spectrum analysis. Mech. Syst. Signal Process. 35 (2013), 150–166.
    • (2013) Mech. Syst. Signal Process. , vol.35 , pp. 150-166
    • Muruganatham, B.1    Sanjith, M.A.2    Krishnakumar, B.3
  • 7
    • 33646519024 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on EMD energy entropy and ANN
    • [7] Yu, Y., Yu, D.J., Cheng, J.S., A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294 (2006), 269–277.
    • (2006) J. Sound Vib. , vol.294 , pp. 269-277
    • Yu, Y.1    Yu, D.J.2    Cheng, J.S.3
  • 8
    • 84944355420 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
    • [8] Zhang, X.L., Wang, B.J., Chen, X.F., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowl.-Based Syst. 89 (2015), 56–85.
    • (2015) Knowl.-Based Syst. , vol.89 , pp. 56-85
    • Zhang, X.L.1    Wang, B.J.2    Chen, X.F.3
  • 9
    • 84960297163 scopus 로고    scopus 로고
    • A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling
    • [9] Hussein, A., Irina, T., A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling. J. Sound Vib. 369 (2016), 246–265.
    • (2016) J. Sound Vib. , vol.369 , pp. 246-265
    • Hussein, A.1    Irina, T.2
  • 10
    • 84952894365 scopus 로고    scopus 로고
    • Hierarchical fuzzy entropy and improved support vector machine based binary tree approach for rolling bearing fault diagnosis
    • [10] Li, Y.B., Xu, M.Q., Zhao, H.Y., Huang, W.H., Hierarchical fuzzy entropy and improved support vector machine based binary tree approach for rolling bearing fault diagnosis. Mech. Mach. Theory 98 (2016), 114–132.
    • (2016) Mech. Mach. Theory , vol.98 , pp. 114-132
    • Li, Y.B.1    Xu, M.Q.2    Zhao, H.Y.3    Huang, W.H.4
  • 11
    • 84961285424 scopus 로고    scopus 로고
    • Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis
    • [11] Liu, R.N., Yang, B.Y., Zhang, X.L., Wang, S.B., Chen, X.F., Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis. Mech. Syst. Signal Process. 75 (2016), 345–370.
    • (2016) Mech. Syst. Signal Process. , vol.75 , pp. 345-370
    • Liu, R.N.1    Yang, B.Y.2    Zhang, X.L.3    Wang, S.B.4    Chen, X.F.5
  • 12
    • 84955757234 scopus 로고    scopus 로고
    • A novel identification method of Volterra series in rotor-bearing system for fault diagnosis
    • [12] Xia, X., Zhou, J.Z., Xiao, J., A novel identification method of Volterra series in rotor-bearing system for fault diagnosis. Mech. Syst. Signal Process. 66-67 (2016), 557–567.
    • (2016) Mech. Syst. Signal Process. , vol.66-67 , pp. 557-567
    • Xia, X.1    Zhou, J.Z.2    Xiao, J.3
  • 13
    • 84922897041 scopus 로고    scopus 로고
    • Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery
    • [13] Lu, N., Xiao, Z.H., Malik, O.P, Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 52-53 (2015), 393–415.
    • (2015) Mech. Syst. Signal Process. , vol.52-53 , pp. 393-415
    • Lu, N.1    Xiao, Z.H.2    Malik, O.P.3
  • 14
    • 79955607648 scopus 로고    scopus 로고
    • Rotor fault diagnosis system based on sGA-based individual neural networks
    • [14] Chen, C.S., Chen, J.S., Rotor fault diagnosis system based on sGA-based individual neural networks. Expert Syst. Appl. 38 (2011), 10822–10830.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 10822-10830
    • Chen, C.S.1    Chen, J.S.2
  • 15
    • 84873857181 scopus 로고    scopus 로고
    • Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet SVM
    • [15] Keskes, H., Braham, A., Lachiri, Z., Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet SVM. Electr. Power Syst. Res. 97 (2013), 151–157.
    • (2013) Electr. Power Syst. Res. , vol.97 , pp. 151-157
    • Keskes, H.1    Braham, A.2    Lachiri, Z.3
  • 16
    • 84963631019 scopus 로고    scopus 로고
    • Detecting broken rotor bars in induction motors with model-based support vector classifiers
    • [16] Mustafa, M.O., Varagnolo, D., Nikolakopoulos, G., Detecting broken rotor bars in induction motors with model-based support vector classifiers. Control Eng. Pract. 52 (2016), 15–23.
    • (2016) Control Eng. Pract. , vol.52 , pp. 15-23
    • Mustafa, M.O.1    Varagnolo, D.2    Nikolakopoulos, G.3
  • 17
    • 84930630277 scopus 로고    scopus 로고
    • Review: deep learning
    • [17] LeCun, Y., Bengio, Y., Hinton, G.E., Review: deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.E.3
  • 18
    • 84946064662 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis using an optimization deep belief network
    • [18] Shao, H.D., Jiang, H.K., Zhang, X., Niu, M.G., Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol., 26, 2015, 115002.
    • (2015) Meas. Sci. Technol. , vol.26
    • Shao, H.D.1    Jiang, H.K.2    Zhang, X.3    Niu, M.G.4
  • 19
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • [19] Tamilselvan, P., Wang, P.F., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 115 (2013), 124–135.
    • (2013) Reliab. Eng. Syst. Saf. , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.F.2
  • 20
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks
    • [20] Tran, V.T., AlThobiani, F., Ball, A., An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Syst. Appl. 41 (2014), 4113–4122.
    • (2014) Expert Syst. Appl. , vol.41 , pp. 4113-4122
    • Tran, V.T.1    AlThobiani, F.2    Ball, A.3
  • 22
    • 84946042100 scopus 로고    scopus 로고
    • Gearbox fault identification and classification with convolutional neural networks
    • [22] Chen, Z.Q., Li, C., Sanchez, R.V., Gearbox fault identification and classification with convolutional neural networks. Shock Vib. 2 (2015), 1–10.
    • (2015) Shock Vib. , vol.2 , pp. 1-10
    • Chen, Z.Q.1    Li, C.2    Sanchez, R.V.3
  • 23
    • 84964855691 scopus 로고    scopus 로고
    • A sparse auto-encoder-based deep neural network approach for induction motor faults classification
    • [23] Sun, W.J., Shao, S.Y, Zhao, R., Yan, R.Q., Zhang, X.W., Chen, X.F., A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 89 (2016), 171–178.
    • (2016) Measurement , vol.89 , pp. 171-178
    • Sun, W.J.1    Shao, S.Y.2    Zhao, R.3    Yan, R.Q.4    Zhang, X.W.5    Chen, X.F.6
  • 24
    • 84978003686 scopus 로고    scopus 로고
    • A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm
    • [24] Leng, J.W., Jiang, P.Y., A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm. Knowl.-Based Syst. 100 (2016), 188–199.
    • (2016) Knowl.-Based Syst. , vol.100 , pp. 188-199
    • Leng, J.W.1    Jiang, P.Y.2
  • 25
    • 79551480483 scopus 로고    scopus 로고
    • stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • [25] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 26
    • 84922351373 scopus 로고    scopus 로고
    • Two-layer contractive encodings for learning stable nonlinear features
    • [26] Schulza, H., Chob, K., Raikob, T., Behnkea, S., Two-layer contractive encodings for learning stable nonlinear features. Neural Netw. 64 (2015), 4–11.
    • (2015) Neural Netw. , vol.64 , pp. 4-11
    • Schulza, H.1    Chob, K.2    Raikob, T.3    Behnkea, S.4
  • 28
    • 84961344134 scopus 로고    scopus 로고
    • Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
    • [28] Zabalza, J., Ren, J.C, Zheng, J.B, Zhao, H.M, Qing, C.M, Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185 (2016), 1–10.
    • (2016) Neurocomputing , vol.185 , pp. 1-10
    • Zabalza, J.1    Ren, J.C.2    Zheng, J.B.3    Zhao, H.M.4    Qing, C.M.5
  • 29
    • 84912032961 scopus 로고    scopus 로고
    • A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification
    • [29] Ding, X.X., He, Q.B., Luo, N.W., A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification. J. Sound Vib. 335 (2015), 367–383.
    • (2015) J. Sound Vib. , vol.335 , pp. 367-383
    • Ding, X.X.1    He, Q.B.2    Luo, N.W.3
  • 30
    • 79960043301 scopus 로고    scopus 로고
    • Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models
    • [30] Yu, J.B., Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models. Mech. Syst. Signal Process. 25 (2011), 2573–2588.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 2573-2588
    • Yu, J.B.1
  • 31
    • 84967211780 scopus 로고    scopus 로고
    • Multiple empirical kernel learning with locality preserving constraint
    • [31] Fan, Q., Gao, D.Q., Wang, Z., Multiple empirical kernel learning with locality preserving constraint. Knowl.-Based Syst. 105 (2016), 107–118.
    • (2016) Knowl.-Based Syst. , vol.105 , pp. 107-118
    • Fan, Q.1    Gao, D.Q.2    Wang, Z.3
  • 34
    • 84983314971 scopus 로고    scopus 로고
    • Randomized algorithms for nonlinear system identification with deep learning modification
    • [34] Rosa, E.D.L, Yu, W., Randomized algorithms for nonlinear system identification with deep learning modification. Inf. Sci. 364–365 (2016), 197–212.
    • (2016) Inf. Sci. , vol.364-365 , pp. 197-212
    • Rosa, E.D.L.1    Yu, W.2
  • 35
    • 84929944640 scopus 로고    scopus 로고
    • Deep learning with support vector data description
    • [35] Kim, S., Choi, Y., Lee, M., Deep learning with support vector data description. Neurocomputing 165 (2015), 111–117.
    • (2015) Neurocomputing , vol.165 , pp. 111-117
    • Kim, S.1    Choi, Y.2    Lee, M.3
  • 36
    • 84997402909 scopus 로고    scopus 로고
    • Automatic multi-fault recognition in TFDS based on convolutional neural network
    • [36] Sun, J.H., Xiao, Z.W., Xie, Y.X., Automatic multi-fault recognition in TFDS based on convolutional neural network. Neurocomputing 222 (2017), 127–136.
    • (2017) Neurocomputing , vol.222 , pp. 127-136
    • Sun, J.H.1    Xiao, Z.W.2    Xie, Y.X.3
  • 37
    • 85010258311 scopus 로고    scopus 로고
    • [37] http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website, 2003.
    • (2003)
  • 38
    • 85010269545 scopus 로고    scopus 로고
    • [38] http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/, 2007.
    • (2007)
  • 39
    • 84922001304 scopus 로고    scopus 로고
    • Condition diagnosis of multiple bearings using adaptive operator probabilities in genetic algorithms and back propagation neural networks
    • [39] Wulandhari, L.A., Wibowo, A., Desa, M.I., Condition diagnosis of multiple bearings using adaptive operator probabilities in genetic algorithms and back propagation neural networks. Neural Comput. Appl. 26 (2015), 57–65.
    • (2015) Neural Comput. Appl. , vol.26 , pp. 57-65
    • Wulandhari, L.A.1    Wibowo, A.2    Desa, M.I.3
  • 40
    • 33644547646 scopus 로고    scopus 로고
    • Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
    • [40] Qiu, H., Lee, J., Lin, J., Yu, G., Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J. Sound Vib. 289 (2006), 1066–1090.
    • (2006) J. Sound Vib. , vol.289 , pp. 1066-1090
    • Qiu, H.1    Lee, J.2    Lin, J.3    Yu, G.4
  • 41
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • [41] Demsar, J., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 42
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • [42] Garcia, S., Herrera, F., An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J. Mach. Learn. Res. 9 (2008), 2677–2694.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.