-
1
-
-
84948464999
-
Preclinical mouse cancer models: a maze of opportunities and challenges
-
COI: 1:CAS:528:DC%2BC2MXhsFKqtrrM, PID: 26406370
-
Day, C. P., Merlino, G. & Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163, 39–53 (2015).
-
(2015)
Cell
, vol.163
, pp. 39-53
-
-
Day, C.P.1
Merlino, G.2
Van Dyke, T.3
-
2
-
-
84929172879
-
Translational value of mouse models in oncology drug development
-
COI: 1:CAS:528:DC%2BC2MXnvFWjsr4%3D, PID: 25951530
-
Gould, S. E., Junttila, M. R. & de Sauvage, F. J. Translational value of mouse models in oncology drug development. Nat. Med. 21, 431–439 (2015).
-
(2015)
Nat. Med.
, vol.21
, pp. 431-439
-
-
Gould, S.E.1
Junttila, M.R.2
de Sauvage, F.J.3
-
3
-
-
0032410157
-
Orthotopic models are necessary to predict therapy of transplantable tumors in mice
-
COI: 1:STN:280:DyaK1M3otFWntQ%3D%3D
-
Killion, J. J., Radinsky, R. & Fidler, I. J. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 17, 279–284 (1999).
-
(1999)
Cancer Metastasis Rev.
, vol.17
, pp. 279-284
-
-
Killion, J.J.1
Radinsky, R.2
Fidler, I.J.3
-
4
-
-
84901756102
-
In vitro cell migration and invasion assays
-
Justus, C. R., Leffler, N., Ruiz-Echevarria, M. & Yang, L. V. In vitro cell migration and invasion assays. J. Vis. Exp. 88, 51046 (2014).
-
(2014)
J. Vis. Exp.
, vol.88
, pp. 51046
-
-
Justus, C.R.1
Leffler, N.2
Ruiz-Echevarria, M.3
Yang, L.V.4
-
5
-
-
84869495994
-
Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy
-
COI: 1:CAS:528:DC%2BC38Xot12lsLc%3D, PID: 22613880
-
Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D. & Takayama, S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control. Release 164, 192–204 (2012).
-
(2012)
J. Control. Release
, vol.164
, pp. 192-204
-
-
Mehta, G.1
Hsiao, A.Y.2
Ingram, M.3
Luker, G.D.4
Takayama, S.5
-
6
-
-
84901014044
-
Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors
-
COI: 1:CAS:528:DC%2BC2cXotVantLY%3D, PID: 24831787
-
Edmondson, R., Broglie, J. J., Adcock, A. F. & Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12, 207–218 (2014).
-
(2014)
Assay Drug Dev. Technol.
, vol.12
, pp. 207-218
-
-
Edmondson, R.1
Broglie, J.J.2
Adcock, A.F.3
Yang, L.4
-
7
-
-
77953916745
-
Multicellular tumor spheroids: an underestimated tool is catching up again
-
COI: 1:CAS:528:DC%2BC3cXnvVOqtbc%3D, PID: 20097238
-
Hirschhaeuser, F. et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148, 3–15 (2010).
-
(2010)
J. Biotechnol.
, vol.148
, pp. 3-15
-
-
Hirschhaeuser, F.1
-
8
-
-
84928721399
-
By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization
-
PID: 4496208
-
Guan, P.-P. et al. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization. Oncotarget 6, 9140–9159 (2015).
-
(2015)
Oncotarget
, vol.6
, pp. 9140-9159
-
-
Guan, P.-P.1
-
9
-
-
4944266313
-
High interstitial fluid pressure — an obstacle in cancer therapy
-
COI: 1:CAS:528:DC%2BD2cXos1ymu7s%3D, PID: 15510161
-
Heldin, C.-H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).
-
(2004)
Nat. Rev. Cancer
, vol.4
, pp. 806-813
-
-
Heldin, C.-H.1
Rubin, K.2
Pietras, K.3
Ostman, A.4
-
10
-
-
79960608623
-
Interstitial flow influences direction of tumor cell migration through competing mechanisms
-
COI: 1:CAS:528:DC%2BC3MXptV2htbo%3D, PID: 21690404
-
Polacheck, W. J., Charest, J. L. & Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA 108, 11115–11120 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 11115-11120
-
-
Polacheck, W.J.1
Charest, J.L.2
Kamm, R.D.3
-
11
-
-
84872112432
-
Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice
-
COI: 1:CAS:528:DC%2BC38XhsFCmt77N, PID: 22843617
-
Ghosh, S. P. et al. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice. J. Radiat. Res. 53, 526–536 (2012).
-
(2012)
J. Radiat. Res.
, vol.53
, pp. 526-536
-
-
Ghosh, S.P.1
-
12
-
-
85050695162
-
Mechanobiology of tumor growth
-
COI: 1:CAS:528:DC%2BC1cXhtFKks7zM, PID: 29927236
-
Chaudhuri, P. K., Low, B. C. & Lim, C. T. Mechanobiology of tumor growth. Chem. Rev. 118, 6499–6515 (2018).
-
(2018)
Chem. Rev.
, vol.118
, pp. 6499-6515
-
-
Chaudhuri, P.K.1
Low, B.C.2
Lim, C.T.3
-
13
-
-
85045906626
-
Organoids in cancer research
-
COI: 1:CAS:528:DC%2BC1cXosVCgtbw%3D, PID: 29692415
-
Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).
-
(2018)
Nat. Rev. Cancer
, vol.18
, pp. 407-418
-
-
Drost, J.1
Clevers, H.2
-
14
-
-
0036591838
-
Engineering cellular microenvironments to improve cell-based drug testing
-
COI: 1:CAS:528:DC%2BD38XktFKnsLs%3D, PID: 12047872
-
Bhadriraju, K. & Chen, C. S. Engineering cellular microenvironments to improve cell-based drug testing. Drug Discov. Today 7, 612–620 (2002).
-
(2002)
Drug Discov. Today
, vol.7
, pp. 612-620
-
-
Bhadriraju, K.1
Chen, C.S.2
-
15
-
-
84905754409
-
Microfluidic organs-on-chips
-
COI: 1:CAS:528:DC%2BC2cXht1Oqur7K, PID: 25093883
-
Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 760-772
-
-
Bhatia, S.N.1
Ingber, D.E.2
-
16
-
-
85056273344
-
Scalable fabrication of stretchable, dual channel, microfluidic organ chips
-
Novak, R. et al. Scalable fabrication of stretchable, dual channel, microfluidic organ chips. J. Vis. Exp. 140, e58151 (2018).
-
(2018)
J. Vis. Exp.
, vol.140
-
-
Novak, R.1
-
17
-
-
85023770580
-
Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics
-
COI: 1:CAS:528:DC%2BC1cXnt1SlsQ%3D%3D, PID: 28516446
-
Jain, A. et al. Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin. Pharmacol. Ther. 103, 332–340 (2018).
-
(2018)
Clin. Pharmacol. Ther.
, vol.103
, pp. 332-340
-
-
Jain, A.1
-
18
-
-
85046131849
-
Organ-on-chip recapitulates thrombosis induced by an anti-CD154 monoclonal antibody: translational potential of advanced microengineered systems
-
COI: 1:CAS:528:DC%2BC1cXit1Sgtr3O, PID: 29484632
-
Barrile, R. et al. Organ-on-chip recapitulates thrombosis induced by an anti-CD154 monoclonal antibody: translational potential of advanced microengineered systems. Clin. Pharmacol. Ther. 104, 1240–1248 (2018).
-
(2018)
Clin. Pharmacol. Ther.
, vol.104
, pp. 1240-1248
-
-
Barrile, R.1
-
19
-
-
85030836956
-
Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro
-
COI: 1:CAS:528:DC%2BC2sXhs1Chs7%2FK, PID: 29020635, This study describes the development of a human lung cancer chip that recapitulates tumour growth, invasion patterns and responses to therapy observed patients
-
Hassell, B. A. et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep. 21, 508–516 (2017). This study describes the development of a human lung cancer chip that recapitulates tumour growth, invasion patterns and responses to therapy observed in patients.
-
(2017)
Cell Rep.
, vol.21
, pp. 508-516
-
-
Hassell, B.A.1
-
20
-
-
84938340959
-
A microengineered pathophysiological model of early-stage breast cancer
-
COI: 1:CAS:528:DC%2BC2MXhtFChtL%2FP, PID: 26158500, This study describes the generation of an early-stage breast cancer chip model that can be used to evaluate the efficacy and toxicity of an anticancer drug
-
Choi, Y. et al. A microengineered pathophysiological model of early-stage breast cancer. Lab Chip 15, 3350–3357 (2015). This study describes the generation of an early-stage breast cancer chip model that can be used to evaluate the efficacy and toxicity of an anticancer drug.
-
(2015)
Lab Chip
, vol.15
, pp. 3350-3357
-
-
Choi, Y.1
-
21
-
-
85020519193
-
Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip
-
PID: 29038743
-
Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).
-
(2017)
Nat. Biomed. Eng.
, vol.1
, pp. 0069
-
-
Musah, S.1
-
22
-
-
77954038080
-
Reconstituting organ-level lung functions on a chip
-
COI: 1:CAS:528:DC%2BC3cXnvVekur0%3D, PID: 20576885
-
Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).
-
(2010)
Science
, vol.328
, pp. 1662-1668
-
-
Huh, D.1
-
23
-
-
84869126274
-
A human disease model of drug toxicity — induced pulmonary edema in a lung-on-a-chip microdevice
-
PID: 23136042
-
Huh, D. et al. A human disease model of drug toxicity — induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl Med. 4, 159ra147 (2012).
-
(2012)
Sci. Transl Med.
, vol.4
, pp. 159ra147
-
-
Huh, D.1
-
24
-
-
84923127772
-
A lung-on-a-chip array with an integrated bio-inspired respiration mechanism
-
COI: 1:CAS:528:DC%2BC2cXitVWgur%2FO, PID: 25521475
-
Stucki, A. O. et al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15, 1302–1310 (2015).
-
(2015)
Lab Chip
, vol.15
, pp. 1302-1310
-
-
Stucki, A.O.1
-
25
-
-
84956654664
-
Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro
-
COI: 1:CAS:528:DC%2BC2MXitVKru77M, PID: 26689262
-
Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151–157 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 151-157
-
-
Benam, K.H.1
-
26
-
-
84996606989
-
Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip
-
COI: 1:CAS:528:DC%2BC2sXhtFals70%3D, PID: 27894999
-
Benam, K. H. et al. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst. 3, 456–466 (2016).
-
(2016)
Cell Syst.
, vol.3
, pp. 456-466
-
-
Benam, K.H.1
-
27
-
-
84905457584
-
A biomimetic multicellular model of the airways using primary human cells
-
COI: 1:CAS:528:DC%2BC2cXhtValsrnK, PID: 25000964
-
Sellgren, K. L., Butala, E. J., Gilmour, B. P., Randell, S. H. & Grego, S. A biomimetic multicellular model of the airways using primary human cells. Lab Chip 14, 3349–3358 (2014).
-
(2014)
Lab Chip
, vol.14
, pp. 3349-3358
-
-
Sellgren, K.L.1
Butala, E.J.2
Gilmour, B.P.3
Randell, S.H.4
Grego, S.5
-
28
-
-
84882590738
-
Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment
-
COI: 1:CAS:528:DC%2BC3sXhtlaitLrP
-
Jang, K.-J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119–1129 (2013).
-
(2013)
Integr. Biol.
, vol.5
, pp. 1119-1129
-
-
Jang, K.-J.1
-
29
-
-
84930959624
-
A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents
-
COI: 1:CAS:528:DC%2BC2MXot1Wqs7w%3D, PID: 25996126
-
Maschmeyer, I. et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15, 2688–2699 (2015).
-
(2015)
Lab Chip
, vol.15
, pp. 2688-2699
-
-
Maschmeyer, I.1
-
30
-
-
85049830424
-
Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip
-
COI: 1:CAS:528:DC%2BC1cXhtlWjtr7P, PID: 29995874
-
Musah, S., Dimitrakakis, N., Camacho, D. M., Church, G. M. & Ingber, D. E. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. Nat. Protoc. 13, 1662–1685 (2018).
-
(2018)
Nat. Protoc.
, vol.13
, pp. 1662-1685
-
-
Musah, S.1
Dimitrakakis, N.2
Camacho, D.M.3
Church, G.M.4
Ingber, D.E.5
-
31
-
-
84882627623
-
Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation
-
COI: 1:CAS:528:DC%2BC3sXhtlaitL3F
-
Kim, H. J. & Ingber, D. E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013).
-
(2013)
Integr. Biol.
, vol.5
, pp. 1130-1140
-
-
Kim, H.J.1
Ingber, D.E.2
-
32
-
-
85042054523
-
Development of a primary human small intestine-on-a-chip using biopsy-derived organoids
-
PID: 29440725
-
Kasendra, M. et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).
-
(2018)
Sci. Rep.
, vol.8
-
-
Kasendra, M.1
-
33
-
-
84904304750
-
Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury
-
COI: 1:CAS:528:DC%2BC2cXhtVKjs77P, PID: 24970651
-
Esch, M. B., Mahler, G. J., Stokol, T. & Shuler, M. L. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14, 3081–3092 (2014).
-
(2014)
Lab Chip
, vol.14
, pp. 3081-3092
-
-
Esch, M.B.1
Mahler, G.J.2
Stokol, T.3
Shuler, M.L.4
-
34
-
-
84902097724
-
Micropatterned cell–cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues
-
COI: 1:CAS:528:DC%2BC2cXhtlyku7rO, PID: 24498910
-
Li, C. Y. et al. Micropatterned cell–cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng. Part A 20, 2200–2212 (2014).
-
(2014)
Tissue Eng. Part A
, vol.20
, pp. 2200-2212
-
-
Li, C.Y.1
-
35
-
-
85039785618
-
Liver ‘organ on a chip’
-
COI: 1:CAS:528:DC%2BC1cXis1OqtA%3D%3D, PID: 29291400
-
Beckwitt, C. H. et al. Liver ‘organ on a chip’. Exp. Cell Res. 363, 15–25 (2018).
-
(2018)
Exp. Cell Res.
, vol.363
, pp. 15-25
-
-
Beckwitt, C.H.1
-
36
-
-
85032948672
-
Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment
-
COI: 1:CAS:528:DC%2BC1cXis12lsLk%3D, PID: 28658717
-
Sieber, S. et al. Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J. Tissue Eng. Regen. Med. 12, 479–489 (2018).
-
(2018)
J. Tissue Eng. Regen. Med.
, vol.12
, pp. 479-489
-
-
Sieber, S.1
-
37
-
-
84960888901
-
Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip
-
Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLOS ONE 11, 1–21 (2016).
-
(2016)
PLOS ONE
, vol.11
, pp. 1-21
-
-
Herland, A.1
-
38
-
-
85011002999
-
A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier
-
COI: 1:CAS:528:DC%2BC28XitVGms7%2FF, PID: 28001148
-
Adriani, G., Ma, D., Pavesi, A., Kamm, R. D. & Goh, E. L. K. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Lab Chip 17, 448–459 (2017).
-
(2017)
Lab Chip
, vol.17
, pp. 448-459
-
-
Adriani, G.1
Ma, D.2
Pavesi, A.3
Kamm, R.D.4
Goh, E.L.K.5
-
39
-
-
84978785813
-
Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening
-
COI: 1:CAS:528:DC%2BC28XhtF2mtrfO, PID: 27399645
-
Wang, Y. I., Abaci, H. E. & Shuler, M. L. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114, 184–194 (2017).
-
(2017)
Biotechnol. Bioeng.
, vol.114
, pp. 184-194
-
-
Wang, Y.I.1
Abaci, H.E.2
Shuler, M.L.3
-
40
-
-
84953273098
-
Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip
-
COI: 1:CAS:528:DC%2BC2MXitVWjtLbL, PID: 26668389
-
Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. E7-E15
-
-
Kim, H.J.1
Li, H.2
Collins, J.J.3
Ingber, D.E.4
-
41
-
-
85042066061
-
Modeling radiation injury-induced cell death and countermeasure drug responses in a human gut-on-a-chip
-
PID: 29445080
-
Jalili-Firoozinezhad, S. et al. Modeling radiation injury-induced cell death and countermeasure drug responses in a human gut-on-a-chip. Cell Death Dis. 9, 223 (2018).
-
(2018)
Cell Death Dis.
, vol.9
-
-
Jalili-Firoozinezhad, S.1
-
42
-
-
84902087268
-
Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies
-
COI: 1:CAS:528:DC%2BC2cXnslGksrs%3D, PID: 24813252
-
Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).
-
(2014)
Nat. Med.
, vol.20
, pp. 616-623
-
-
Wang, G.1
-
43
-
-
84874816346
-
Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells
-
COI: 1:CAS:528:DC%2BC3sXjtlGns7s%3D
-
Montanez-Sauri, S. I., Sung, K. E., Berthier, E. & Beebe, D. J. Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells. Integr. Biol. 5, 631–640 (2013).
-
(2013)
Integr. Biol.
, vol.5
, pp. 631-640
-
-
Montanez-Sauri, S.I.1
Sung, K.E.2
Berthier, E.3
Beebe, D.J.4
-
44
-
-
84887770767
-
Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity
-
COI: 1:CAS:528:DC%2BC3sXntV2itbk%3D
-
Lang, J. D., Berry, S. M., Powers, G. L., Beebe, D. J. & Alarid, E. T. Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr. Biol. 5, 807–816 (2013).
-
(2013)
Integr. Biol.
, vol.5
, pp. 807-816
-
-
Lang, J.D.1
Berry, S.M.2
Powers, G.L.3
Beebe, D.J.4
Alarid, E.T.5
-
45
-
-
84979031905
-
Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments
-
PID: 27432323
-
Regier, M. C. et al. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments. Biomed. Microdevices 18, 70 (2016).
-
(2016)
Biomed. Microdevices
, vol.18
-
-
Regier, M.C.1
-
46
-
-
0024549349
-
Induction of angiogenesis during the transition from hyperplasia to neoplasia
-
COI: 1:STN:280:DyaL1M3jvVGntg%3D%3D, PID: 2469964
-
Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).
-
(1989)
Nature
, vol.339
, pp. 58-61
-
-
Folkman, J.1
Watson, K.2
Ingber, D.3
Hanahan, D.4
-
47
-
-
84876872941
-
Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro
-
COI: 1:CAS:528:DC%2BC3sXot1Ghs7Y%3D, PID: 23569284, This paper describes how angiogenic sprouting can be replicated a microfluidic device and how this model enables the investigation of the effects of angiogenic inhibitors on sprouting morphogenesis
-
Nguyen, D.-H. T. et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl Acad. Sci. USA 110, 6712–6717 (2013). This paper describes how angiogenic sprouting can be replicated in a microfluidic device and how this model enables the investigation of the effects of angiogenic inhibitors on sprouting morphogenesis.
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 6712-6717
-
-
Nguyen, D.-H.T.1
-
48
-
-
84884688355
-
Mechanisms of tumor cell extravasation in an in vitro microvascular network platform
-
COI: 1:CAS:528:DC%2BC3sXhsFegtL3K
-
Chen, M. B., Whisler, J. A., Jeon, J. S. & Kamm, R. D. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. 5, 1262–1271 (2013).
-
(2013)
Integr. Biol.
, vol.5
, pp. 1262-1271
-
-
Chen, M.B.1
Whisler, J.A.2
Jeon, J.S.3
Kamm, R.D.4
-
49
-
-
84879980292
-
In vitro perfused human capillary networks
-
COI: 1:CAS:528:DC%2BC3sXhtFOju7zI
-
Moya, M. L., Hsu, Y.-H., Lee, A. P., Hughes, C. C. W. & George, S. C. In vitro perfused human capillary networks. Tissue Eng. Part C 19, 730–737 (2013).
-
(2013)
Tissue Eng. Part C
, vol.19
, pp. 730-737
-
-
Moya, M.L.1
Hsu, Y.-H.2
Lee, A.P.3
Hughes, C.C.W.4
George, S.C.5
-
50
-
-
84870672834
-
Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels
-
COI: 1:CAS:528:DC%2BC38XhslarsLzN, PID: 23191982
-
Bischel, L. L., Young, E. W. K., Mader, B. R. & Beebe, D. J. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34, 1471–1477 (2013).
-
(2013)
Biomaterials
, vol.34
, pp. 1471-1477
-
-
Bischel, L.L.1
Young, E.W.K.2
Mader, B.R.3
Beebe, D.J.4
-
51
-
-
84880346720
-
Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients
-
COI: 1:CAS:528:DC%2BC3sXhtFSrtLfE, PID: 23787488
-
Baker, B. M., Trappmann, B., Stapleton, S. C., Toro, E. & Chen, C. S. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13, 3246 (2013).
-
(2013)
Lab Chip
, vol.13
, pp. 3246
-
-
Baker, B.M.1
Trappmann, B.2
Stapleton, S.C.3
Toro, E.4
Chen, C.S.5
-
52
-
-
84953409561
-
Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels
-
PID: 26616908
-
Wang, X. et al. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 16, 282–290 (2016).
-
(2016)
Lab Chip
, vol.16
, pp. 282-290
-
-
Wang, X.1
-
53
-
-
84876704168
-
Engineering of functional, perfusable 3D microvascular networks on a chip
-
COI: 1:CAS:528:DC%2BC3sXkt1Gkt7c%3D, PID: 23440068
-
Kim, S., Lee, H., Chung, M. & Jeon, N. L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13, 1489–1500 (2013).
-
(2013)
Lab Chip
, vol.13
, pp. 1489-1500
-
-
Kim, S.1
Lee, H.2
Chung, M.3
Jeon, N.L.4
-
54
-
-
85046654140
-
3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis
-
COI: 1:CAS:528:DC%2BC1cXmt1ansLg%3D, PID: 29747161
-
Miller, C. P., Tsuchida, C., Zheng, Y., Himmelfarb, J. & Akilesh, S. A. 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia 20, 610–620 (2018).
-
(2018)
Neoplasia
, vol.20
, pp. 610-620
-
-
Miller, C.P.1
Tsuchida, C.2
Zheng, Y.3
Himmelfarb, J.4
Akilesh, S.A.5
-
55
-
-
84953439772
-
Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform
-
COI: 1:CAS:528:DC%2BC2MXhtVSgsrnE, PID: 26087389
-
Wu, X., Newbold, M. A. & Haynes, C. L. Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform. Analyst 140, 5055–5064 (2015).
-
(2015)
Analyst
, vol.140
, pp. 5055-5064
-
-
Wu, X.1
Newbold, M.A.2
Haynes, C.L.3
-
56
-
-
85014682407
-
A versatile microfluidic platform for the study of cellular interactions between endothelial cells and neutrophils
-
COI: 1:CAS:528:DC%2BC2sXjvF2muro%3D, PID: 28215701
-
Wu, X., Newbold, M. A., Gao, Z. & Haynes, C. L. A versatile microfluidic platform for the study of cellular interactions between endothelial cells and neutrophils. Biochim. Biophys. Acta Gen. Subj. 1861, 1122–1130 (2017).
-
(2017)
Biochim. Biophys. Acta Gen. Subj.
, vol.1861
, pp. 1122-1130
-
-
Wu, X.1
Newbold, M.A.2
Gao, Z.3
Haynes, C.L.4
-
57
-
-
84879896556
-
A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays
-
COI: 1:CAS:528:DC%2BC3sXhtVeitrnN, PID: 23723013, This study presents a microfluidic model for tissue arrays with interconnected vascular networks
-
Hsu, Y.-H., Moya, M. L., Hughes, C. C. W., George, S. C. & Lee, A. P. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13, 2990–2998 (2013). This study presents a microfluidic model for tissue arrays with interconnected vascular networks.
-
(2013)
Lab Chip
, vol.13
, pp. 2990-2998
-
-
Hsu, Y.-H.1
Moya, M.L.2
Hughes, C.C.W.3
George, S.C.4
Lee, A.P.5
-
58
-
-
84874223528
-
In vitro model of tumor cell extravasation
-
COI: 1:CAS:528:DC%2BC3sXjsF2itb0%3D, PID: 23437268
-
Jeon, J. S., Zervantonakis, I. K., Chung, S., Kamm, R. D. & Charest, J. L. In vitro model of tumor cell extravasation. PLOS ONE 8, e56910 (2013).
-
(2013)
PLOS ONE
, vol.8
-
-
Jeon, J.S.1
Zervantonakis, I.K.2
Chung, S.3
Kamm, R.D.4
Charest, J.L.5
-
59
-
-
84920385055
-
Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation
-
COI: 1:CAS:528:DC%2BC2cXitFCrt7%2FL, PID: 25524628, This study develops a vascularized microfluidic assay to study breast cancer extravasation into different organ microenvironments
-
Jeon, J. S. et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl Acad. Sci. USA 112, 214–219 (2015). This study develops a vascularized microfluidic assay to study breast cancer extravasation into different organ microenvironments.
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 214-219
-
-
Jeon, J.S.1
-
60
-
-
84969544839
-
Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade
-
COI: 1:CAS:528:DC%2BC28XntVektbo%3D, PID: 26988988
-
Chen, M. B., Lamar, J. M., Li, R., Hynes, R. O. & Kamm, R. D. Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade. Cancer Res. 76, 2513–2524 (2016).
-
(2016)
Cancer Res.
, vol.76
, pp. 2513-2524
-
-
Chen, M.B.1
Lamar, J.M.2
Li, R.3
Hynes, R.O.4
Kamm, R.D.5
-
61
-
-
85040086936
-
The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model [PO-12]
-
PID: 27161700
-
Gilardi, M. et al. The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model [PO-12]. Thromb. Res. 140 (Suppl), S180–S181 (2016).
-
(2016)
Thromb. Res.
, vol.140
, pp. S180-S181
-
-
Gilardi, M.1
-
62
-
-
85019663967
-
On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics
-
COI: 1:CAS:528:DC%2BC2sXmtFGgsb8%3D, PID: 28358393
-
Chen, M. B. et al. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat. Protoc. 12, 865–880 (2017).
-
(2017)
Nat. Protoc.
, vol.12
, pp. 865-880
-
-
Chen, M.B.1
-
63
-
-
85040455387
-
Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance
-
PID: 29329547
-
Lee, J.-H. et al. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. J. Exp. Clin. Cancer Res. 37, 4 (2018).
-
(2018)
J. Exp. Clin. Cancer Res.
, vol.37
, pp. 4
-
-
Lee, J.-H.1
-
64
-
-
84978796176
-
Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment
-
PID: 27391808
-
Jeong, S.-Y., Lee, J.-H., Shin, Y., Chung, S. & Kuh, H.-J. Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLOS ONE 11, e0159013 (2016).
-
(2016)
PLOS ONE
, vol.11
-
-
Jeong, S.-Y.1
Lee, J.-H.2
Shin, Y.3
Chung, S.4
Kuh, H.-J.5
-
65
-
-
84878456311
-
Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules
-
COI: 1:CAS:528:DC%2BC3sXhtFait7vK, PID: 23645635
-
Rizvi, I. et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc. Natl Acad. Sci. USA 110, E1974–E1983 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. E1974-E1983
-
-
Rizvi, I.1
-
66
-
-
79953731991
-
Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects
-
COI: 1:CAS:528:DC%2BC3MXlvFyms7s%3D
-
Sung, K. E. et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. 3, 439–450 (2011).
-
(2011)
Integr. Biol.
, vol.3
, pp. 439-450
-
-
Sung, K.E.1
-
67
-
-
0037226593
-
A molecular signature of metastasis in primary solid tumors
-
COI: 1:CAS:528:DC%2BD38XpvVeqs7w%3D, PID: 12469122
-
Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).
-
(2003)
Nat. Genet.
, vol.33
, pp. 49-54
-
-
Ramaswamy, S.1
Ross, K.N.2
Lander, E.S.3
Golub, T.R.4
-
68
-
-
79955368538
-
Analysis of the paracrine loop between cancer cells and fibroblasts using a microfluidic chip
-
COI: 1:CAS:528:DC%2BC3MXlt1GntLY%3D, PID: 21491053
-
Hsu, T. H. et al. Analysis of the paracrine loop between cancer cells and fibroblasts using a microfluidic chip. Lab Chip 11, 1808–1814 (2011).
-
(2011)
Lab Chip
, vol.11
, pp. 1808-1814
-
-
Hsu, T.H.1
-
69
-
-
85018633869
-
Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways
-
COI: 1:CAS:528:DC%2BC2sXhtVehsLg%3D, PID: 27872091
-
Li, R. et al. Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways. Cancer Res. 77, 279–290 (2017).
-
(2017)
Cancer Res.
, vol.77
, pp. 279-290
-
-
Li, R.1
-
70
-
-
85032962560
-
Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin
-
COI: 1:CAS:528:DC%2BC1cXht1OmsbrI, PID: 29021221
-
Erdogan, B. et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J. Cell Biol. 216, 3799–3816 (2017).
-
(2017)
J. Cell Biol.
, vol.216
, pp. 3799-3816
-
-
Erdogan, B.1
-
71
-
-
84874164241
-
Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device
-
COI: 1:CAS:528:DC%2BC3sXjsFSitLk%3D, PID: 23441195
-
Wang, S. et al. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device. PLOS ONE 8, e56448 (2013).
-
(2013)
PLOS ONE
, vol.8
-
-
Wang, S.1
-
72
-
-
67649364409
-
Engineering microscale cellular niches for three-dimensional multicellular co-cultures
-
COI: 1:CAS:528:DC%2BD1MXms12itrc%3D, PID: 19495458
-
Huang, C. P. et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9, 1740–1748 (2009).
-
(2009)
Lab Chip
, vol.9
, pp. 1740-1748
-
-
Huang, C.P.1
-
73
-
-
84944463517
-
Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions
-
PID: 26231039
-
Bai, J. et al. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Oncotarget 6, 25295–25307 (2015).
-
(2015)
Oncotarget
, vol.6
, pp. 25295-25307
-
-
Bai, J.1
-
74
-
-
84923012186
-
Stretching fibroblasts remodels fibronectin and alters cancer cell migration
-
COI: 1:CAS:528:DC%2BC2MXosFelsL0%3D, PID: 25660754
-
Ao, M. et al. Stretching fibroblasts remodels fibronectin and alters cancer cell migration. Sci. Rep. 5, 8334 (2015).
-
(2015)
Sci. Rep.
, vol.5
-
-
Ao, M.1
-
75
-
-
84865293346
-
Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function
-
COI: 1:CAS:528:DC%2BC38XhsValu7rE, PID: 22869695
-
Zervantonakis, I. K. et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl Acad. Sci. USA 109, 13515–13520 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 13515-13520
-
-
Zervantonakis, I.K.1
-
76
-
-
84888361416
-
Crossing the endothelial barrier during metastasis
-
COI: 1:CAS:528:DC%2BC3sXhvVWgtLnN, PID: 24263189
-
Reymond, N., D’Água, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 13, 858–870 (2013).
-
(2013)
Nat. Rev. Cancer
, vol.13
, pp. 858-870
-
-
Reymond, N.1
D’Água, B.B.2
Ridley, A.J.3
-
77
-
-
85028049305
-
A biomimetic microfluidic tumor microenvironment platform mimicking the EPR effect for rapid screening of drug delivery systems
-
PID: 28839211
-
Tang, Y. et al. A biomimetic microfluidic tumor microenvironment platform mimicking the EPR effect for rapid screening of drug delivery systems. Sci. Rep. 7, 9359 (2017).
-
(2017)
Sci. Rep.
, vol.7
-
-
Tang, Y.1
-
78
-
-
84922392594
-
CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis
-
COI: 1:CAS:528:DC%2BC2cXnslOgs7g%3D, PID: 24810923
-
Sun, Y. et al. CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis. Tumour Biol. 35, 7765–7773 (2014).
-
(2014)
Tumour Biol.
, vol.35
, pp. 7765-7773
-
-
Sun, Y.1
-
79
-
-
66849138510
-
Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells
-
PID: 19484126
-
Song, J. W. et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLOS ONE 4, e5756 (2009).
-
(2009)
PLOS ONE
, vol.4
-
-
Song, J.W.1
-
80
-
-
85008693364
-
High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system
-
COI: 1:CAS:528:DC%2BC2sXmsVCntw%3D%3D, PID: 28054593
-
Regmi, S., Fu, A. & Luo, K. Q. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci. Rep. 7, 39975 (2017).
-
(2017)
Sci. Rep.
, vol.7
-
-
Regmi, S.1
Fu, A.2
Luo, K.Q.3
-
81
-
-
85043480176
-
The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model
-
Boussommier-Calleja, A. et al. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials 10.1016/j.biomaterials.2018.03.005 (2018).
-
(2018)
Biomaterials
-
-
Boussommier-Calleja, A.1
-
82
-
-
34447323070
-
a & Beasley, M. B. Bronchioloalveolar carcinoma: a review of current concepts and evolving issues
-
PID: 17616987
-
Yousem, S. A & Beasley, M. B. Bronchioloalveolar carcinoma: a review of current concepts and evolving issues. Arch. Pathol. Lab. Med. 131, 1027–1032 (2007).
-
(2007)
Arch. Pathol. Lab. Med.
, vol.131
, pp. 1027-1032
-
-
Yousem, S.A.1
-
83
-
-
85027940706
-
Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma
-
PID: 22005835
-
Abe, M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int. J. Hematol. 94, 334–343 (2011).
-
(2011)
Int. J. Hematol.
, vol.94
, pp. 334-343
-
-
Abe, M.1
-
84
-
-
84905179282
-
Patient-specific 3D microfluidic tissue model for multiple myeloma
-
COI: 1:CAS:528:DC%2BC2cXht1Clt7nM
-
Zhang, W., Lee, W. Y., Siegel, D. S., Tolias, P. & Zilberberg, J. Patient-specific 3D microfluidic tissue model for multiple myeloma. Tissue Eng. Part C 20, 663–670 (2014).
-
(2014)
Tissue Eng. Part C
, vol.20
, pp. 663-670
-
-
Zhang, W.1
Lee, W.Y.2
Siegel, D.S.3
Tolias, P.4
Zilberberg, J.5
-
85
-
-
84930921198
-
MicroC(3): an ex vivo microfluidic cis-coculture assay to test chemosensitivity and resistance of patient multiple myeloma cells
-
COI: 1:CAS:528:DC%2BC2MXot1Chsrw%3D
-
Pak, C. et al. MicroC(3): an ex vivo microfluidic cis-coculture assay to test chemosensitivity and resistance of patient multiple myeloma cells. Integr. Biol. 7, 643–654 (2015).
-
(2015)
Integr. Biol.
, vol.7
, pp. 643-654
-
-
Pak, C.1
-
86
-
-
85034441986
-
Bone metastases: an overview
-
PID: 28584570
-
Macedo, F. et al. Bone metastases: an overview. Oncol. Rev. 11, 321 (2017).
-
(2017)
Oncol. Rev.
, vol.11
, pp. 321
-
-
Macedo, F.1
-
87
-
-
84891742591
-
A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone
-
COI: 1:CAS:528:DC%2BC2cXms1yn, PID: 24388382
-
Bersini, S. et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454–2461 (2014). This study uses a microfluidic plattform to investigate the specificity of human breast cancer metastasis to the bone revealing the involvement of breast cancer cell receptor CXCR2 and the bone-secreted chemokine CXCL5 in cancer cell extravasation.
-
(2014)
Biomaterials
, vol.35
, pp. 2454-2461
-
-
Bersini, S.1
-
88
-
-
66249140996
-
A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone
-
COI: 1:CAS:528:DC%2BD1MXlvFWltrw%3D, PID: 19435905
-
Mastro, A. M. & Vogler, E. A. A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res. 69, 4097–4100 (2009).
-
(2009)
Cancer Res.
, vol.69
, pp. 4097-4100
-
-
Mastro, A.M.1
Vogler, E.A.2
-
89
-
-
84890490480
-
In vitro mimics of bone remodeling and the vicious cycle of cancer in bone
-
COI: 1:CAS:528:DC%2BC3sXhvFeqtL%2FL, PID: 24022654
-
Krishnan, V., Vogler, E. A., Sosnoski, D. M. & Mastro, A. M. In vitro mimics of bone remodeling and the vicious cycle of cancer in bone. J. Cell. Physiol. 229, 453–462 (2014).
-
(2014)
J. Cell. Physiol.
, vol.229
, pp. 453-462
-
-
Krishnan, V.1
Vogler, E.A.2
Sosnoski, D.M.3
Mastro, A.M.4
-
90
-
-
84887828470
-
Engineered 3D silk-based metastasis models: Interactions between human breast adenocarcinoma, mesenchymal stem cells and osteoblast-like cells
-
COI: 1:CAS:528:DC%2BC3sXmvV2lsrw%3D
-
Talukdar, S. & Kundu, S. C. Engineered 3D silk-based metastasis models: Interactions between human breast adenocarcinoma, mesenchymal stem cells and osteoblast-like cells. Adv. Funct. Mater. 23, 5249–5260 (2013).
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 5249-5260
-
-
Talukdar, S.1
Kundu, S.C.2
-
91
-
-
84994877355
-
A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors
-
COI: 1:CAS:528:DC%2BC28XhvVGjtLzN, PID: 27830712
-
Xu, H. et al. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci. Rep. 6, 36670 (2016).
-
(2016)
Sci. Rep.
, vol.6
-
-
Xu, H.1
-
92
-
-
80054021855
-
Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions
-
COI: 1:CAS:528:DC%2BC3MXht12ju7nJ, PID: 21915399
-
Chen, Y. A. et al. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab Chip 11, 3626–3633 (2011).
-
(2011)
Lab Chip
, vol.11
, pp. 3626-3633
-
-
Chen, Y.A.1
-
93
-
-
84938347800
-
Cancer associated fibroblast-derived hepatocyte growth factor inhibits the paclitaxel-induced apoptosis of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78 signaling on a microfluidic platform
-
Ying, L. et al. Cancer associated fibroblast-derived hepatocyte growth factor inhibits the paclitaxel-induced apoptosis of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78 signaling on a microfluidic platform. PLOS ONE 10, 1–15 (2015).
-
(2015)
PLOS ONE
, vol.10
, pp. 1-15
-
-
Ying, L.1
-
94
-
-
69549102851
-
Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells
-
COI: 1:CAS:528:DC%2BD1MXhtVCmsbrM, PID: 19704981
-
Faley, S. L. et al. Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 9, 2659–2664 (2009).
-
(2009)
Lab Chip
, vol.9
, pp. 2659-2664
-
-
Faley, S.L.1
-
95
-
-
84874964737
-
Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer
-
COI: 1:CAS:528:DC%2BC3sXjsFeqt7s%3D, PID: 23473962
-
Xu, Z. et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34, 4109–4117 (2013).
-
(2013)
Biomaterials
, vol.34
, pp. 4109-4117
-
-
Xu, Z.1
-
96
-
-
84946866413
-
Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment
-
PID: 26474384
-
Bai, J., Tu, T.-Y., Kim, C., Thiery, J. P. & Kamm, R. D. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Oncotarget 6, 36603–36614 (2015).
-
(2015)
Oncotarget
, vol.6
, pp. 36603-36614
-
-
Bai, J.1
Tu, T.-Y.2
Kim, C.3
Thiery, J.P.4
Kamm, R.D.5
-
97
-
-
84983543822
-
3D microtumors in vitro supported by perfused vascular networks
-
COI: 1:CAS:528:DC%2BC28XhsVSrsbrO, PID: 27549930, This study uses a microfluidic platform with vascularized microtumours to reveal that dual target angiogenesis inhibitors are more effective to regress the vasculature than single target inhibitors
-
Sobrino, A. et al. 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep. 6, 31589 (2016). This study uses a microfluidic platform with vascularized microtumours to reveal that dual target angiogenesis inhibitors are more effective to regress the vasculature than single target inhibitors.
-
(2016)
Sci. Rep.
, vol.6
-
-
Sobrino, A.1
-
98
-
-
59649105005
-
A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics
-
COI: 1:CAS:528:DC%2BD1MXhsFWisrY%3D, PID: 19190790
-
Walsh, C. L. et al. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9, 545–554 (2009).
-
(2009)
Lab Chip
, vol.9
, pp. 545-554
-
-
Walsh, C.L.1
-
99
-
-
84971268064
-
Engineering a 3D microfluidic culture platform for tumor-treating field application
-
COI: 1:CAS:528:DC%2BC28Xos12mtrY%3D, PID: 27215466
-
Pavesi, A. et al. Engineering a 3D microfluidic culture platform for tumor-treating field application. Sci. Rep. 6, 26584 (2016).
-
(2016)
Sci. Rep.
, vol.6
-
-
Pavesi, A.1
-
100
-
-
85049270195
-
Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass
-
COI: 1:CAS:528:DC%2BC2sXhslalsrzN, PID: 29313036
-
Jarvis, M. et al. Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass. Bioeng. Transl Med. 2, 268–277 (2017).
-
(2017)
Bioeng. Transl Med.
, vol.2
, pp. 268-277
-
-
Jarvis, M.1
-
101
-
-
85030973110
-
Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer
-
PID: 29137378
-
Terrell-Hall, T. B., Nounou, M. I., El-Amrawy, F., Griffith, J. I. G. & Lockman, P. R. Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer. Oncotarget 8, 83734–83744 (2017).
-
(2017)
Oncotarget
, vol.8
, pp. 83734-83744
-
-
Terrell-Hall, T.B.1
Nounou, M.I.2
El-Amrawy, F.3
Griffith, J.I.G.4
Lockman, P.R.5
-
102
-
-
85062320701
-
A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors
-
PID: 28614795, This study describes the development of a microdevice platform that enables the investigation of factors that can alter antitumour efficacy of adoptive T cell function 3D
-
Pavesi, A. et al. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight 2, 89762 (2017). This study describes the development of a microdevice platform that enables the investigation of factors that can alter antitumour efficacy of adoptive T cell function in 3D.
-
(2017)
JCI Insight
, vol.2
, pp. 89762
-
-
Pavesi, A.1
-
103
-
-
85042906330
-
Characterizing the role of monocytes in T cell cancer immunotherapy using a 3D microfluidic model
-
PID: 29559973
-
Lee, S. W. L. et al. Characterizing the role of monocytes in T cell cancer immunotherapy using a 3D microfluidic model. Front. Immunol. 9, 416 (2018).
-
(2018)
Front. Immunol.
, vol.9
, pp. 416
-
-
Lee, S.W.L.1
-
104
-
-
84928771999
-
T cell exclusion, immune privilege, and the tumor microenvironment
-
COI: 1:CAS:528:DC%2BC2MXls1Wmu74%3D, PID: 25838376
-
Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).
-
(2015)
Science
, vol.348
, pp. 74-80
-
-
Joyce, J.A.1
Fearon, D.T.2
-
105
-
-
85034812883
-
Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips
-
COI: 1:CAS:528:DC%2BC1cXltlKgtw%3D%3D, PID: 29309256
-
Prantil-Baun, R. et al. Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips. Annu. Rev. Pharmacol. Toxicol. 58, 37–64 (2018).
-
(2018)
Annu. Rev. Pharmacol. Toxicol.
, vol.58
, pp. 37-64
-
-
Prantil-Baun, R.1
-
106
-
-
85023188876
-
Organ-on-a-chip devices advance to market
-
COI: 1:CAS:528:DC%2BC2sXpsVCmu7Y%3D, PID: 28617487
-
Zhang, B. & Radisic, M. Organ-on-a-chip devices advance to market. Lab Chip 17, 2395–2420 (2017).
-
(2017)
Lab Chip
, vol.17
, pp. 2395-2420
-
-
Zhang, B.1
Radisic, M.2
-
107
-
-
85032728017
-
Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform
-
PID: 29096610
-
Lanz, H. L. et al. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 17, 709 (2017).
-
(2017)
BMC Cancer
, vol.17
-
-
Lanz, H.L.1
-
108
-
-
85009344104
-
Microfluidic biopsy trapping device for the real-time monitoring of tumor microenvironment
-
PID: 28085924
-
Holton, A. B. et al. Microfluidic biopsy trapping device for the real-time monitoring of tumor microenvironment. PLOS ONE 12, e0169797 (2017).
-
(2017)
PLOS ONE
, vol.12
-
-
Holton, A.B.1
-
109
-
-
84883305025
-
Clear castable polyurethane elastomer for fabrication of microfluidic devices
-
COI: 1:CAS:528:DC%2BC3sXhtlentr3F, PID: 23954953
-
Domansky, K. et al. Clear castable polyurethane elastomer for fabrication of microfluidic devices. Lab Chip 13, 3956–3964 (2013).
-
(2013)
Lab Chip
, vol.13
, pp. 3956-3964
-
-
Domansky, K.1
-
110
-
-
85020517898
-
SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion
-
Domansky, K. et al. SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion. Microfluid. Nanofluid. 21, 107 (2017).
-
(2017)
Microfluid. Nanofluid.
, vol.21
, pp. 107
-
-
Domansky, K.1
-
111
-
-
84860439214
-
Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models
-
PID: 22444457
-
van Midwoud, P. M., Janse, A., Merema, M. T., Groothuis, G. M. M. & Verpoorte, E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 84, 3938–3944 (2012).
-
(2012)
Anal. Chem.
, vol.84
, pp. 3938-3944
-
-
van Midwoud, P.M.1
Janse, A.2
Merema, M.T.3
Groothuis, G.M.M.4
Verpoorte, E.5
-
112
-
-
84991208169
-
Bioprinting of 3D convoluted renal proximal tubules on perfusable chips
-
COI: 1:CAS:528:DC%2BC28Xhs1OjtbfL, PID: 27725720
-
Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).
-
(2016)
Sci. Rep.
, vol.6
-
-
Homan, K.A.1
-
113
-
-
84979255712
-
Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing
-
PID: 27180100
-
Marx, U. et al. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272–321 (2016).
-
(2016)
ALTEX
, vol.33
, pp. 272-321
-
-
Marx, U.1
-
114
-
-
84981734428
-
Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling
-
COI: 1:CAS:528:DC%2BC28Xht1aisL7F, PID: 27422270
-
Skardal, A., Shupe, T. & Atala, A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov. Today 21, 1399–1411 (2016).
-
(2016)
Drug Discov. Today
, vol.21
, pp. 1399-1411
-
-
Skardal, A.1
Shupe, T.2
Atala, A.3
-
115
-
-
85044195316
-
Interconnected microphysiological systems for quantitative biology and pharmacology studies
-
PID: 29540740
-
Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8, 4530 (2018).
-
(2018)
Sci. Rep.
, vol.8
-
-
Edington, C.D.1
-
116
-
-
84957586265
-
Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs
-
COI: 1:CAS:528:DC%2BC28XitFahsLY%3D, PID: 26837601
-
Oleaga, C. et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016).
-
(2016)
Sci. Rep.
, vol.6
-
-
Oleaga, C.1
-
117
-
-
85011797666
-
Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle
-
COI: 1:CAS:528:DC%2BC2sXisVeiur8%3D, PID: 28176881
-
Vernetti, L. et al. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci. Rep. 7, 42296 (2017).
-
(2017)
Sci. Rep.
, vol.7
-
-
Vernetti, L.1
-
118
-
-
84992560366
-
A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model
-
PID: 27570096
-
Lee, H. et al. A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model. Biotechnol. Bioeng. 114, 432–443 (2016).
-
(2016)
Biotechnol. Bioeng.
, vol.114
, pp. 432-443
-
-
Lee, H.1
-
119
-
-
75749153235
-
A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip
-
COI: 1:CAS:528:DC%2BC3cXhtlGiu7g%3D, PID: 20126684
-
Sung, J. H., Kam, C. & Shuler, M. L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10, 446–455 (2010).
-
(2010)
Lab Chip
, vol.10
, pp. 446-455
-
-
Sung, J.H.1
Kam, C.2
Shuler, M.L.3
-
120
-
-
85048985572
-
A microfluidics platform for combinatorial drug screening on cancer biopsies
-
PID: 29934552
-
Eduati, F. et al. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat. Commun. 9, 2434 (2018).
-
(2018)
Nat. Commun.
, vol.9
-
-
Eduati, F.1
|