메뉴 건너뛰기




Volumn 19, Issue 2, 2019, Pages 65-81

Modelling cancer in microfluidic human organs-on-chips

Author keywords

[No Author keywords available]

Indexed keywords

CANCER CELL; CANCER GROWTH; CANCER MODEL; CANCER THERAPY; CELL CULTURE; CELL INVASION; CELL MIGRATION; EPITHELIAL MESENCHYMAL TRANSITION; EXTRACELLULAR MATRIX; EXTRAVASATION; HUMAN; METASTASIS; MICROFLUIDICS; NEOVASCULARIZATION (PATHOLOGY); NONHUMAN; PRIORITY JOURNAL; REVIEW; TUMOR BLOOD FLOW; TUMOR MICROENVIRONMENT; ANIMAL; BIOLOGICAL MODEL; DISEASE EXACERBATION; NEOPLASM; PATHOLOGY; PERSONALIZED MEDICINE; PHYSIOLOGY; PROCEDURES;

EID: 85060155472     PISSN: 1474175X     EISSN: 14741768     Source Type: Journal    
DOI: 10.1038/s41568-018-0104-6     Document Type: Review
Times cited : (635)

References (120)
  • 1
    • 84948464999 scopus 로고    scopus 로고
    • Preclinical mouse cancer models: a maze of opportunities and challenges
    • COI: 1:CAS:528:DC%2BC2MXhsFKqtrrM, PID: 26406370
    • Day, C. P., Merlino, G. & Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163, 39–53 (2015).
    • (2015) Cell , vol.163 , pp. 39-53
    • Day, C.P.1    Merlino, G.2    Van Dyke, T.3
  • 2
    • 84929172879 scopus 로고    scopus 로고
    • Translational value of mouse models in oncology drug development
    • COI: 1:CAS:528:DC%2BC2MXnvFWjsr4%3D, PID: 25951530
    • Gould, S. E., Junttila, M. R. & de Sauvage, F. J. Translational value of mouse models in oncology drug development. Nat. Med. 21, 431–439 (2015).
    • (2015) Nat. Med. , vol.21 , pp. 431-439
    • Gould, S.E.1    Junttila, M.R.2    de Sauvage, F.J.3
  • 3
    • 0032410157 scopus 로고    scopus 로고
    • Orthotopic models are necessary to predict therapy of transplantable tumors in mice
    • COI: 1:STN:280:DyaK1M3otFWntQ%3D%3D
    • Killion, J. J., Radinsky, R. & Fidler, I. J. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 17, 279–284 (1999).
    • (1999) Cancer Metastasis Rev. , vol.17 , pp. 279-284
    • Killion, J.J.1    Radinsky, R.2    Fidler, I.J.3
  • 5
    • 84869495994 scopus 로고    scopus 로고
    • Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy
    • COI: 1:CAS:528:DC%2BC38Xot12lsLc%3D, PID: 22613880
    • Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D. & Takayama, S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control. Release 164, 192–204 (2012).
    • (2012) J. Control. Release , vol.164 , pp. 192-204
    • Mehta, G.1    Hsiao, A.Y.2    Ingram, M.3    Luker, G.D.4    Takayama, S.5
  • 6
    • 84901014044 scopus 로고    scopus 로고
    • Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors
    • COI: 1:CAS:528:DC%2BC2cXotVantLY%3D, PID: 24831787
    • Edmondson, R., Broglie, J. J., Adcock, A. F. & Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12, 207–218 (2014).
    • (2014) Assay Drug Dev. Technol. , vol.12 , pp. 207-218
    • Edmondson, R.1    Broglie, J.J.2    Adcock, A.F.3    Yang, L.4
  • 7
    • 77953916745 scopus 로고    scopus 로고
    • Multicellular tumor spheroids: an underestimated tool is catching up again
    • COI: 1:CAS:528:DC%2BC3cXnvVOqtbc%3D, PID: 20097238
    • Hirschhaeuser, F. et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148, 3–15 (2010).
    • (2010) J. Biotechnol. , vol.148 , pp. 3-15
    • Hirschhaeuser, F.1
  • 8
    • 84928721399 scopus 로고    scopus 로고
    • By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization
    • PID: 4496208
    • Guan, P.-P. et al. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization. Oncotarget 6, 9140–9159 (2015).
    • (2015) Oncotarget , vol.6 , pp. 9140-9159
    • Guan, P.-P.1
  • 9
    • 4944266313 scopus 로고    scopus 로고
    • High interstitial fluid pressure — an obstacle in cancer therapy
    • COI: 1:CAS:528:DC%2BD2cXos1ymu7s%3D, PID: 15510161
    • Heldin, C.-H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).
    • (2004) Nat. Rev. Cancer , vol.4 , pp. 806-813
    • Heldin, C.-H.1    Rubin, K.2    Pietras, K.3    Ostman, A.4
  • 10
    • 79960608623 scopus 로고    scopus 로고
    • Interstitial flow influences direction of tumor cell migration through competing mechanisms
    • COI: 1:CAS:528:DC%2BC3MXptV2htbo%3D, PID: 21690404
    • Polacheck, W. J., Charest, J. L. & Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA 108, 11115–11120 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 11115-11120
    • Polacheck, W.J.1    Charest, J.L.2    Kamm, R.D.3
  • 11
    • 84872112432 scopus 로고    scopus 로고
    • Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice
    • COI: 1:CAS:528:DC%2BC38XhsFCmt77N, PID: 22843617
    • Ghosh, S. P. et al. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice. J. Radiat. Res. 53, 526–536 (2012).
    • (2012) J. Radiat. Res. , vol.53 , pp. 526-536
    • Ghosh, S.P.1
  • 12
    • 85050695162 scopus 로고    scopus 로고
    • Mechanobiology of tumor growth
    • COI: 1:CAS:528:DC%2BC1cXhtFKks7zM, PID: 29927236
    • Chaudhuri, P. K., Low, B. C. & Lim, C. T. Mechanobiology of tumor growth. Chem. Rev. 118, 6499–6515 (2018).
    • (2018) Chem. Rev. , vol.118 , pp. 6499-6515
    • Chaudhuri, P.K.1    Low, B.C.2    Lim, C.T.3
  • 13
    • 85045906626 scopus 로고    scopus 로고
    • Organoids in cancer research
    • COI: 1:CAS:528:DC%2BC1cXosVCgtbw%3D, PID: 29692415
    • Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).
    • (2018) Nat. Rev. Cancer , vol.18 , pp. 407-418
    • Drost, J.1    Clevers, H.2
  • 14
    • 0036591838 scopus 로고    scopus 로고
    • Engineering cellular microenvironments to improve cell-based drug testing
    • COI: 1:CAS:528:DC%2BD38XktFKnsLs%3D, PID: 12047872
    • Bhadriraju, K. & Chen, C. S. Engineering cellular microenvironments to improve cell-based drug testing. Drug Discov. Today 7, 612–620 (2002).
    • (2002) Drug Discov. Today , vol.7 , pp. 612-620
    • Bhadriraju, K.1    Chen, C.S.2
  • 15
    • 84905754409 scopus 로고    scopus 로고
    • Microfluidic organs-on-chips
    • COI: 1:CAS:528:DC%2BC2cXht1Oqur7K, PID: 25093883
    • Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 760-772
    • Bhatia, S.N.1    Ingber, D.E.2
  • 16
    • 85056273344 scopus 로고    scopus 로고
    • Scalable fabrication of stretchable, dual channel, microfluidic organ chips
    • Novak, R. et al. Scalable fabrication of stretchable, dual channel, microfluidic organ chips. J. Vis. Exp. 140, e58151 (2018).
    • (2018) J. Vis. Exp. , vol.140
    • Novak, R.1
  • 17
    • 85023770580 scopus 로고    scopus 로고
    • Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics
    • COI: 1:CAS:528:DC%2BC1cXnt1SlsQ%3D%3D, PID: 28516446
    • Jain, A. et al. Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin. Pharmacol. Ther. 103, 332–340 (2018).
    • (2018) Clin. Pharmacol. Ther. , vol.103 , pp. 332-340
    • Jain, A.1
  • 18
    • 85046131849 scopus 로고    scopus 로고
    • Organ-on-chip recapitulates thrombosis induced by an anti-CD154 monoclonal antibody: translational potential of advanced microengineered systems
    • COI: 1:CAS:528:DC%2BC1cXit1Sgtr3O, PID: 29484632
    • Barrile, R. et al. Organ-on-chip recapitulates thrombosis induced by an anti-CD154 monoclonal antibody: translational potential of advanced microengineered systems. Clin. Pharmacol. Ther. 104, 1240–1248 (2018).
    • (2018) Clin. Pharmacol. Ther. , vol.104 , pp. 1240-1248
    • Barrile, R.1
  • 19
    • 85030836956 scopus 로고    scopus 로고
    • Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro
    • COI: 1:CAS:528:DC%2BC2sXhs1Chs7%2FK, PID: 29020635, This study describes the development of a human lung cancer chip that recapitulates tumour growth, invasion patterns and responses to therapy observed patients
    • Hassell, B. A. et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep. 21, 508–516 (2017). This study describes the development of a human lung cancer chip that recapitulates tumour growth, invasion patterns and responses to therapy observed in patients.
    • (2017) Cell Rep. , vol.21 , pp. 508-516
    • Hassell, B.A.1
  • 20
    • 84938340959 scopus 로고    scopus 로고
    • A microengineered pathophysiological model of early-stage breast cancer
    • COI: 1:CAS:528:DC%2BC2MXhtFChtL%2FP, PID: 26158500, This study describes the generation of an early-stage breast cancer chip model that can be used to evaluate the efficacy and toxicity of an anticancer drug
    • Choi, Y. et al. A microengineered pathophysiological model of early-stage breast cancer. Lab Chip 15, 3350–3357 (2015). This study describes the generation of an early-stage breast cancer chip model that can be used to evaluate the efficacy and toxicity of an anticancer drug.
    • (2015) Lab Chip , vol.15 , pp. 3350-3357
    • Choi, Y.1
  • 21
    • 85020519193 scopus 로고    scopus 로고
    • Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip
    • PID: 29038743
    • Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).
    • (2017) Nat. Biomed. Eng. , vol.1 , pp. 0069
    • Musah, S.1
  • 22
    • 77954038080 scopus 로고    scopus 로고
    • Reconstituting organ-level lung functions on a chip
    • COI: 1:CAS:528:DC%2BC3cXnvVekur0%3D, PID: 20576885
    • Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).
    • (2010) Science , vol.328 , pp. 1662-1668
    • Huh, D.1
  • 23
    • 84869126274 scopus 로고    scopus 로고
    • A human disease model of drug toxicity — induced pulmonary edema in a lung-on-a-chip microdevice
    • PID: 23136042
    • Huh, D. et al. A human disease model of drug toxicity — induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl Med. 4, 159ra147 (2012).
    • (2012) Sci. Transl Med. , vol.4 , pp. 159ra147
    • Huh, D.1
  • 24
    • 84923127772 scopus 로고    scopus 로고
    • A lung-on-a-chip array with an integrated bio-inspired respiration mechanism
    • COI: 1:CAS:528:DC%2BC2cXitVWgur%2FO, PID: 25521475
    • Stucki, A. O. et al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15, 1302–1310 (2015).
    • (2015) Lab Chip , vol.15 , pp. 1302-1310
    • Stucki, A.O.1
  • 25
    • 84956654664 scopus 로고    scopus 로고
    • Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro
    • COI: 1:CAS:528:DC%2BC2MXitVKru77M, PID: 26689262
    • Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151–157 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 151-157
    • Benam, K.H.1
  • 26
    • 84996606989 scopus 로고    scopus 로고
    • Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip
    • COI: 1:CAS:528:DC%2BC2sXhtFals70%3D, PID: 27894999
    • Benam, K. H. et al. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst. 3, 456–466 (2016).
    • (2016) Cell Syst. , vol.3 , pp. 456-466
    • Benam, K.H.1
  • 27
    • 84905457584 scopus 로고    scopus 로고
    • A biomimetic multicellular model of the airways using primary human cells
    • COI: 1:CAS:528:DC%2BC2cXhtValsrnK, PID: 25000964
    • Sellgren, K. L., Butala, E. J., Gilmour, B. P., Randell, S. H. & Grego, S. A biomimetic multicellular model of the airways using primary human cells. Lab Chip 14, 3349–3358 (2014).
    • (2014) Lab Chip , vol.14 , pp. 3349-3358
    • Sellgren, K.L.1    Butala, E.J.2    Gilmour, B.P.3    Randell, S.H.4    Grego, S.5
  • 28
    • 84882590738 scopus 로고    scopus 로고
    • Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment
    • COI: 1:CAS:528:DC%2BC3sXhtlaitLrP
    • Jang, K.-J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119–1129 (2013).
    • (2013) Integr. Biol. , vol.5 , pp. 1119-1129
    • Jang, K.-J.1
  • 29
    • 84930959624 scopus 로고    scopus 로고
    • A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents
    • COI: 1:CAS:528:DC%2BC2MXot1Wqs7w%3D, PID: 25996126
    • Maschmeyer, I. et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15, 2688–2699 (2015).
    • (2015) Lab Chip , vol.15 , pp. 2688-2699
    • Maschmeyer, I.1
  • 30
    • 85049830424 scopus 로고    scopus 로고
    • Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip
    • COI: 1:CAS:528:DC%2BC1cXhtlWjtr7P, PID: 29995874
    • Musah, S., Dimitrakakis, N., Camacho, D. M., Church, G. M. & Ingber, D. E. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. Nat. Protoc. 13, 1662–1685 (2018).
    • (2018) Nat. Protoc. , vol.13 , pp. 1662-1685
    • Musah, S.1    Dimitrakakis, N.2    Camacho, D.M.3    Church, G.M.4    Ingber, D.E.5
  • 31
    • 84882627623 scopus 로고    scopus 로고
    • Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation
    • COI: 1:CAS:528:DC%2BC3sXhtlaitL3F
    • Kim, H. J. & Ingber, D. E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013).
    • (2013) Integr. Biol. , vol.5 , pp. 1130-1140
    • Kim, H.J.1    Ingber, D.E.2
  • 32
    • 85042054523 scopus 로고    scopus 로고
    • Development of a primary human small intestine-on-a-chip using biopsy-derived organoids
    • PID: 29440725
    • Kasendra, M. et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).
    • (2018) Sci. Rep. , vol.8
    • Kasendra, M.1
  • 33
    • 84904304750 scopus 로고    scopus 로고
    • Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury
    • COI: 1:CAS:528:DC%2BC2cXhtVKjs77P, PID: 24970651
    • Esch, M. B., Mahler, G. J., Stokol, T. & Shuler, M. L. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14, 3081–3092 (2014).
    • (2014) Lab Chip , vol.14 , pp. 3081-3092
    • Esch, M.B.1    Mahler, G.J.2    Stokol, T.3    Shuler, M.L.4
  • 34
    • 84902097724 scopus 로고    scopus 로고
    • Micropatterned cell–cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues
    • COI: 1:CAS:528:DC%2BC2cXhtlyku7rO, PID: 24498910
    • Li, C. Y. et al. Micropatterned cell–cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng. Part A 20, 2200–2212 (2014).
    • (2014) Tissue Eng. Part A , vol.20 , pp. 2200-2212
    • Li, C.Y.1
  • 35
    • 85039785618 scopus 로고    scopus 로고
    • Liver ‘organ on a chip’
    • COI: 1:CAS:528:DC%2BC1cXis1OqtA%3D%3D, PID: 29291400
    • Beckwitt, C. H. et al. Liver ‘organ on a chip’. Exp. Cell Res. 363, 15–25 (2018).
    • (2018) Exp. Cell Res. , vol.363 , pp. 15-25
    • Beckwitt, C.H.1
  • 36
    • 85032948672 scopus 로고    scopus 로고
    • Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment
    • COI: 1:CAS:528:DC%2BC1cXis12lsLk%3D, PID: 28658717
    • Sieber, S. et al. Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J. Tissue Eng. Regen. Med. 12, 479–489 (2018).
    • (2018) J. Tissue Eng. Regen. Med. , vol.12 , pp. 479-489
    • Sieber, S.1
  • 37
    • 84960888901 scopus 로고    scopus 로고
    • Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip
    • Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLOS ONE 11, 1–21 (2016).
    • (2016) PLOS ONE , vol.11 , pp. 1-21
    • Herland, A.1
  • 38
    • 85011002999 scopus 로고    scopus 로고
    • A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier
    • COI: 1:CAS:528:DC%2BC28XitVGms7%2FF, PID: 28001148
    • Adriani, G., Ma, D., Pavesi, A., Kamm, R. D. & Goh, E. L. K. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier. Lab Chip 17, 448–459 (2017).
    • (2017) Lab Chip , vol.17 , pp. 448-459
    • Adriani, G.1    Ma, D.2    Pavesi, A.3    Kamm, R.D.4    Goh, E.L.K.5
  • 39
    • 84978785813 scopus 로고    scopus 로고
    • Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening
    • COI: 1:CAS:528:DC%2BC28XhtF2mtrfO, PID: 27399645
    • Wang, Y. I., Abaci, H. E. & Shuler, M. L. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114, 184–194 (2017).
    • (2017) Biotechnol. Bioeng. , vol.114 , pp. 184-194
    • Wang, Y.I.1    Abaci, H.E.2    Shuler, M.L.3
  • 40
    • 84953273098 scopus 로고    scopus 로고
    • Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip
    • COI: 1:CAS:528:DC%2BC2MXitVWjtLbL, PID: 26668389
    • Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. E7-E15
    • Kim, H.J.1    Li, H.2    Collins, J.J.3    Ingber, D.E.4
  • 41
    • 85042066061 scopus 로고    scopus 로고
    • Modeling radiation injury-induced cell death and countermeasure drug responses in a human gut-on-a-chip
    • PID: 29445080
    • Jalili-Firoozinezhad, S. et al. Modeling radiation injury-induced cell death and countermeasure drug responses in a human gut-on-a-chip. Cell Death Dis. 9, 223 (2018).
    • (2018) Cell Death Dis. , vol.9
    • Jalili-Firoozinezhad, S.1
  • 42
    • 84902087268 scopus 로고    scopus 로고
    • Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies
    • COI: 1:CAS:528:DC%2BC2cXnslGksrs%3D, PID: 24813252
    • Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).
    • (2014) Nat. Med. , vol.20 , pp. 616-623
    • Wang, G.1
  • 43
    • 84874816346 scopus 로고    scopus 로고
    • Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells
    • COI: 1:CAS:528:DC%2BC3sXjtlGns7s%3D
    • Montanez-Sauri, S. I., Sung, K. E., Berthier, E. & Beebe, D. J. Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells. Integr. Biol. 5, 631–640 (2013).
    • (2013) Integr. Biol. , vol.5 , pp. 631-640
    • Montanez-Sauri, S.I.1    Sung, K.E.2    Berthier, E.3    Beebe, D.J.4
  • 44
    • 84887770767 scopus 로고    scopus 로고
    • Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity
    • COI: 1:CAS:528:DC%2BC3sXntV2itbk%3D
    • Lang, J. D., Berry, S. M., Powers, G. L., Beebe, D. J. & Alarid, E. T. Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr. Biol. 5, 807–816 (2013).
    • (2013) Integr. Biol. , vol.5 , pp. 807-816
    • Lang, J.D.1    Berry, S.M.2    Powers, G.L.3    Beebe, D.J.4    Alarid, E.T.5
  • 45
    • 84979031905 scopus 로고    scopus 로고
    • Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments
    • PID: 27432323
    • Regier, M. C. et al. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments. Biomed. Microdevices 18, 70 (2016).
    • (2016) Biomed. Microdevices , vol.18
    • Regier, M.C.1
  • 46
    • 0024549349 scopus 로고
    • Induction of angiogenesis during the transition from hyperplasia to neoplasia
    • COI: 1:STN:280:DyaL1M3jvVGntg%3D%3D, PID: 2469964
    • Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).
    • (1989) Nature , vol.339 , pp. 58-61
    • Folkman, J.1    Watson, K.2    Ingber, D.3    Hanahan, D.4
  • 47
    • 84876872941 scopus 로고    scopus 로고
    • Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro
    • COI: 1:CAS:528:DC%2BC3sXot1Ghs7Y%3D, PID: 23569284, This paper describes how angiogenic sprouting can be replicated a microfluidic device and how this model enables the investigation of the effects of angiogenic inhibitors on sprouting morphogenesis
    • Nguyen, D.-H. T. et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl Acad. Sci. USA 110, 6712–6717 (2013). This paper describes how angiogenic sprouting can be replicated in a microfluidic device and how this model enables the investigation of the effects of angiogenic inhibitors on sprouting morphogenesis.
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 6712-6717
    • Nguyen, D.-H.T.1
  • 48
    • 84884688355 scopus 로고    scopus 로고
    • Mechanisms of tumor cell extravasation in an in vitro microvascular network platform
    • COI: 1:CAS:528:DC%2BC3sXhsFegtL3K
    • Chen, M. B., Whisler, J. A., Jeon, J. S. & Kamm, R. D. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. 5, 1262–1271 (2013).
    • (2013) Integr. Biol. , vol.5 , pp. 1262-1271
    • Chen, M.B.1    Whisler, J.A.2    Jeon, J.S.3    Kamm, R.D.4
  • 50
    • 84870672834 scopus 로고    scopus 로고
    • Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels
    • COI: 1:CAS:528:DC%2BC38XhslarsLzN, PID: 23191982
    • Bischel, L. L., Young, E. W. K., Mader, B. R. & Beebe, D. J. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34, 1471–1477 (2013).
    • (2013) Biomaterials , vol.34 , pp. 1471-1477
    • Bischel, L.L.1    Young, E.W.K.2    Mader, B.R.3    Beebe, D.J.4
  • 51
    • 84880346720 scopus 로고    scopus 로고
    • Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients
    • COI: 1:CAS:528:DC%2BC3sXhtFSrtLfE, PID: 23787488
    • Baker, B. M., Trappmann, B., Stapleton, S. C., Toro, E. & Chen, C. S. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13, 3246 (2013).
    • (2013) Lab Chip , vol.13 , pp. 3246
    • Baker, B.M.1    Trappmann, B.2    Stapleton, S.C.3    Toro, E.4    Chen, C.S.5
  • 52
    • 84953409561 scopus 로고    scopus 로고
    • Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels
    • PID: 26616908
    • Wang, X. et al. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 16, 282–290 (2016).
    • (2016) Lab Chip , vol.16 , pp. 282-290
    • Wang, X.1
  • 53
    • 84876704168 scopus 로고    scopus 로고
    • Engineering of functional, perfusable 3D microvascular networks on a chip
    • COI: 1:CAS:528:DC%2BC3sXkt1Gkt7c%3D, PID: 23440068
    • Kim, S., Lee, H., Chung, M. & Jeon, N. L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13, 1489–1500 (2013).
    • (2013) Lab Chip , vol.13 , pp. 1489-1500
    • Kim, S.1    Lee, H.2    Chung, M.3    Jeon, N.L.4
  • 54
    • 85046654140 scopus 로고    scopus 로고
    • 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis
    • COI: 1:CAS:528:DC%2BC1cXmt1ansLg%3D, PID: 29747161
    • Miller, C. P., Tsuchida, C., Zheng, Y., Himmelfarb, J. & Akilesh, S. A. 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia 20, 610–620 (2018).
    • (2018) Neoplasia , vol.20 , pp. 610-620
    • Miller, C.P.1    Tsuchida, C.2    Zheng, Y.3    Himmelfarb, J.4    Akilesh, S.A.5
  • 55
    • 84953439772 scopus 로고    scopus 로고
    • Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform
    • COI: 1:CAS:528:DC%2BC2MXhtVSgsrnE, PID: 26087389
    • Wu, X., Newbold, M. A. & Haynes, C. L. Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform. Analyst 140, 5055–5064 (2015).
    • (2015) Analyst , vol.140 , pp. 5055-5064
    • Wu, X.1    Newbold, M.A.2    Haynes, C.L.3
  • 56
    • 85014682407 scopus 로고    scopus 로고
    • A versatile microfluidic platform for the study of cellular interactions between endothelial cells and neutrophils
    • COI: 1:CAS:528:DC%2BC2sXjvF2muro%3D, PID: 28215701
    • Wu, X., Newbold, M. A., Gao, Z. & Haynes, C. L. A versatile microfluidic platform for the study of cellular interactions between endothelial cells and neutrophils. Biochim. Biophys. Acta Gen. Subj. 1861, 1122–1130 (2017).
    • (2017) Biochim. Biophys. Acta Gen. Subj. , vol.1861 , pp. 1122-1130
    • Wu, X.1    Newbold, M.A.2    Gao, Z.3    Haynes, C.L.4
  • 57
    • 84879896556 scopus 로고    scopus 로고
    • A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays
    • COI: 1:CAS:528:DC%2BC3sXhtVeitrnN, PID: 23723013, This study presents a microfluidic model for tissue arrays with interconnected vascular networks
    • Hsu, Y.-H., Moya, M. L., Hughes, C. C. W., George, S. C. & Lee, A. P. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13, 2990–2998 (2013). This study presents a microfluidic model for tissue arrays with interconnected vascular networks.
    • (2013) Lab Chip , vol.13 , pp. 2990-2998
    • Hsu, Y.-H.1    Moya, M.L.2    Hughes, C.C.W.3    George, S.C.4    Lee, A.P.5
  • 59
    • 84920385055 scopus 로고    scopus 로고
    • Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation
    • COI: 1:CAS:528:DC%2BC2cXitFCrt7%2FL, PID: 25524628, This study develops a vascularized microfluidic assay to study breast cancer extravasation into different organ microenvironments
    • Jeon, J. S. et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl Acad. Sci. USA 112, 214–219 (2015). This study develops a vascularized microfluidic assay to study breast cancer extravasation into different organ microenvironments.
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 214-219
    • Jeon, J.S.1
  • 60
    • 84969544839 scopus 로고    scopus 로고
    • Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade
    • COI: 1:CAS:528:DC%2BC28XntVektbo%3D, PID: 26988988
    • Chen, M. B., Lamar, J. M., Li, R., Hynes, R. O. & Kamm, R. D. Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade. Cancer Res. 76, 2513–2524 (2016).
    • (2016) Cancer Res. , vol.76 , pp. 2513-2524
    • Chen, M.B.1    Lamar, J.M.2    Li, R.3    Hynes, R.O.4    Kamm, R.D.5
  • 61
    • 85040086936 scopus 로고    scopus 로고
    • The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model [PO-12]
    • PID: 27161700
    • Gilardi, M. et al. The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model [PO-12]. Thromb. Res. 140 (Suppl), S180–S181 (2016).
    • (2016) Thromb. Res. , vol.140 , pp. S180-S181
    • Gilardi, M.1
  • 62
    • 85019663967 scopus 로고    scopus 로고
    • On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics
    • COI: 1:CAS:528:DC%2BC2sXmtFGgsb8%3D, PID: 28358393
    • Chen, M. B. et al. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat. Protoc. 12, 865–880 (2017).
    • (2017) Nat. Protoc. , vol.12 , pp. 865-880
    • Chen, M.B.1
  • 63
    • 85040455387 scopus 로고    scopus 로고
    • Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance
    • PID: 29329547
    • Lee, J.-H. et al. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. J. Exp. Clin. Cancer Res. 37, 4 (2018).
    • (2018) J. Exp. Clin. Cancer Res. , vol.37 , pp. 4
    • Lee, J.-H.1
  • 64
    • 84978796176 scopus 로고    scopus 로고
    • Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment
    • PID: 27391808
    • Jeong, S.-Y., Lee, J.-H., Shin, Y., Chung, S. & Kuh, H.-J. Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLOS ONE 11, e0159013 (2016).
    • (2016) PLOS ONE , vol.11
    • Jeong, S.-Y.1    Lee, J.-H.2    Shin, Y.3    Chung, S.4    Kuh, H.-J.5
  • 65
    • 84878456311 scopus 로고    scopus 로고
    • Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules
    • COI: 1:CAS:528:DC%2BC3sXhtFait7vK, PID: 23645635
    • Rizvi, I. et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc. Natl Acad. Sci. USA 110, E1974–E1983 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. E1974-E1983
    • Rizvi, I.1
  • 66
    • 79953731991 scopus 로고    scopus 로고
    • Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects
    • COI: 1:CAS:528:DC%2BC3MXlvFyms7s%3D
    • Sung, K. E. et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. 3, 439–450 (2011).
    • (2011) Integr. Biol. , vol.3 , pp. 439-450
    • Sung, K.E.1
  • 67
    • 0037226593 scopus 로고    scopus 로고
    • A molecular signature of metastasis in primary solid tumors
    • COI: 1:CAS:528:DC%2BD38XpvVeqs7w%3D, PID: 12469122
    • Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).
    • (2003) Nat. Genet. , vol.33 , pp. 49-54
    • Ramaswamy, S.1    Ross, K.N.2    Lander, E.S.3    Golub, T.R.4
  • 68
    • 79955368538 scopus 로고    scopus 로고
    • Analysis of the paracrine loop between cancer cells and fibroblasts using a microfluidic chip
    • COI: 1:CAS:528:DC%2BC3MXlt1GntLY%3D, PID: 21491053
    • Hsu, T. H. et al. Analysis of the paracrine loop between cancer cells and fibroblasts using a microfluidic chip. Lab Chip 11, 1808–1814 (2011).
    • (2011) Lab Chip , vol.11 , pp. 1808-1814
    • Hsu, T.H.1
  • 69
    • 85018633869 scopus 로고    scopus 로고
    • Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways
    • COI: 1:CAS:528:DC%2BC2sXhtVehsLg%3D, PID: 27872091
    • Li, R. et al. Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways. Cancer Res. 77, 279–290 (2017).
    • (2017) Cancer Res. , vol.77 , pp. 279-290
    • Li, R.1
  • 70
    • 85032962560 scopus 로고    scopus 로고
    • Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin
    • COI: 1:CAS:528:DC%2BC1cXht1OmsbrI, PID: 29021221
    • Erdogan, B. et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J. Cell Biol. 216, 3799–3816 (2017).
    • (2017) J. Cell Biol. , vol.216 , pp. 3799-3816
    • Erdogan, B.1
  • 71
    • 84874164241 scopus 로고    scopus 로고
    • Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device
    • COI: 1:CAS:528:DC%2BC3sXjsFSitLk%3D, PID: 23441195
    • Wang, S. et al. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device. PLOS ONE 8, e56448 (2013).
    • (2013) PLOS ONE , vol.8
    • Wang, S.1
  • 72
    • 67649364409 scopus 로고    scopus 로고
    • Engineering microscale cellular niches for three-dimensional multicellular co-cultures
    • COI: 1:CAS:528:DC%2BD1MXms12itrc%3D, PID: 19495458
    • Huang, C. P. et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9, 1740–1748 (2009).
    • (2009) Lab Chip , vol.9 , pp. 1740-1748
    • Huang, C.P.1
  • 73
    • 84944463517 scopus 로고    scopus 로고
    • Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions
    • PID: 26231039
    • Bai, J. et al. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Oncotarget 6, 25295–25307 (2015).
    • (2015) Oncotarget , vol.6 , pp. 25295-25307
    • Bai, J.1
  • 74
    • 84923012186 scopus 로고    scopus 로고
    • Stretching fibroblasts remodels fibronectin and alters cancer cell migration
    • COI: 1:CAS:528:DC%2BC2MXosFelsL0%3D, PID: 25660754
    • Ao, M. et al. Stretching fibroblasts remodels fibronectin and alters cancer cell migration. Sci. Rep. 5, 8334 (2015).
    • (2015) Sci. Rep. , vol.5
    • Ao, M.1
  • 75
    • 84865293346 scopus 로고    scopus 로고
    • Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function
    • COI: 1:CAS:528:DC%2BC38XhsValu7rE, PID: 22869695
    • Zervantonakis, I. K. et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl Acad. Sci. USA 109, 13515–13520 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 13515-13520
    • Zervantonakis, I.K.1
  • 76
    • 84888361416 scopus 로고    scopus 로고
    • Crossing the endothelial barrier during metastasis
    • COI: 1:CAS:528:DC%2BC3sXhvVWgtLnN, PID: 24263189
    • Reymond, N., D’Água, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 13, 858–870 (2013).
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 858-870
    • Reymond, N.1    D’Água, B.B.2    Ridley, A.J.3
  • 77
    • 85028049305 scopus 로고    scopus 로고
    • A biomimetic microfluidic tumor microenvironment platform mimicking the EPR effect for rapid screening of drug delivery systems
    • PID: 28839211
    • Tang, Y. et al. A biomimetic microfluidic tumor microenvironment platform mimicking the EPR effect for rapid screening of drug delivery systems. Sci. Rep. 7, 9359 (2017).
    • (2017) Sci. Rep. , vol.7
    • Tang, Y.1
  • 78
    • 84922392594 scopus 로고    scopus 로고
    • CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis
    • COI: 1:CAS:528:DC%2BC2cXnslOgs7g%3D, PID: 24810923
    • Sun, Y. et al. CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis. Tumour Biol. 35, 7765–7773 (2014).
    • (2014) Tumour Biol. , vol.35 , pp. 7765-7773
    • Sun, Y.1
  • 79
    • 66849138510 scopus 로고    scopus 로고
    • Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells
    • PID: 19484126
    • Song, J. W. et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLOS ONE 4, e5756 (2009).
    • (2009) PLOS ONE , vol.4
    • Song, J.W.1
  • 80
    • 85008693364 scopus 로고    scopus 로고
    • High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system
    • COI: 1:CAS:528:DC%2BC2sXmsVCntw%3D%3D, PID: 28054593
    • Regmi, S., Fu, A. & Luo, K. Q. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci. Rep. 7, 39975 (2017).
    • (2017) Sci. Rep. , vol.7
    • Regmi, S.1    Fu, A.2    Luo, K.Q.3
  • 81
    • 85043480176 scopus 로고    scopus 로고
    • The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model
    • Boussommier-Calleja, A. et al. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials 10.1016/j.biomaterials.2018.03.005 (2018).
    • (2018) Biomaterials
    • Boussommier-Calleja, A.1
  • 82
    • 34447323070 scopus 로고    scopus 로고
    • a & Beasley, M. B. Bronchioloalveolar carcinoma: a review of current concepts and evolving issues
    • PID: 17616987
    • Yousem, S. A & Beasley, M. B. Bronchioloalveolar carcinoma: a review of current concepts and evolving issues. Arch. Pathol. Lab. Med. 131, 1027–1032 (2007).
    • (2007) Arch. Pathol. Lab. Med. , vol.131 , pp. 1027-1032
    • Yousem, S.A.1
  • 83
    • 85027940706 scopus 로고    scopus 로고
    • Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma
    • PID: 22005835
    • Abe, M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int. J. Hematol. 94, 334–343 (2011).
    • (2011) Int. J. Hematol. , vol.94 , pp. 334-343
    • Abe, M.1
  • 84
    • 84905179282 scopus 로고    scopus 로고
    • Patient-specific 3D microfluidic tissue model for multiple myeloma
    • COI: 1:CAS:528:DC%2BC2cXht1Clt7nM
    • Zhang, W., Lee, W. Y., Siegel, D. S., Tolias, P. & Zilberberg, J. Patient-specific 3D microfluidic tissue model for multiple myeloma. Tissue Eng. Part C 20, 663–670 (2014).
    • (2014) Tissue Eng. Part C , vol.20 , pp. 663-670
    • Zhang, W.1    Lee, W.Y.2    Siegel, D.S.3    Tolias, P.4    Zilberberg, J.5
  • 85
    • 84930921198 scopus 로고    scopus 로고
    • MicroC(3): an ex vivo microfluidic cis-coculture assay to test chemosensitivity and resistance of patient multiple myeloma cells
    • COI: 1:CAS:528:DC%2BC2MXot1Chsrw%3D
    • Pak, C. et al. MicroC(3): an ex vivo microfluidic cis-coculture assay to test chemosensitivity and resistance of patient multiple myeloma cells. Integr. Biol. 7, 643–654 (2015).
    • (2015) Integr. Biol. , vol.7 , pp. 643-654
    • Pak, C.1
  • 86
    • 85034441986 scopus 로고    scopus 로고
    • Bone metastases: an overview
    • PID: 28584570
    • Macedo, F. et al. Bone metastases: an overview. Oncol. Rev. 11, 321 (2017).
    • (2017) Oncol. Rev. , vol.11 , pp. 321
    • Macedo, F.1
  • 87
    • 84891742591 scopus 로고    scopus 로고
    • A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone
    • COI: 1:CAS:528:DC%2BC2cXms1yn, PID: 24388382
    • Bersini, S. et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454–2461 (2014). This study uses a microfluidic plattform to investigate the specificity of human breast cancer metastasis to the bone revealing the involvement of breast cancer cell receptor CXCR2 and the bone-secreted chemokine CXCL5 in cancer cell extravasation.
    • (2014) Biomaterials , vol.35 , pp. 2454-2461
    • Bersini, S.1
  • 88
    • 66249140996 scopus 로고    scopus 로고
    • A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone
    • COI: 1:CAS:528:DC%2BD1MXlvFWltrw%3D, PID: 19435905
    • Mastro, A. M. & Vogler, E. A. A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res. 69, 4097–4100 (2009).
    • (2009) Cancer Res. , vol.69 , pp. 4097-4100
    • Mastro, A.M.1    Vogler, E.A.2
  • 89
    • 84890490480 scopus 로고    scopus 로고
    • In vitro mimics of bone remodeling and the vicious cycle of cancer in bone
    • COI: 1:CAS:528:DC%2BC3sXhvFeqtL%2FL, PID: 24022654
    • Krishnan, V., Vogler, E. A., Sosnoski, D. M. & Mastro, A. M. In vitro mimics of bone remodeling and the vicious cycle of cancer in bone. J. Cell. Physiol. 229, 453–462 (2014).
    • (2014) J. Cell. Physiol. , vol.229 , pp. 453-462
    • Krishnan, V.1    Vogler, E.A.2    Sosnoski, D.M.3    Mastro, A.M.4
  • 90
    • 84887828470 scopus 로고    scopus 로고
    • Engineered 3D silk-based metastasis models: Interactions between human breast adenocarcinoma, mesenchymal stem cells and osteoblast-like cells
    • COI: 1:CAS:528:DC%2BC3sXmvV2lsrw%3D
    • Talukdar, S. & Kundu, S. C. Engineered 3D silk-based metastasis models: Interactions between human breast adenocarcinoma, mesenchymal stem cells and osteoblast-like cells. Adv. Funct. Mater. 23, 5249–5260 (2013).
    • (2013) Adv. Funct. Mater. , vol.23 , pp. 5249-5260
    • Talukdar, S.1    Kundu, S.C.2
  • 91
    • 84994877355 scopus 로고    scopus 로고
    • A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors
    • COI: 1:CAS:528:DC%2BC28XhvVGjtLzN, PID: 27830712
    • Xu, H. et al. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci. Rep. 6, 36670 (2016).
    • (2016) Sci. Rep. , vol.6
    • Xu, H.1
  • 92
    • 80054021855 scopus 로고    scopus 로고
    • Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions
    • COI: 1:CAS:528:DC%2BC3MXht12ju7nJ, PID: 21915399
    • Chen, Y. A. et al. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab Chip 11, 3626–3633 (2011).
    • (2011) Lab Chip , vol.11 , pp. 3626-3633
    • Chen, Y.A.1
  • 93
    • 84938347800 scopus 로고    scopus 로고
    • Cancer associated fibroblast-derived hepatocyte growth factor inhibits the paclitaxel-induced apoptosis of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78 signaling on a microfluidic platform
    • Ying, L. et al. Cancer associated fibroblast-derived hepatocyte growth factor inhibits the paclitaxel-induced apoptosis of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78 signaling on a microfluidic platform. PLOS ONE 10, 1–15 (2015).
    • (2015) PLOS ONE , vol.10 , pp. 1-15
    • Ying, L.1
  • 94
    • 69549102851 scopus 로고    scopus 로고
    • Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells
    • COI: 1:CAS:528:DC%2BD1MXhtVCmsbrM, PID: 19704981
    • Faley, S. L. et al. Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 9, 2659–2664 (2009).
    • (2009) Lab Chip , vol.9 , pp. 2659-2664
    • Faley, S.L.1
  • 95
    • 84874964737 scopus 로고    scopus 로고
    • Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer
    • COI: 1:CAS:528:DC%2BC3sXjsFeqt7s%3D, PID: 23473962
    • Xu, Z. et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34, 4109–4117 (2013).
    • (2013) Biomaterials , vol.34 , pp. 4109-4117
    • Xu, Z.1
  • 96
    • 84946866413 scopus 로고    scopus 로고
    • Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment
    • PID: 26474384
    • Bai, J., Tu, T.-Y., Kim, C., Thiery, J. P. & Kamm, R. D. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Oncotarget 6, 36603–36614 (2015).
    • (2015) Oncotarget , vol.6 , pp. 36603-36614
    • Bai, J.1    Tu, T.-Y.2    Kim, C.3    Thiery, J.P.4    Kamm, R.D.5
  • 97
    • 84983543822 scopus 로고    scopus 로고
    • 3D microtumors in vitro supported by perfused vascular networks
    • COI: 1:CAS:528:DC%2BC28XhsVSrsbrO, PID: 27549930, This study uses a microfluidic platform with vascularized microtumours to reveal that dual target angiogenesis inhibitors are more effective to regress the vasculature than single target inhibitors
    • Sobrino, A. et al. 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep. 6, 31589 (2016). This study uses a microfluidic platform with vascularized microtumours to reveal that dual target angiogenesis inhibitors are more effective to regress the vasculature than single target inhibitors.
    • (2016) Sci. Rep. , vol.6
    • Sobrino, A.1
  • 98
    • 59649105005 scopus 로고    scopus 로고
    • A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics
    • COI: 1:CAS:528:DC%2BD1MXhsFWisrY%3D, PID: 19190790
    • Walsh, C. L. et al. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9, 545–554 (2009).
    • (2009) Lab Chip , vol.9 , pp. 545-554
    • Walsh, C.L.1
  • 99
    • 84971268064 scopus 로고    scopus 로고
    • Engineering a 3D microfluidic culture platform for tumor-treating field application
    • COI: 1:CAS:528:DC%2BC28Xos12mtrY%3D, PID: 27215466
    • Pavesi, A. et al. Engineering a 3D microfluidic culture platform for tumor-treating field application. Sci. Rep. 6, 26584 (2016).
    • (2016) Sci. Rep. , vol.6
    • Pavesi, A.1
  • 100
    • 85049270195 scopus 로고    scopus 로고
    • Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass
    • COI: 1:CAS:528:DC%2BC2sXhslalsrzN, PID: 29313036
    • Jarvis, M. et al. Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass. Bioeng. Transl Med. 2, 268–277 (2017).
    • (2017) Bioeng. Transl Med. , vol.2 , pp. 268-277
    • Jarvis, M.1
  • 101
    • 85030973110 scopus 로고    scopus 로고
    • Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer
    • PID: 29137378
    • Terrell-Hall, T. B., Nounou, M. I., El-Amrawy, F., Griffith, J. I. G. & Lockman, P. R. Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer. Oncotarget 8, 83734–83744 (2017).
    • (2017) Oncotarget , vol.8 , pp. 83734-83744
    • Terrell-Hall, T.B.1    Nounou, M.I.2    El-Amrawy, F.3    Griffith, J.I.G.4    Lockman, P.R.5
  • 102
    • 85062320701 scopus 로고    scopus 로고
    • A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors
    • PID: 28614795, This study describes the development of a microdevice platform that enables the investigation of factors that can alter antitumour efficacy of adoptive T cell function 3D
    • Pavesi, A. et al. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight 2, 89762 (2017). This study describes the development of a microdevice platform that enables the investigation of factors that can alter antitumour efficacy of adoptive T cell function in 3D.
    • (2017) JCI Insight , vol.2 , pp. 89762
    • Pavesi, A.1
  • 103
    • 85042906330 scopus 로고    scopus 로고
    • Characterizing the role of monocytes in T cell cancer immunotherapy using a 3D microfluidic model
    • PID: 29559973
    • Lee, S. W. L. et al. Characterizing the role of monocytes in T cell cancer immunotherapy using a 3D microfluidic model. Front. Immunol. 9, 416 (2018).
    • (2018) Front. Immunol. , vol.9 , pp. 416
    • Lee, S.W.L.1
  • 104
    • 84928771999 scopus 로고    scopus 로고
    • T cell exclusion, immune privilege, and the tumor microenvironment
    • COI: 1:CAS:528:DC%2BC2MXls1Wmu74%3D, PID: 25838376
    • Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).
    • (2015) Science , vol.348 , pp. 74-80
    • Joyce, J.A.1    Fearon, D.T.2
  • 105
    • 85034812883 scopus 로고    scopus 로고
    • Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips
    • COI: 1:CAS:528:DC%2BC1cXltlKgtw%3D%3D, PID: 29309256
    • Prantil-Baun, R. et al. Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips. Annu. Rev. Pharmacol. Toxicol. 58, 37–64 (2018).
    • (2018) Annu. Rev. Pharmacol. Toxicol. , vol.58 , pp. 37-64
    • Prantil-Baun, R.1
  • 106
    • 85023188876 scopus 로고    scopus 로고
    • Organ-on-a-chip devices advance to market
    • COI: 1:CAS:528:DC%2BC2sXpsVCmu7Y%3D, PID: 28617487
    • Zhang, B. & Radisic, M. Organ-on-a-chip devices advance to market. Lab Chip 17, 2395–2420 (2017).
    • (2017) Lab Chip , vol.17 , pp. 2395-2420
    • Zhang, B.1    Radisic, M.2
  • 107
    • 85032728017 scopus 로고    scopus 로고
    • Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform
    • PID: 29096610
    • Lanz, H. L. et al. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 17, 709 (2017).
    • (2017) BMC Cancer , vol.17
    • Lanz, H.L.1
  • 108
    • 85009344104 scopus 로고    scopus 로고
    • Microfluidic biopsy trapping device for the real-time monitoring of tumor microenvironment
    • PID: 28085924
    • Holton, A. B. et al. Microfluidic biopsy trapping device for the real-time monitoring of tumor microenvironment. PLOS ONE 12, e0169797 (2017).
    • (2017) PLOS ONE , vol.12
    • Holton, A.B.1
  • 109
    • 84883305025 scopus 로고    scopus 로고
    • Clear castable polyurethane elastomer for fabrication of microfluidic devices
    • COI: 1:CAS:528:DC%2BC3sXhtlentr3F, PID: 23954953
    • Domansky, K. et al. Clear castable polyurethane elastomer for fabrication of microfluidic devices. Lab Chip 13, 3956–3964 (2013).
    • (2013) Lab Chip , vol.13 , pp. 3956-3964
    • Domansky, K.1
  • 110
    • 85020517898 scopus 로고    scopus 로고
    • SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion
    • Domansky, K. et al. SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion. Microfluid. Nanofluid. 21, 107 (2017).
    • (2017) Microfluid. Nanofluid. , vol.21 , pp. 107
    • Domansky, K.1
  • 111
    • 84860439214 scopus 로고    scopus 로고
    • Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models
    • PID: 22444457
    • van Midwoud, P. M., Janse, A., Merema, M. T., Groothuis, G. M. M. & Verpoorte, E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 84, 3938–3944 (2012).
    • (2012) Anal. Chem. , vol.84 , pp. 3938-3944
    • van Midwoud, P.M.1    Janse, A.2    Merema, M.T.3    Groothuis, G.M.M.4    Verpoorte, E.5
  • 112
    • 84991208169 scopus 로고    scopus 로고
    • Bioprinting of 3D convoluted renal proximal tubules on perfusable chips
    • COI: 1:CAS:528:DC%2BC28Xhs1OjtbfL, PID: 27725720
    • Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).
    • (2016) Sci. Rep. , vol.6
    • Homan, K.A.1
  • 113
    • 84979255712 scopus 로고    scopus 로고
    • Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing
    • PID: 27180100
    • Marx, U. et al. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272–321 (2016).
    • (2016) ALTEX , vol.33 , pp. 272-321
    • Marx, U.1
  • 114
    • 84981734428 scopus 로고    scopus 로고
    • Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling
    • COI: 1:CAS:528:DC%2BC28Xht1aisL7F, PID: 27422270
    • Skardal, A., Shupe, T. & Atala, A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov. Today 21, 1399–1411 (2016).
    • (2016) Drug Discov. Today , vol.21 , pp. 1399-1411
    • Skardal, A.1    Shupe, T.2    Atala, A.3
  • 115
    • 85044195316 scopus 로고    scopus 로고
    • Interconnected microphysiological systems for quantitative biology and pharmacology studies
    • PID: 29540740
    • Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8, 4530 (2018).
    • (2018) Sci. Rep. , vol.8
    • Edington, C.D.1
  • 116
    • 84957586265 scopus 로고    scopus 로고
    • Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs
    • COI: 1:CAS:528:DC%2BC28XitFahsLY%3D, PID: 26837601
    • Oleaga, C. et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016).
    • (2016) Sci. Rep. , vol.6
    • Oleaga, C.1
  • 117
    • 85011797666 scopus 로고    scopus 로고
    • Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle
    • COI: 1:CAS:528:DC%2BC2sXisVeiur8%3D, PID: 28176881
    • Vernetti, L. et al. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci. Rep. 7, 42296 (2017).
    • (2017) Sci. Rep. , vol.7
    • Vernetti, L.1
  • 118
    • 84992560366 scopus 로고    scopus 로고
    • A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model
    • PID: 27570096
    • Lee, H. et al. A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model. Biotechnol. Bioeng. 114, 432–443 (2016).
    • (2016) Biotechnol. Bioeng. , vol.114 , pp. 432-443
    • Lee, H.1
  • 119
    • 75749153235 scopus 로고    scopus 로고
    • A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip
    • COI: 1:CAS:528:DC%2BC3cXhtlGiu7g%3D, PID: 20126684
    • Sung, J. H., Kam, C. & Shuler, M. L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10, 446–455 (2010).
    • (2010) Lab Chip , vol.10 , pp. 446-455
    • Sung, J.H.1    Kam, C.2    Shuler, M.L.3
  • 120
    • 85048985572 scopus 로고    scopus 로고
    • A microfluidics platform for combinatorial drug screening on cancer biopsies
    • PID: 29934552
    • Eduati, F. et al. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat. Commun. 9, 2434 (2018).
    • (2018) Nat. Commun. , vol.9
    • Eduati, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.