메뉴 건너뛰기




Volumn 1, Issue 1, 2016, Pages

ADAGE-Based Integration of Publicly Available Pseudomonas aeruginosa Gene Expression Data with Denoising Autoencoders Illuminates Microbe-Host Interactions

Author keywords

Bioinformatics; Data integration; Denoising autoencoders; Gene expression; Genomics

Indexed keywords


EID: 84991259184     PISSN: None     EISSN: 23795077     Source Type: Journal    
DOI: 10.1128/mSystems.00025-15     Document Type: Article
Times cited : (103)

References (68)
  • 1
    • 37749031255 scopus 로고    scopus 로고
    • Next-generation sequencing transforms today’s biology
    • Schuster SC. 2008. Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18. http://dx.doi.org/10.1038/nmeth1156.
    • (2008) Nat Methods , vol.5 , pp. 16-18
    • Schuster, S.C.1
  • 2
    • 53649106195 scopus 로고    scopus 로고
    • Next-generation DNA sequencing
    • Shendure J, Ji H. 2008. Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145. http://dx.doi.org/10.1038/nbt1486.
    • (2008) Nat Biotechnol , vol.26 , pp. 1135-1145
    • Shendure, J.1    Ji, H.2
  • 3
    • 85028165246 scopus 로고    scopus 로고
    • Ten years of next-generation sequencing technology
    • Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. 2014. Ten years of next-generation sequencing technology. Trends Genet 30:418–426. http://dx.doi.org/10.1016/j.tig.2014.07.001.
    • (2014) Trends Genet , vol.30 , pp. 418-426
    • Van Dijk, E.L.1    Auger, H.2    Jaszczyszyn, Y.3    Thermes, C.4
  • 4
    • 41149167170 scopus 로고    scopus 로고
    • Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing
    • Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH. 2008. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636 –1647. http://dx.doi.org/10.1111/j.1365-294X.2008.03666.x.
    • (2008) Mol Ecol , vol.17 , pp. 1636-1647
    • Vera, J.C.1    Wheat, C.W.2    Fescemyer, H.W.3    Frilander, M.J.4    Crawford, D.L.5    Hanski, I.6    Marden, J.H.7
  • 5
    • 78649294100 scopus 로고    scopus 로고
    • Optimization of de novo transcriptome assembly from next-generation sequencing data
    • Surget-Groba Y, Montoya-Burgos JI. 2010. Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res 20:1432–1440. http://dx.doi.org/10.1101/gr.103846.109.
    • (2010) Genome Res , vol.20 , pp. 1432-1440
    • Surget-Groba, Y.1    Montoya-Burgos, J.I.2
  • 6
    • 79959300621 scopus 로고    scopus 로고
    • Applications of next generation sequencing in molecular ecology of non-model organisms
    • Ekblom R, Galindo J. 2011. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb) 107: 1–15. http://dx.doi.org/10.1038/hdy.2010.152.
    • (2011) Heredity (Edinb) , vol.107 , pp. 1-15
    • Ekblom, R.1    Galindo, J.2
  • 8
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • Quackenbush J. 2001. Computational analysis of microarray data. Nat Rev Genet 2:418–427. http://dx.doi.org/10.1038/35076576.
    • (2001) Nat Rev Genet , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 10
    • 84875448616 scopus 로고    scopus 로고
    • Transcriptional insights into the CD8() T cell response to infection and memory T cell formation
    • Immunological Genome Project Consortium
    • Best JA, Blair DA, Knell J, Yang E, Mayya V, Doedens A, Dustin ML, Goldrath AW, Immunological Genome Project Consortium. 2013. Transcriptional insights into the CD8() T cell response to infection and memory T cell formation. Nat Immunol 14:404–412. http://dx.doi.org/10.1038/ni.2536.
    • (2013) Nat Immunol , vol.14 , pp. 404-412
    • Best, J.A.1    Blair, D.A.2    Knell, J.3    Yang, E.4    Mayya, V.5    Doedens, A.6    Dustin, M.L.7    Goldrath, A.W.8
  • 11
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121. http://dx.doi.org/10.1073/pnas.091062498.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 13
    • 79959981751 scopus 로고    scopus 로고
    • PILGRM: An interactive data-driven discovery platform for expert biologists
    • Greene CS, Troyanskaya OG. 2011. PILGRM: an interactive data-driven discovery platform for expert biologists. Nucleic Acids Res 39: W368–W374. http://dx.doi.org/10.1093/nar/gkr440.
    • (2011) Nucleic Acids Res , vol.39 , pp. W368-W374
    • Greene, C.S.1    Troyanskaya, O.G.2
  • 15
    • 84904691723 scopus 로고    scopus 로고
    • Genomic data integration for ecological and evolutionary traits in non-model organisms
    • Tagu D, Colbourne JK, Nègre N. 2014. Genomic data integration for ecological and evolutionary traits in non-model organisms. BMC Genomics 15:490. http://dx.doi.org/10.1186/1471-2164-15-490.
    • (2014) BMC Genomics , vol.15 , pp. 490
    • Tagu, D.1    Colbourne, J.K.2    Nègre, N.3
  • 16
    • 84893437280 scopus 로고    scopus 로고
    • Extracting data from the muck: Deriving biological insight from complex microbial communities and non-model organisms with next generation sequencing
    • Solomon KV, Haitjema CH, Thompson DA, O’Malley MA. 2014. Extracting data from the muck: deriving biological insight from complex microbial communities and non-model organisms with next generation sequencing. Curr Opin Biotechnol 28:103–110. http://dx.doi.org/10.1016/j.copbio.2014.01.007.
    • (2014) Curr Opin Biotechnol , vol.28 , pp. 103-110
    • Solomon, K.V.1    Haitjema, C.H.2    Thompson, D.A.3    O’Malley, M.A.4
  • 20
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • International Machine Learning Society, Princeton, NJ
    • Glorot X, Bordes A, Bengio Y. 2011. Domain adaptation for large-scale sentiment classification: a deep learning approach, p 513–520. Proc 28th Int Conf Mach Learn (ICML-11). International Machine Learning Society, Princeton, NJ.
    • (2011) Proc 28th Int Conf Mach Learn (ICML-11) , pp. 513-520
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 23
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. 2010. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11: 3371–3408.
    • (2010) J Mach Learn Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 24
    • 84891765377 scopus 로고    scopus 로고
    • DOer 2.0: Presenting operons and their functions through dynamic and integrated views
    • Mao X, Ma Q, Zhou C, Chen X, Zhang H, Yang J, Mao F, Lai W, Xu Y. 2014. DOer 2.0: presenting operons and their functions through dynamic and integrated views. Nucleic Acids Res 42:D654–D659. http://dx.doi.org/10.1093/nar/gkt1048.
    • (2014) Nucleic Acids Res , vol.42 , pp. D654-D659
    • Mao, X.1    Ma, Q.2    Zhou, C.3    Chen, X.4    Zhang, H.5    Yang, J.6    Mao, F.7    Lai, W.8    Xu, Y.9
  • 25
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. http://dx.doi.org/10.1093/nar/28.1.27.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 27
    • 0017250449 scopus 로고
    • Suppressor mutations in Pseudomonas aeruginosa
    • Watson JM, Holloway BW. 1976. Suppressor mutations in Pseudomonas aeruginosa. J Bacteriol 125:780 –786.
    • (1976) J Bacteriol , vol.125 , pp. 780-786
    • Watson, J.M.1    Holloway, B.W.2
  • 28
    • 0029035765 scopus 로고
    • Common virulence factors for bacterial pathogenicity in plants and animals
    • Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902. http://dx.doi.org/10.1126/science.7604262.
    • (1995) Science , vol.268 , pp. 1899-1902
    • Rahme, L.G.1    Stevens, E.J.2    Wolfort, S.F.3    Shao, J.4    Tompkins, R.G.5    Ausubel, F.M.6
  • 31
    • 77949741786 scopus 로고    scopus 로고
    • Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa
    • Köhler T, Donner V, van Delden C. 2010. Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa. J Bacteriol 192:1921–1928. http://dx.doi.org/10.1128/JB.01459-09.
    • (2010) J Bacteriol , vol.192 , pp. 1921-1928
    • Köhler, T.1    Donner, V.2    Van Delden, C.3
  • 32
    • 35648949942 scopus 로고    scopus 로고
    • In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients
    • Son MS, Matthews WJ, Kang Y, Nguyen DT, Hoang TT. 2007. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 75: 5313–5324. http://dx.doi.org/10.1128/IAI.01807-06.
    • (2007) Infect Immun , vol.75 , pp. 5313-5324
    • Son, M.S.1    Matthews, W.J.2    Kang, Y.3    Nguyen, D.T.4    Hoang, T.T.5
  • 33
    • 34948905258 scopus 로고    scopus 로고
    • Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa
    • Tralau T, Vuilleumier S, Thibault C, Campbell BJ, Hart CA, Kertesz MA. 2007. Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa. J Bacteriol 189:6743–6750. http://dx.doi.org/10.1128/JB.00889-07.
    • (2007) J Bacteriol , vol.189 , pp. 6743-6750
    • Tralau, T.1    Vuilleumier, S.2    Thibault, C.3    Campbell, B.J.4    Hart, C.A.5    Kertesz, M.A.6
  • 34
    • 48449106179 scopus 로고    scopus 로고
    • The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon
    • Kang Y, Nguyen DT, Son MS, Hoang TT. 2008. The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology 154:1584 –1598. http://dx.doi.org/10.1099/mic.0.2008/018135-0.
    • (2008) Microbiology , vol.154 , pp. 1584-1598
    • Kang, Y.1    Nguyen, D.T.2    Son, M.S.3    Hoang, T.T.4
  • 35
    • 0025873743 scopus 로고
    • Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli
    • Zimmermann A, Reimmann C, Galimand M, Haas D. 1991. Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli. Mol Microbiol 5:1483–1490. http://dx.doi.org/10.1111/j.1365-2958.1991.tb00794.x.
    • (1991) Mol Microbiol , vol.5 , pp. 1483-1490
    • Zimmermann, A.1    Reimmann, C.2    Galimand, M.3    Haas, D.4
  • 38
    • 77957935610 scopus 로고    scopus 로고
    • Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa
    • Kawakami T, Kuroki M, Ishii M, Igarashi Y, Arai H. 2010. Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. Environ Microbiol 12:1399 –1412. http://dx.doi.org/10.1111/j.1462-2920.2009.02109.x.
    • (2010) Environ Microbiol , vol.12 , pp. 1399-1412
    • Kawakami, T.1    Kuroki, M.2    Ishii, M.3    Igarashi, Y.4    Arai, H.5
  • 40
    • 84893193594 scopus 로고    scopus 로고
    • 2-responsive genes of Pseudomonas aeruginosa and their network revealed by integrating dynamic data from inverted conditions
    • 2-responsive genes of Pseudomonas aeruginosa and their network revealed by integrating dynamic data from inverted conditions. Integr Biol (Camb) 6:215–223. http://dx.doi.org/10.1039/c3ib40180d.
    • (2014) Integr Biol (Camb) , vol.6 , pp. 215-223
    • He, F.Q.1    Wang, W.2    Zheng, P.3    Sudhakar, P.4    Sun, J.5    Zeng, A.-P.6
  • 41
    • 84938824620 scopus 로고    scopus 로고
    • Links between Anr and quorum sensing in Pseudomonas aeruginosa biofilms
    • Hammond JH, Dolben EF, Smith TJ, Bhuju S, Hogan DA. 2015. Links between Anr and quorum sensing in Pseudomonas aeruginosa biofilms. J Bacteriol 197:2810–2820. http://dx.doi.org/10.1128/JB.00182-15.
    • (2015) J Bacteriol , vol.197 , pp. 2810-2820
    • Hammond, J.H.1    Dolben, E.F.2    Smith, T.J.3    Bhuju, S.4    Hogan, D.A.5
  • 42
    • 85041897127 scopus 로고    scopus 로고
    • Cross-platform normalization of microarray and RNA-seq data for machine learning applications
    • Thompson JA, Tan J, Greene CS. 2015. Cross-platform normalization of microarray and RNA-seq data for machine learning applications. PeerJ preprint archive. https://peerj.com/preprints/1460/.
    • (2015) PeerJ Preprint Archive
    • Thompson, J.A.1    Tan, J.2    Greene, C.S.3
  • 43
    • 42149086134 scopus 로고    scopus 로고
    • In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells
    • Anderson GG, Moreau-Marquis S, Stanton BA, O’Toole GA. 2008. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect Immun 76: 1423-1433. http://dx.doi.org/10.1128/IAI.01373-07.
    • (2008) Infect Immun , vol.76 , pp. 1423-1433
    • Anderson, G.G.1    Moreau-Marquis, S.2    Stanton, B.A.3    O’Toole, G.A.4
  • 44
    • 84926507971 scopus 로고    scopus 로고
    • Limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. http://dx.doi.org/10.1093/nar/gkv007.
    • (2015) Nucleic Acids Res , vol.43 , pp. e47
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3    Hu, Y.4    Law, C.W.5    Shi, W.6    Smyth, G.K.7
  • 45
    • 77349109267 scopus 로고    scopus 로고
    • The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system
    • Anderson GG, Yahr TL, Lovewell RR, O’Toole GA. 2010. The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system. Infect Immun 78:1239 -1249. http://dx.doi.org/10.1128/IAI.00865-09.
    • (2010) Infect Immun , vol.78 , pp. 1239-1249
    • Anderson, G.G.1    Yahr, T.L.2    Lovewell, R.R.3    O’Toole, G.A.4
  • 47
    • 0036069214 scopus 로고    scopus 로고
    • Interactive exploration of microarray gene expression patterns in a reduced dimensional space
    • Misra J, Schmitt W, Hwang D, Hsiao L-L, Gullans S, Stephanopoulos G, Stephanopoulos G. 2002. Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome Res 12: 1112-1120. http://dx.doi.org/10.1101/gr.225302.
    • (2002) Genome Res , vol.12 , pp. 1112-1120
    • Misra, J.1    Schmitt, W.2    Hwang, D.3    Hsiao, L.-L.4    Gullans, S.5    Stephanopoulos, G.6    Stephanopoulos, G.7
  • 49
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarrays
    • Lee S-I, Batzoglou S. 2003. Application of independent component analysis to microarrays. Genome Biol 4:R76. http://dx.doi.org/10.1186/gb-2003-4-11-r76.
    • (2003) Genome Biol , vol.4 , pp. R76
    • Lee, S.-I.1    Batzoglou, S.2
  • 50
    • 78649334862 scopus 로고    scopus 로고
    • Independent component analysis: Mining microarray data for fundamental human gene expression modules
    • Engreitz JM, Daigle BJ, Marshall JJ, Altman RB. 2010. Independent component analysis: mining microarray data for fundamental human gene expression modules. J Biomed Inform 43:932-944. http://dx.doi.org/10.1016/j.jbi.2010.07.001.
    • (2010) J Biomed Inform , vol.43 , pp. 932-944
    • Engreitz, J.M.1    Daigle, B.J.2    Marshall, J.J.3    Altman, R.B.4
  • 51
    • 34548444625 scopus 로고    scopus 로고
    • Elucidating the altered transcriptional programs in breast cancer using independent component analysis
    • Teschendorff AE, Journée M, Absil PA, Sepulchre R, Caldas C. 2007. Elucidating the altered transcriptional programs in breast cancer using independent component analysis. PLoS Comput Biol 3:e161. http://dx.doi.org/10.1371/journal.pcbi.0030161.
    • (2007) PLoS Comput Biol , vol.3 , pp. e161
    • Teschendorff, A.E.1    Journée, M.2    Absil, P.A.3    Sepulchre, R.4    Caldas, C.5
  • 53
    • 84877028141 scopus 로고    scopus 로고
    • Comprehensive molecular portraits of human breast tumours
    • Cancer Genome Atlas Network
    • Cancer Genome Atlas Network. 2012. Comprehensive molecular portraits of human breast tumours. Nature 490:61-70. http://dx.doi.org/ 10.1038/nature11412.
    • (2012) Nature , vol.490 , pp. 61-70
  • 54
    • 79959838081 scopus 로고    scopus 로고
    • Integrated genomic analyses of ovarian carcinoma
    • Cancer Genome Atlas Network
    • Cancer Genome Atlas Network. 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474:609-615. http://dx.doi.org/10.1038/nature10166.
    • (2011) Nature , vol.474 , pp. 609-615
  • 56
    • 33746067911 scopus 로고    scopus 로고
    • Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks
    • Reiss DJ, Baliga NS, Bonneau R. 2006. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics 7:280. http://dx.doi.org/10.1186/1471-2105-7-280.
    • (2006) BMC Bioinformatics , vol.7 , pp. 280
    • Reiss, D.J.1    Baliga, N.S.2    Bonneau, R.3
  • 57
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521: 436–444. http://dx.doi.org/10.1038/nature14539.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 58
    • 1342288026 scopus 로고    scopus 로고
    • Affy—analysis of Affymetrix GeneChip data at the probe level
    • Gautier L, Cope L, Bolstad BM, Irizarry RA. 2004. Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315. http://dx.doi.org/10.1093/bioinformatics/btg405.
    • (2004) Bioinformatics , vol.20 , pp. 307-315
    • Gautier, L.1    Cope, L.2    Bolstad, B.M.3    Irizarry, R.A.4
  • 60
    • 84971231452 scopus 로고    scopus 로고
    • Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders
    • Tan J, Ung M, Cheng C, Greene CS. 2015. Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders. Pac Symp Biocomput 20:132–143.
    • (2015) Pac Symp Biocomput , vol.20 , pp. 132-143
    • Tan, J.1    Ung, M.2    Cheng, C.3    Greene, C.S.4
  • 64
    • 78651267246 scopus 로고    scopus 로고
    • Pseudomonas Genome Database: Improved comparative analysis and population genomics capability for Pseudomonas genomes
    • Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, Hancock RE, Brinkman FS. 2011. Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39:D596 –D600. http://dx.doi.org/10.1093/nar/gkq869.
    • (2011) Nucleic Acids Res , vol.39 , pp. D596-D600
    • Winsor, G.L.1    Lam, D.K.2    Fleming, L.3    Lo, R.4    Whiteside, M.D.5    Yu, N.Y.6    Hancock, R.E.7    Brinkman, F.S.8
  • 67
    • 75149150388 scopus 로고    scopus 로고
    • TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses
    • Stöver BC, Müller KF. 2010. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7. http://dx.doi.org/10.1186/1471-2105-11-7.
    • (2010) BMC Bioinformatics , vol.11 , pp. 7
    • Stöver, B.C.1    Müller, K.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.