메뉴 건너뛰기




Volumn 18, Issue , 2017, Pages

Predicting enhancers with deep convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

CELL CULTURE; CLASSIFICATION (OF INFORMATION); CONVOLUTION; DEEP LEARNING; DNA SEQUENCES; GENES; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 85036450976     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-017-1878-3     Document Type: Article
Times cited : (77)

References (39)
  • 1
    • 0032479079 scopus 로고    scopus 로고
    • Going the distance: a current view of enhancer action
    • Blackwood EM, Kadonaga JT. Going the distance: a current view of enhancer action. Science. 1998;281(5373):60-3.
    • (1998) Science , vol.281 , Issue.5373 , pp. 60-63
    • Blackwood, E.M.1    Kadonaga, J.T.2
  • 4
    • 71749120382 scopus 로고    scopus 로고
    • Finding distal regulatory elements in the human genome
    • Heintzman ND, Ren B. Finding distal regulatory elements in the human genome. Curr Opin Genet Dev. 2009;19(6):541-9.
    • (2009) Curr Opin Genet Dev , vol.19 , Issue.6 , pp. 541-549
    • Heintzman, N.D.1    Ren, B.2
  • 8
    • 7444260846 scopus 로고    scopus 로고
    • The encode (encyclopedia of dna elements) project
    • Consortium EP, et al. The encode (encyclopedia of dna elements) project. Science. 2004;306(5696):636-40.
    • (2004) Science , vol.306 , Issue.5696 , pp. 636-640
    • Consortium, E.P.1
  • 10
    • 83055181959 scopus 로고    scopus 로고
    • Discriminative prediction of mammalian enhancers from dna sequence
    • Lee D, Karchin R, Beer MA. Discriminative prediction of mammalian enhancers from dna sequence. Genome Res. 2011;21(12):2167-80.
    • (2011) Genome Res , vol.21 , Issue.12 , pp. 2167-2180
    • Lee, D.1    Karchin, R.2    Beer, M.A.3
  • 11
    • 84905484602 scopus 로고    scopus 로고
    • Enhanced regulatory sequence prediction using gapped k-mer features
    • Ghandi M, Lee D, Mohammad-Noori M, Beer MA. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput Biol. 2014;10(7):1003711.
    • (2014) PLoS Comput Biol , vol.10 , Issue.7 , pp. 1003711
    • Ghandi, M.1    Lee, D.2    Mohammad-Noori, M.3    Beer, M.A.4
  • 12
    • 84928997067 scopus 로고    scopus 로고
    • DANN: a deep learning approach for annotating the pathogenicity of genetic variants
    • Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015;31(5):761.
    • (2015) Bioinformatics. , vol.31 , Issue.5 , pp. 761
    • Quang, D.1    Chen, Y.2    Xie, X.3
  • 13
    • 84895858942 scopus 로고    scopus 로고
    • A general framework for estimating the relative pathogenicity of human genetic variants
    • Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310.
    • (2014) Nat Genet , vol.46 , Issue.3 , pp. 310
    • Kircher, M.1    Witten, D.M.2    Jain, P.3    O'Roak, B.J.4    Cooper, G.M.5    Shendure, J.6
  • 14
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of dna-and rna-binding proteins by deep learning
    • Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology (2015).
    • (2015) Nature biotechnology
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 15
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015;12(10):931-4.
    • (2015) Nat Methods , vol.12 , Issue.10 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 16
    • 84976908652 scopus 로고    scopus 로고
    • Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
    • Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 2016;26(7):990-9.
    • (2016) Genome Res , vol.26 , Issue.7 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.L.3
  • 17
    • 84857707318 scopus 로고    scopus 로고
    • Chromhmm: automating chromatin-state discovery and characterization
    • Ernst J, Kellis M. Chromhmm: automating chromatin-state discovery and characterization. Nat Methods. 2012;9(3):215-6.
    • (2012) Nat Methods , vol.9 , Issue.3 , pp. 215-216
    • Ernst, J.1    Kellis, M.2
  • 18
    • 85036473128 scopus 로고    scopus 로고
    • Accessed: 8 Jan 2016.
    • Lasange. https://github.com/Lasagne/Lasagne. Accessed: 8 Jan 2016.
  • 20
    • 85036458583 scopus 로고    scopus 로고
    • Accessed 08 Jan 2016.
    • Theano. http://deeplearning.net/software/theano. Accessed 08 Jan 2016.
  • 23
    • 84905220041 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • arXiv preprint arXiv:
    • Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013).
    • (2013)
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 26
    • 84976884426 scopus 로고    scopus 로고
    • JASPAR 2016: a major expansion and update of the openaccess database of transcription factor binding profiles
    • Mathelier A, Fornes O, Arenillas DJ, et al. JASPAR 2016: a major expansion and update of the openaccess database of transcription factor binding profiles. Nucl. Acids Res. 2016;44(D1):D110.
    • (2016) Nucl. Acids Res , vol.44 , Issue.D1 , pp. D110
    • Mathelier, A.1    Fornes, O.2    Arenillas, D.J.3
  • 30
    • 84928779208 scopus 로고    scopus 로고
    • Epigenetics of human melanoma: promises and challenges
    • Besaratinia A, Tommasi S. Epigenetics of human melanoma: promises and challenges. J Mol Cell Biol. 2014;6(5):356-67.
    • (2014) J Mol Cell Biol , vol.6 , Issue.5 , pp. 356-367
    • Besaratinia, A.1    Tommasi, S.2
  • 31
    • 79951470643 scopus 로고    scopus 로고
    • Epigenetic changes of DNA repair genes in cancer
    • Lahtz C, Pfeifer GP. Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol. 2011;3(1):51-8.
    • (2011) J Mol Cell Biol , vol.3 , Issue.1 , pp. 51-58
    • Lahtz, C.1    Pfeifer, G.P.2
  • 32
    • 84938932957 scopus 로고    scopus 로고
    • Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9
    • Li J, Shou J, Guo Y, Tang Y, Wu Y, Jia Z, Zhai Y, Chen Z, Xu Q, Wu Q. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J Mol Cell Biol. 2015;7(4):284-98.
    • (2015) J Mol Cell Biol , vol.7 , Issue.4 , pp. 284-298
    • Li, J.1    Shou, J.2    Guo, Y.3    Tang, Y.4    Wu, Y.5    Jia, Z.6    Zhai, Y.7    Chen, Z.8    Xu, Q.9    Wu, Q.10
  • 33
    • 84961289992 scopus 로고    scopus 로고
    • Glove: global vectors for word representation
    • Pennington J, Socher R, Manning CD. Glove: global vectors for word representation. EMNLP. 2014;14:1532-43.
    • (2014) EMNLP , vol.14 , pp. 1532-1543
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 34
    • 85024503304 scopus 로고    scopus 로고
    • Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding
    • Min X, Zeng W, Chen N, Chen T, Jiang R. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Bioinformatics. 2017;33(14):i92-i101.
    • (2017) Bioinformatics. , vol.33 , Issue.14 , pp. 92-101
    • Min, X.1    Zeng, W.2    Chen, N.3    Chen, T.4    Jiang, R.5
  • 35
    • 84897406127 scopus 로고    scopus 로고
    • A promoter-level mammalian expression atlas
    • Consortium TF, et al. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462-70.
    • (2014) Nature , vol.507 , Issue.7493 , pp. 462-470
    • Consortium, T.F.1
  • 36
    • 85036461090 scopus 로고    scopus 로고
    • Accessed 8 Jan 2016.
    • PrESSTo. http://pressto.binf.ku.dk/about.php. Accessed 8 Jan 2016.
  • 37
    • 84976413226 scopus 로고    scopus 로고
    • DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
    • Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Research. 2016;44(11):e107.
    • (2016) Nucleic Acids Research. , vol.44 , Issue.11
    • Quang, D.1    Xie, X.2
  • 38
    • 84964923476 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • arXiv preprint arXiv
    • Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).
    • (2015)
    • Ioffe, S.1    Szegedy, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.