메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages

Deepgene: An advanced cancer type classifier based on deep learning and somatic point mutations

Author keywords

[No Author keywords available]

Indexed keywords

DISEASES; DNA SEQUENCES; GENE ENCODING; GENES;

EID: 85006839848     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-1334-9     Document Type: Article
Times cited : (99)

References (47)
  • 1
    • 34047237505 scopus 로고    scopus 로고
    • Defining cancer survivorship
    • Feuerstein M. Defining cancer survivorship. J Cancer Surviv. 2007;1(1):5-7.
    • (2007) J Cancer Surviv , vol.1 , Issue.1 , pp. 5-7
    • Feuerstein, M.1
  • 2
    • 84896459209 scopus 로고    scopus 로고
    • World cancer report 2014
    • World
    • Stewart B, Wild CP. World cancer report 2014. 2015. World.
    • (2015)
    • Stewart, B.1    Wild, C.P.2
  • 3
    • 84864216850 scopus 로고    scopus 로고
    • Life Technologies promises [dollar] 1,000 genome
    • DeFrancesco L. Life Technologies promises [dollar] 1,000 genome. Nat Biotechnol. 2012;30(2):126.
    • (2012) Nat Biotechnol , vol.30 , Issue.2 , pp. 126
    • DeFrancesco, L.1
  • 6
    • 84885368416 scopus 로고    scopus 로고
    • Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers
    • Wang Q, Jia P, Li F, Chen H, Ji H, Hucks D, Dahlman KB, Pao W, Zhao Z. Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers. Genome Med. 2013;5(10):91.
    • (2013) Genome Med , vol.5 , Issue.10 , pp. 91
    • Wang, Q.1    Jia, P.2    Li, F.3    Chen, H.4    Ji, H.5    Hucks, D.6    Dahlman, K.B.7    Pao, W.8    Zhao, Z.9
  • 7
    • 84857820489 scopus 로고    scopus 로고
    • Tumor heterogeneity and personalized medicine
    • Longo DL. Tumor heterogeneity and personalized medicine. N Engl J Med. 2012;366(10):956-7.
    • (2012) N Engl J Med , vol.366 , Issue.10 , pp. 956-957
    • Longo, D.L.1
  • 8
    • 15544389968 scopus 로고    scopus 로고
    • What is targeted therapy
    • Sledge GW. What is targeted therapy J Clin Oncol. 2005;23(8):1614-5.
    • (2005) J Clin Oncol , vol.23 , Issue.8 , pp. 1614-1615
    • Sledge, G.W.1
  • 12
    • 52449127787 scopus 로고    scopus 로고
    • Is there a role for circulating tumor cells in the management of breast cancer
    • Hayes DF, Smerage J. Is there a role for circulating tumor cells in the management of breast cancer Clin Cancer Res. 2008;14(12):3646-50.
    • (2008) Clin Cancer Res , vol.14 , Issue.12 , pp. 3646-3650
    • Hayes, D.F.1    Smerage, J.2
  • 16
    • 84857433079 scopus 로고    scopus 로고
    • Model-based learning using a mixture of mixtures of gaussian and uniform distributions
    • Browne RP, McNicholas PD, Sparling MD. Model-based learning using a mixture of mixtures of gaussian and uniform distributions. IEEE Trans Pattern Anal Mach Intell. 2012;34(4):814-7.
    • (2012) IEEE Trans Pattern Anal Mach Intell , vol.34 , Issue.4 , pp. 814-817
    • Browne, R.P.1    McNicholas, P.D.2    Sparling, M.D.3
  • 17
    • 84920747718 scopus 로고    scopus 로고
    • Deep autoencoder neural networks for gene ontology annotation predictions
    • Newport Beach: Health Informatics
    • Chicco D, Sadowski P, Baldi P. Deep autoencoder neural networks for gene ontology annotation predictions. Proc ACM Conf Bioinformatics, Computational Biology. Newport Beach: Health Informatics. 2014:533-540.
    • Proc ACM Conf Bioinformatics, Computational Biology , vol.2014 , pp. 533-540
    • Chicco, D.1    Sadowski, P.2    Baldi, P.3
  • 19
    • 77953192081 scopus 로고    scopus 로고
    • Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer
    • Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127(1):118-26.
    • (2010) Int J Cancer , vol.127 , Issue.1 , pp. 118-126
    • Huang, Z.1    Huang, D.2    Ni, S.3    Peng, Z.4    Sheng, W.5    Du, X.6
  • 21
    • 41349101947 scopus 로고    scopus 로고
    • Early detection and treatment of ovarian cancer: shifting from early stage to minimal volume of disease based on a new model of carcinogenesis
    • Kurman RJ, Visvanathan K, Roden R, Wu T, Shih I-M. Early detection and treatment of ovarian cancer: shifting from early stage to minimal volume of disease based on a new model of carcinogenesis. Am J Obstet Gynecol. 2008;198(4):351-6.
    • (2008) Am J Obstet Gynecol , vol.198 , Issue.4 , pp. 351-356
    • Kurman, R.J.1    Visvanathan, K.2    Roden, R.3    Wu, T.4    Shih, I.-M.5
  • 24
    • 0142102589 scopus 로고    scopus 로고
    • New gene selection method for classification of cancer subtypes considering withinclass variation
    • Cho J-H, Lee D, Park JH, Lee I-B. New gene selection method for classification of cancer subtypes considering withinclass variation. FEBS Lett. 2003;551(1-3):3-7.
    • (2003) FEBS Lett , vol.551 , Issue.1-3 , pp. 3-7
    • Cho, J.-H.1    Lee, D.2    Park, J.H.3    Lee, I.-B.4
  • 25
    • 33746677949 scopus 로고    scopus 로고
    • A stable gene selection in microarray data analysis
    • Yang K, Cai Z, Li J, Lin G. A stable gene selection in microarray data analysis. BMC Bioinformatics. 2006;7(1):228.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 228
    • Yang, K.1    Cai, Z.2    Li, J.3    Lin, G.4
  • 27
    • 34547840224 scopus 로고    scopus 로고
    • Information theory applied to the sparse gene ontology annotation network to predict novel gene function
    • Tao Y, Sam L, Li J, Friedman C, Lussier YA. Information theory applied to the sparse gene ontology annotation network to predict novel gene function. Bioinformatics. 2007;23(13):i529-38.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 529-538
    • Tao, Y.1    Sam, L.2    Li, J.3    Friedman, C.4    Lussier, Y.A.5
  • 28
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273-97.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 30
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504-7.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 31
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: methods and applications
    • Deng L, Yu D. Deep learning: methods and applications. Foundations Trends Signal Processing. 2014;7(3-4):197-387.
    • (2014) Foundations Trends Signal Processing , vol.7 , Issue.3-4 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 36
    • 84937144752 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • arXiv preprint arXiv:14114038
    • Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. 2014. arXiv preprint arXiv:14114038.
    • (2014)
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 41
    • 33846516584 scopus 로고    scopus 로고
    • Pattern recognition and machine learning
    • New York: Springer
    • Bishop CM. Pattern recognition and machine learning, vol. 4. New York: Springer; 2006.
    • (2006) , vol.4
    • Bishop, C.M.1
  • 42
    • 84937504995 scopus 로고    scopus 로고
    • MatConvNet-convolutional neural networks for MATLAB
    • arXiv preprint arXiv:14124564
    • Vedaldi A, Lenc K. MatConvNet-convolutional neural networks for MATLAB. 2014. arXiv preprint arXiv:14124564.
    • (2014)
    • Vedaldi, A.1    Lenc, K.2
  • 43
    • 84947478095 scopus 로고    scopus 로고
    • Feedforward semantic segmentation with zoom-out features
    • arXiv preprint arXiv:14120774
    • Mostajabi M, Yadollahpour P, Shakhnarovich G. Feedforward semantic segmentation with zoom-out features. 2014. arXiv preprint arXiv:14120774.
    • (2014)
    • Mostajabi, M.1    Yadollahpour, P.2    Shakhnarovich, G.3
  • 44
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175-85.
    • (1992) Am Stat , vol.46 , Issue.3 , pp. 175-185
    • Altman, N.S.1
  • 45
    • 1942484786 scopus 로고    scopus 로고
    • Tackling the poor assumptions of naive bayes text classifiers
    • Washington: ICML
    • Rennie JD, Shih L, Teevan J, Karger DR. Tackling the poor assumptions of naive bayes text classifiers. Washington: ICML; 2003. p. 616-23.
    • (2003) , pp. 616-623
    • Rennie, J.D.1    Shih, L.2    Teevan, J.3    Karger, D.R.4
  • 47
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc. 2002;97(457):77-87.
    • (2002) J Am Stat Assoc , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.