메뉴 건너뛰기




Volumn 46, Issue 16, 2018, Pages 8105-8113

A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential

Author keywords

[No Author keywords available]

Indexed keywords

ADENINE; CYTOSINE; GUANINE; LONG UNTRANSLATED RNA; MESSENGER RNA; PARATHYROID HORMONE; PROTEIN CODING RNA; RNA; TRANSCRIPTOME; TUMOR ANTIGEN; UNCLASSIFIED DRUG; URACIL;

EID: 85057336960     PISSN: 03051048     EISSN: 13624962     Source Type: Journal    
DOI: 10.1093/nar/gky567     Document Type: Article
Times cited : (68)

References (29)
  • 2
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou,J. and Troyanskaya,O.G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 12, 931-934.
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 3
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • Alipanahi,B., Delong,A., Weirauch,M.T. and Frey,B.J. (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831-838.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 4
    • 84976908652 scopus 로고    scopus 로고
    • Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks
    • Kelley,D.R., Snoek,J. and Rinn,J.L. (2016) Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res., 26, 990-999.
    • (2016) Genome Res , vol.26 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.L.3
  • 5
    • 84939821078 scopus 로고    scopus 로고
    • Empirical evaluation of gated recurrent neural networks on sequence modeling
    • Chung,J., Gulcehre,C., Cho,K. and Bengio,Y. (2014) Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. NIPS Deep Learn. Workshop, http://arxiv.org/abs/1412.3555.
    • (2014) NIPS Deep Learn. Workshop
    • Chung, J.1    Gulcehre, C.2    Cho, K.3    Bengio, Y.4
  • 7
    • 85042940451 scopus 로고    scopus 로고
    • Drug-drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths
    • Zhang,Y., Zheng,W., Lin,H., Wang,J., Yang,Z. and Dumontier,M. (2018) Drug-drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths. Bioinformatics, 34, 828-835.
    • (2018) Bioinformatics , vol.34 , pp. 828-835
    • Zhang, Y.1    Zheng, W.2    Lin, H.3    Wang, J.4    Yang, Z.5    Dumontier, M.6
  • 9
    • 84980031342 scopus 로고    scopus 로고
    • DNA-Level splice junction prediction using deep recurrent neural networks
    • abs/1512.05135
    • Lee,B., Lee,T., Na,B. and Yoon,S. (2015) DNA-Level splice junction prediction using deep recurrent neural networks. CoRR, abs/1512.05135, https://dblp.org/rec/bib/journals/corr/LeeLNY15.
    • (2015) CoRR
    • Lee, B.1    Lee, T.2    Na, B.3    Yoon, S.4
  • 12
    • 85018466550 scopus 로고    scopus 로고
    • DeepCPG: Accurate prediction of single-cell DNA methylation states using deep learning
    • Angermueller,C., Lee,H.J., Reik,W. and Stegle,O. (2017) DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol., 18, 67.
    • (2017) Genome Biol , vol.18 , pp. 67
    • Angermueller, C.1    Lee, H.J.2    Reik, W.3    Stegle, O.4
  • 13
    • 85047003917 scopus 로고    scopus 로고
    • Deep recurrent neural network-based identification of precursor microRNAs
    • Guyon,I, Luxburg,UV, Bengio,S, Wallach,H, Fergus,R, Vishwanathan,S and Garnett,R eds. Neural Information Processing Systems Foundation, Inc., Long Beach
    • Park,S., Min,S., Choi,H.-S. and Yoon,S. (2017) Deep Recurrent Neural Network-Based Identification of Precursor microRNAs. In: Guyon,I, Luxburg,UV, Bengio,S, Wallach,H, Fergus,R, Vishwanathan,S and Garnett,R (eds). Advances in Neural Information Processing Systems. Neural Information Processing Systems Foundation, Inc., Long Beach, pp. 2895-2904.
    • (2017) Advances in Neural Information Processing Systems , pp. 2895-2904
    • Park, S.1    Min, S.2    Choi, H.-S.3    Yoon, S.4
  • 20
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • Chapman-Hall
    • Perrone,M.P. and Cooper,L.N. (1993) When Networks Disagree: Ensemble Methods for Hybrid Neural Networks. Neural Networks for Speech and Image processing. Chapman-Hall, pp. 126-142.
    • (1993) Neural Networks for Speech and Image Processing , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 21
    • 84876020023 scopus 로고    scopus 로고
    • CPAT: Coding-potential assessment tool using an alignment-free logistic regression model
    • Wang,L., Park,H.J., Dasari,S., Wang,S., Kocher,J.-P. and Li,W. (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res., 41, e74.
    • (2013) Nucleic Acids Res , vol.41 , pp. e74
    • Wang, L.1    Park, H.J.2    Dasari, S.3    Wang, S.4    Kocher, J.-P.5    Li, W.6
  • 22
    • 85031682325 scopus 로고    scopus 로고
    • A Support Vector Machine based method to distinguish long non-coding RNAs from protein coding transcripts
    • Schneider,H.W., Raiol,T., Brigido,M.M., Walter,M.E.M. and Stadler,P.F. (2017) A Support Vector Machine based method to distinguish long non-coding RNAs from protein coding transcripts. BMC Genomics, 18, 804.
    • (2017) BMC Genomics , vol.18 , pp. 804
    • Schneider, H.W.1    Raiol, T.2    Brigido, M.M.3    Walter, M.E.M.4    Stadler, P.F.5
  • 23
    • 34547871261 scopus 로고    scopus 로고
    • Fast model-based protein homology detection without alignment
    • Hochreiter,S., Heusel,M. and Obermayer,K. (2007) Fast model-based protein homology detection without alignment. Bioinformatics, 23, 1728-1736.
    • (2007) Bioinformatics , vol.23 , pp. 1728-1736
    • Hochreiter, S.1    Heusel, M.2    Obermayer, K.3
  • 24
    • 85024488858 scopus 로고    scopus 로고
    • Titer: Predicting translation initiation sites by deep learning
    • Zhang,S., Hu,H., Jiang,T., Zhang,L. and Zeng,J. (2017) TITER: predicting translation initiation sites by deep learning. Bioinformatics, 33, i234-i242.
    • (2017) Bioinformatics , vol.33 , pp. i234-i242
    • Zhang, S.1    Hu, H.2    Jiang, T.3    Zhang, L.4    Zeng, J.5
  • 25
    • 84951119143 scopus 로고    scopus 로고
    • Convolutional LSTM networks for subcellular localization of proteins
    • Dediu,A-H, Hernández-Quiroz,F, Martín-Vide,C and Rosenblueth,DA eds. Springer, Mexico city
    • Sønderby,S.K., Sønderby,C.K., Nielsen,H. and Winther,O. (2015) Convolutional LSTM Networks for Subcellular Localization of Proteins. In: Dediu,A-H, Hernández-Quiroz,F, Martín-Vide,C and Rosenblueth,DA (eds). International Conference on Algorithms for Computational Biology. Springer, Mexico city, pp. 68-80.
    • (2015) International Conference on Algorithms for Computational Biology , pp. 68-80
    • Sønderby, S.K.1    Sønderby, C.K.2    Nielsen, H.3    Winther, O.4
  • 26
    • 77956537712 scopus 로고    scopus 로고
    • A synonymous single nucleotide polymorphism in F508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein
    • Bartoszewski,R.A., Jablonsky,M., Bartoszewska,S., Stevenson,L., Dai,Q., Kappes,J., Collawn,J.F. and Bebok,Z. (2010) A synonymous single nucleotide polymorphism in F508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein. J. Biol. Chem., 285, 28741-28748.
    • (2010) J. Biol. Chem. , vol.285 , pp. 28741-28748
    • Bartoszewski, R.A.1    Jablonsky, M.2    Bartoszewska, S.3    Stevenson, L.4    Dai, Q.5    Kappes, J.6    Collawn, J.F.7    Bebok, Z.8
  • 27
    • 84983750320 scopus 로고    scopus 로고
    • Synergistic and compensatory effects of two point mutations conferring target-site resistance to fipronil in the insect GABA receptor RDL
    • Zhang,Y., Meng,X., Yang,Y., Li,H., Wang,X., Yang,B., Zhang,J., Li,C., Millar,N.S. and Liu,Z. (2016) Synergistic and compensatory effects of two point mutations conferring target-site resistance to fipronil in the insect GABA receptor RDL. Sci. Rep., 6, 32335.
    • (2016) Sci. Rep. , vol.6 , pp. 32335
    • Zhang, Y.1    Meng, X.2    Yang, Y.3    Li, H.4    Wang, X.5    Yang, B.6    Zhang, J.7    Li, C.8    Millar, N.S.9    Liu, Z.10
  • 28
    • 45149106736 scopus 로고    scopus 로고
    • Synergistic fitness interactions and a high frequency of beneficial changes among mutations accumulated under relaxed selection in Saccharomyces cerevisiae
    • Dickinson,W.J. (2008) Synergistic fitness interactions and a high frequency of beneficial changes among mutations accumulated under relaxed selection in Saccharomyces cerevisiae. Genetics, 178, 1571-1578.
    • (2008) Genetics , vol.178 , pp. 1571-1578
    • Dickinson, W.J.1
  • 29
    • 66149185556 scopus 로고    scopus 로고
    • Compensatory mutations are repeatable and clustered within proteins
    • Davis,B.H., Poon,A.F. and Whitlock,M.C. (2009) Compensatory mutations are repeatable and clustered within proteins. Proc. R. Soc. Lond. B Biol. Sci., 276, 1823-1827.
    • (2009) Proc. R. Soc. Lond. B Biol. Sci. , vol.276 , pp. 1823-1827
    • Davis, B.H.1    Poon, A.F.2    Whitlock, M.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.