-
2
-
-
84876799270
-
Normalization of mass cytometry data with bead standards
-
Finck,R. et al. (2013) Normalization of mass cytometry data with bead standards. Cytometry Part A, 83, 483–494.
-
(2013)
Cytometry Part A
, vol.83
, pp. 483-494
-
-
Finck, R.1
-
3
-
-
84862277874
-
Understanding the difficulty of training deep feed-forward neural networks
-
Glorot,X., and Bengio,Y. (2010) Understanding the difficulty of training deep feed-forward neural networks. In Proceedings of AISTATS, Sardinia, Italy, vol 9, pp. 249–256.
-
(2010)
Proceedings of AISTATS, Sardinia, Italy
, vol.9
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
5
-
-
84859477054
-
A kernel two-sample test
-
Gretton,A. et al. (2012) A kernel two-sample test. J. Mach. Learn. Res., 13, 723–773.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 723-773
-
-
Gretton, A.1
-
6
-
-
77249135054
-
Per-channel basis normalization methods for flow cytometry data
-
Hahne,F. et al. (2010) Per-channel basis normalization methods for flow cytometry data. Cytometry Part A, 77, 121–131.
-
(2010)
Cytometry Part A
, vol.77
, pp. 121-131
-
-
Hahne, F.1
-
10
-
-
84990050094
-
Identity mappings in deep residual networks
-
He,K. et al. (2016). Identity mappings in deep residual networks. European Conference on Computer Vision, pp. 630–645.
-
(2016)
European Conference on Computer Vision
, pp. 630-645
-
-
He, K.1
-
12
-
-
84893905629
-
Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
-
Jaitin,D.A. et al. (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science, 343, 776–779.
-
(2014)
Science
, vol.343
, pp. 776-779
-
-
Jaitin, D.A.1
-
13
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical bayes methods
-
Johnson,W.E. et al. (2007) Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics, 8, 118–127.
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
-
14
-
-
84992126905
-
Standardization and quality control for high-dimensional mass cytometry studies of human samples
-
Kleinsteuber,K. et al. (2016) Standardization and quality control for high-dimensional mass cytometry studies of human samples. Cytometry A, 89, 903–913.
-
(2016)
Cytometry A
, vol.89
, pp. 903-913
-
-
Kleinsteuber, K.1
-
15
-
-
84859098571
-
The sva package for removing batch effects and other unwanted variation in high-throughput experiments
-
Leek,J.T. et al. (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 28, 882–883.
-
(2012)
Bioinformatics
, vol.28
, pp. 882-883
-
-
Leek, J.T.1
-
16
-
-
77956873627
-
Tackling the widespread and critical impact of batch effects in high-throughput data
-
Leek,J.T. et al. (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet., 11, 733–739.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 733-739
-
-
Leek, J.T.1
-
17
-
-
34848914038
-
Capturing heterogeneity in gene expression studies by surrogate variable analysis
-
Leek,J.T., and Storey,J.D. (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet., 3, e161.
-
(2007)
PLoS Genet.
, vol.3
, pp. e161
-
-
Leek, J.T.1
Storey, J.D.2
-
18
-
-
85040961635
-
-
arXiv preprint
-
Li,S. et al. (2016). Demystifying resnet. arXiv preprint arXiv:1611.01186.
-
(2016)
Demystifying Resnet
-
-
Li, S.1
-
19
-
-
84970016114
-
Generative moment matching networks
-
Lille, France
-
Li,Y. et al. (2015). Generative moment matching networks. In International Conference on Machine Learning, Lille, France, pp. 1718–1727.
-
(2015)
International Conference on Machine Learning
, pp. 1718-1727
-
-
Li, Y.1
-
20
-
-
85019790380
-
Evaluation of methods in removing batch effects on RNA-seq data
-
Liu,Q., and Markatou,M. (2016) Evaluation of methods in removing batch effects on rna-seq data. Infect. Dis. Transl. Med., 2, 3–9.
-
(2016)
Infect. Dis. Transl. Med.
, vol.2
, pp. 3-9
-
-
Liu, Q.1
Markatou, M.2
-
21
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko,E.Z. et al. (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161, 1202–1214.
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
-
22
-
-
84959901445
-
Methods that remove batch effects while retaining group differences May lead to exaggerated confidence in downstream analy-ses
-
Nygaard,V. et al. (2016) Methods that remove batch effects while retaining group differences May lead to exaggerated confidence in downstream analy-ses. Biostatistics, 17, 29–39.
-
(2016)
Biostatistics
, vol.17
, pp. 29-39
-
-
Nygaard, V.1
-
23
-
-
84887101406
-
Smart-seq2 for sensitive full-length transcriptome profiling in single cells
-
Picelli,S. et al. (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods, 10, 1096–1098.
-
(2013)
Nat. Methods
, vol.10
, pp. 1096-1098
-
-
Picelli, S.1
-
24
-
-
84983741021
-
Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics
-
Shekhar,K. et al. (2016) Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell, 166, 1308–1323.
-
(2016)
Cell
, vol.166
, pp. 1308-1323
-
-
Shekhar, K.1
-
25
-
-
84965146271
-
Mass cytometry: Single cells, many features
-
Spitzer,M.H., and Nolan,G.P. (2016) Mass cytometry: Single cells, many features. Cell, 165, 780–791.
-
(2016)
Cell
, vol.165
, pp. 780-791
-
-
Spitzer, M.H.1
Nolan, G.P.2
-
26
-
-
84893343292
-
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
-
Tieleman,T., and Hinton,G. (2012) Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, vol. 4, pp. 26–31.
-
(2012)
COURSERA: Neural Networks for Machine Learning
, vol.4
, pp. 26-31
-
-
Tieleman, T.1
Hinton, G.2
-
27
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Helsinki, Finland, ACM
-
Vincent,P. et al. (2008). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, pp. 1096–1103. ACM.
-
(2008)
Proceedings of The 25th International Conference on Machine Learning
, pp. 1096-1103
-
-
Vincent, P.1
|