메뉴 건너뛰기




Volumn 32, Issue 12, 2016, Pages i121-i127

Convolutional neural network architectures for predicting DNA-protein binding

Author keywords

[No Author keywords available]

Indexed keywords

DNA; PROTEIN; PROTEIN BINDING;

EID: 84976520648     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw255     Document Type: Article
Times cited : (399)

References (15)
  • 1
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831-838.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1
  • 2
    • 67849122320 scopus 로고    scopus 로고
    • MEME SUITE: Tools for motif discovery and searching
    • Bailey,T.L. et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res., 37, W202-W208.
    • (2009) Nucleic Acids Res. , vol.37 , pp. W202-W208
    • Bailey, T.L.1
  • 3
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Bernstein,B.E. et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74.
    • (2012) Nature , vol.489 , pp. 57-74
    • Bernstein, B.E.1
  • 4
    • 84905484602 scopus 로고    scopus 로고
    • Enhanced regulatory sequence prediction using gapped k-mer features
    • Ghandi,M. et al. (2014) Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput. Biol., 10, e1003711.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003711
    • Ghandi, M.1
  • 6
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky,A. et al. (2012) Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097-1105.
    • (2012) Advances in Neural Information Processing Systems , pp. 1097-1105
    • Krizhevsky, A.1
  • 8
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun,Y. et al. (2015) Deep learning. Nature, 521, 436-444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1
  • 10
    • 84928170467 scopus 로고    scopus 로고
    • Learning deep generative models
    • Salakhutdinov,R. (2015) Learning deep generative models. Ann. Rev. Stat. Appl., 2, 361-385.
    • (2015) Ann. Rev. Stat. Appl , vol.2 , pp. 361-385
    • Salakhutdinov, R.1
  • 11
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 1929-1958
    • Srivastava, N.1
  • 13
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • Tompson,J.J. et al. (2014b). Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems, pp. 1799-1807.
    • (2014) Advances in Neural Information Processing Systems , pp. 1799-1807
    • Tompson, J.J.1
  • 14
    • 84923779988 scopus 로고    scopus 로고
    • Predicting the human epigenome from DNA motifs
    • Whitaker,J.W. et al. (2015) Predicting the human epigenome from DNA motifs. Nat. Methods, 12, 265-272.
    • (2015) Nat. Methods , vol.12 , pp. 265-272
    • Whitaker, J.W.1
  • 15
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou,J. and Troyanskaya,O.G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 12, 931-934.
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.