-
1
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831-838.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
-
2
-
-
67849122320
-
MEME SUITE: Tools for motif discovery and searching
-
Bailey,T.L. et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res., 37, W202-W208.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. W202-W208
-
-
Bailey, T.L.1
-
3
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
Bernstein,B.E. et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74.
-
(2012)
Nature
, vol.489
, pp. 57-74
-
-
Bernstein, B.E.1
-
4
-
-
84905484602
-
Enhanced regulatory sequence prediction using gapped k-mer features
-
Ghandi,M. et al. (2014) Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput. Biol., 10, e1003711.
-
(2014)
PLoS Comput. Biol.
, vol.10
, pp. e1003711
-
-
Ghandi, M.1
-
6
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky,A. et al. (2012) Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097-1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
-
8
-
-
84930630277
-
Deep learning
-
LeCun,Y. et al. (2015) Deep learning. Nature, 521, 436-444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
-
10
-
-
84928170467
-
Learning deep generative models
-
Salakhutdinov,R. (2015) Learning deep generative models. Ann. Rev. Stat. Appl., 2, 361-385.
-
(2015)
Ann. Rev. Stat. Appl
, vol.2
, pp. 361-385
-
-
Salakhutdinov, R.1
-
11
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
-
13
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
Tompson,J.J. et al. (2014b). Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems, pp. 1799-1807.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 1799-1807
-
-
Tompson, J.J.1
-
14
-
-
84923779988
-
Predicting the human epigenome from DNA motifs
-
Whitaker,J.W. et al. (2015) Predicting the human epigenome from DNA motifs. Nat. Methods, 12, 265-272.
-
(2015)
Nat. Methods
, vol.12
, pp. 265-272
-
-
Whitaker, J.W.1
-
15
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou,J. and Troyanskaya,O.G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 12, 931-934.
-
(2015)
Nat. Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
|