-
1
-
-
84932628860
-
Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas
-
Cancer Genome Atlas Research, N. et al
-
Cancer Genome Atlas Research, N. et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med 372, 2481-2498, doi: https://doi.org/10.1056/NEJMoa1402121 (2015)
-
(2015)
N Engl J Med
, vol.372
, pp. 2481-2498
-
-
-
2
-
-
84877950429
-
A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast
-
Solin, L. J. et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst 105, 701-710, doi: https://doi.org/10.1093/jnci/djt067 (2013)
-
(2013)
J Natl Cancer Inst
, vol.105
, pp. 701-710
-
-
Solin, L.J.1
-
3
-
-
84984697640
-
70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer
-
Cardoso, F. et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N Engl J Med 375, 717-729, doi: https://doi.org/10.1056/NEJMoa1602253 (2016)
-
(2016)
N Engl J Med
, vol.375
, pp. 717-729
-
-
Cardoso, F.1
-
4
-
-
78650892625
-
Mammostrat as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy
-
Bartlett, J. M. et al. Mammostrat as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy. Breast Cancer Res 12, R47, doi: https://doi.org/10.1186/bcr2604 (2010)
-
(2010)
Breast Cancer Res
, vol.12
, pp. R47
-
-
Bartlett, J.M.1
-
5
-
-
84942612935
-
Machine learning applications in cancer prognosis and prediction
-
Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. & Fotiadis, D. I. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13, 8-17, doi: https://doi.org/10.1016/j.csbj.2014.11.005 (2015)
-
(2015)
Comput Struct Biotechnol J
, vol.13
, pp. 8-17
-
-
Kourou, K.1
Exarchos, T.P.2
Exarchos, K.P.3
Karamouzis, M.V.4
Fotiadis, D.I.5
-
6
-
-
84973467716
-
Identification and Construction of Combinatory Cancer Hallmark-Based Gene Signature Sets to Predict Recurrence and Chemotherapy Benefit in Stage II Colorectal Cancer
-
Gao, S. et al. Identification and Construction of Combinatory Cancer Hallmark-Based Gene Signature Sets to Predict Recurrence and Chemotherapy Benefit in Stage II Colorectal Cancer. JAMA Oncol 2, 37-45, doi: https://doi.org/10.1001/jamaoncol.2015.3413 (2016)
-
(2016)
JAMA Oncol
, vol.2
, pp. 37-45
-
-
Gao, S.1
-
7
-
-
84870847298
-
Identification of high-quality cancer prognostic markers and metastasis network modules
-
Li, J. et al. Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun 1, 34, doi: https://doi.org/10.1038/ncomms1033 (2010)
-
(2010)
Nat Commun
, vol.1
, pp. 34
-
-
Li, J.1
-
8
-
-
79952934063
-
Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent
-
Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. J Stat Softw 39, 1-13 (2011)
-
(2011)
J Stat Softw
, vol.39
, pp. 1-13
-
-
Simon, N.1
Friedman, J.2
Hastie, T.3
Tibshirani, R.4
-
9
-
-
84985920576
-
Random survival forests for competing risks
-
Ishwaran, H. et al. Random survival forests for competing risks. Biostatistics 15, 757-773, doi: https://doi.org/10.1093/biostatistics/kxu010 (2014)
-
(2014)
Biostatistics
, vol.15
, pp. 757-773
-
-
Ishwaran, H.1
-
10
-
-
0028855843
-
A neural network model for survival data
-
Faraggi, D. & Simon, R. A neural network model for survival data. Stat Med 14, 73-82 (1995)
-
(1995)
Stat Med
, vol.14
, pp. 73-82
-
-
Faraggi, D.1
Simon, R.2
-
11
-
-
0034726204
-
Comparison of the performance of neural network methods and Cox regression for censored survival data
-
Xiang, A., Lapuerta, P., Ryutov, A., Buckley, J. & Azen, S. Comparison of the performance of neural network methods and Cox regression for censored survival data. Computational Statistics & Data Analysis 34, 243-257, doi: https://doi.org/10.1016/S0167-9473(99)00098-5 (2000)
-
(2000)
Computational Statistics & Data Analysis
, vol.34
, pp. 243-257
-
-
Xiang, A.1
Lapuerta, P.2
Ryutov, A.3
Buckley, J.4
Azen, S.5
-
12
-
-
84969134763
-
Deep feature selection: Theory and application to identify enhancers and promoters
-
Li, Y., Chen, C. Y. & Wasserman, W. W. Deep Feature Selection: Theory and Application to Identify Enhancers and Promoters. J Comput Biol 23, 322-336, doi: https://doi.org/10.1089/cmb.2015.0189 (2016)
-
(2016)
J Comput Biol
, vol.23
, pp. 322-336
-
-
Li, Y.1
Chen, C.Y.2
Wasserman, W.W.3
-
13
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444, doi: https://doi.org/10.1038/nature14539 (2015)
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
14
-
-
84879854889
-
Representation Learning: A Review and New Perspectives
-
Bengio, Y., Courville, A. & Vincent, P. Representation Learning: A Review and New Perspectives. Ieee T Pattern Anal 35, 1798-1828, doi: https://doi.org/10.1109/Tpami.2013.50 (2013)
-
(2013)
Ieee T Pattern Anal
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
15
-
-
85009285527
-
Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples
-
Turkki, R., Linder, N., Kovanen, P. E., Pellinen, T. & Lundin, J. Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples. J Pathol Inform 7, 38, doi: https://doi.org/10.4103/2153-3539.189703 (2016)
-
(2016)
J Pathol Inform
, vol.7
, pp. 38
-
-
Turkki, R.1
Linder, N.2
Kovanen, P.E.3
Pellinen, T.4
Lundin, J.5
-
16
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol 33, 831-838, doi: https://doi.org/10.1038/nbt.3300 (2015)
-
(2015)
Nat Biotechnol
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
17
-
-
85009088494
-
Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach
-
Nemati, S. et al. Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach. Conf Proc IEEE Eng Med Biol Soc 2016, 2978-2981, doi: https://doi.org/10.1109/EMBC.2016.7591355 (2016)
-
(2016)
Conf Proc IEEE Eng Med Biol Soc
, vol.2016
, pp. 2978-2981
-
-
Nemati, S.1
-
19
-
-
84919778861
-
BayesOpt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits
-
Martinez-Cantin, R. BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental Design and Bandits. Journal of Machine Learning Research 15, 3735-3739 (2014)
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 3735-3739
-
-
Martinez-Cantin, R.1
-
20
-
-
85047011481
-
-
Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. in 25th Annual Conference on Neural Information Processing Systems (2011)
-
(2011)
25th Annual Conference on Neural Information Processing Systems
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
21
-
-
85029537920
-
-
ArXiv e-prints 1609, arXiv:1609.08663
-
Yousefi, S., Song, C., Nauata, N. & Cooper, L. Learning Genomic Representations to Predict Clinical Outcomes in Cancer. ArXiv e-prints 1609, arXiv:1609.08663 (2016)
-
(2016)
Learning Genomic Representations to Predict Clinical Outcomes in Cancer
-
-
Yousefi, S.1
Song, C.2
Nauata, N.3
Cooper, L.4
-
23
-
-
84944363874
-
Evaluating the yield of medical tests
-
Harrell, F. E. Jr., Califf, R. M., Pryor, D. B., Lee, K. L. & Rosati, R. A. Evaluating the yield of medical tests. JAMA 247, 2543-2546 (1982)
-
(1982)
JAMA
, vol.247
, pp. 2543-2546
-
-
Harrell, F.E.1
Califf, R.M.2
Pryor, D.B.3
Lee, K.L.4
Rosati, R.A.5
-
24
-
-
0002206019
-
Use of some sensitivity criteria for choosing networks with good generalization ability
-
Dimopoulos, Y., Bourret, P. & Lek, S. Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Processing Letters 2, 1-4, doi: https://doi.org/10.1007/bf02309007 (1995)
-
(1995)
Neural Processing Letters
, vol.2
, pp. 1-4
-
-
Dimopoulos, Y.1
Bourret, P.2
Lek, S.3
-
25
-
-
84966687479
-
The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary
-
Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131, 803-820, doi: https://doi.org/10.1007/s00401-016-1545-1 (2016)
-
(2016)
Acta Neuropathol
, vol.131
, pp. 803-820
-
-
Louis, D.N.1
-
26
-
-
27344435774
-
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
-
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102, 15545-15550, doi: https://doi.org/10.1073/pnas.0506580102 (2005)
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 15545-15550
-
-
Subramanian, A.1
-
27
-
-
84894593599
-
Molecular mechanisms of epithelial-mesenchymal transition
-
Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178-196, doi: https://doi.org/10.1038/nrm3758 (2014)
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 178-196
-
-
Lamouille, S.1
Xu, J.2
Derynck, R.3
-
28
-
-
75149195336
-
The transcriptional network for mesenchymal transformation of brain tumours
-
Carro, M. S. et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318-325, doi: https://doi.org/10.1038/nature08712 (2010)
-
(2010)
Nature
, vol.463
, pp. 318-325
-
-
Carro, M.S.1
-
29
-
-
73649123907
-
Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
-
Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110, doi: https://doi.org/10.1016/j.ccr.2009.12.020 (2010)
-
(2010)
Cancer Cell
, vol.17
, pp. 98-110
-
-
Verhaak, R.G.1
-
30
-
-
84255160601
-
The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma
-
Bhat, K. P. et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev 25, 2594-2609, doi: https://doi.org/10.1101/gad.176800.111 (2011)
-
(2011)
Genes Dev
, vol.25
, pp. 2594-2609
-
-
Bhat, K.P.1
-
31
-
-
85021676072
-
-
ArXiv e-prints 1611, arXiv:1611.03530
-
Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires rethinking generalization. ArXiv e-prints 1611, arXiv:1611.03530 (2016)
-
(2016)
Understanding Deep Learning Requires Rethinking Generalization
-
-
Zhang, C.1
Bengio, S.2
Hardt, M.3
Recht, B.4
Vinyals, O.5
-
32
-
-
85029543044
-
Using deep learning to enhance cancer diagnosis and classification
-
Fakoor, R., Ladhak, F., Nazi, A. & Huber, M. Using deep learning to enhance cancer diagnosis and classification in Proceedings of the WHEALTH ICML Workshop, 129-133 (2011)
-
(2011)
Proceedings of the WHEALTH ICML Workshop
, pp. 129-133
-
-
Fakoor, R.1
Ladhak, F.2
Nazi, A.3
Huber, M.4
-
33
-
-
84955561447
-
Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma
-
Ceccarelli, M. et al. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell 164, 550-563, doi: https://doi.org/10.1016/j.cell.2015.12.028 (2016)
-
(2016)
Cell
, vol.164
, pp. 550-563
-
-
Ceccarelli, M.1
-
34
-
-
84905675587
-
Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma
-
Ozawa, T. et al. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26, 288-300, doi: https://doi.org/10.1016/j.ccr.2014.06.005 (2014)
-
(2014)
Cancer Cell
, vol.26
, pp. 288-300
-
-
Ozawa, T.1
-
35
-
-
1542515338
-
A census of human cancer genes
-
Futreal, P. A. et al. A census of human cancer genes. Nat Rev Cancer 4, 177-183, doi: https://doi.org/10.1038/nrc1299 (2004)
-
(2004)
Nat Rev Cancer
, vol.4
, pp. 177-183
-
-
Futreal, P.A.1
-
36
-
-
84955328286
-
The Molecular Signatures Database (MSigDB) hallmark gene set collection
-
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1, 417-425, doi: https://doi.org/10.1016/j.cels.2015.12.004 (2015).
-
(2015)
Cell Syst
, vol.1
, pp. 417-425
-
-
Liberzon, A.1
|