메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages

Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; GENETICS; GENOMICS; HUMAN; INFORMATION PROCESSING; MORTALITY; NEOPLASM; PROCEDURES; PROGNOSIS; SOFTWARE; SURVIVAL; TREATMENT OUTCOME;

EID: 85029478351     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-017-11817-6     Document Type: Article
Times cited : (198)

References (36)
  • 1
    • 84932628860 scopus 로고    scopus 로고
    • Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas
    • Cancer Genome Atlas Research, N. et al
    • Cancer Genome Atlas Research, N. et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med 372, 2481-2498, doi: https://doi.org/10.1056/NEJMoa1402121 (2015)
    • (2015) N Engl J Med , vol.372 , pp. 2481-2498
  • 2
    • 84877950429 scopus 로고    scopus 로고
    • A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast
    • Solin, L. J. et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst 105, 701-710, doi: https://doi.org/10.1093/jnci/djt067 (2013)
    • (2013) J Natl Cancer Inst , vol.105 , pp. 701-710
    • Solin, L.J.1
  • 3
    • 84984697640 scopus 로고    scopus 로고
    • 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer
    • Cardoso, F. et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N Engl J Med 375, 717-729, doi: https://doi.org/10.1056/NEJMoa1602253 (2016)
    • (2016) N Engl J Med , vol.375 , pp. 717-729
    • Cardoso, F.1
  • 4
    • 78650892625 scopus 로고    scopus 로고
    • Mammostrat as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy
    • Bartlett, J. M. et al. Mammostrat as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy. Breast Cancer Res 12, R47, doi: https://doi.org/10.1186/bcr2604 (2010)
    • (2010) Breast Cancer Res , vol.12 , pp. R47
    • Bartlett, J.M.1
  • 6
    • 84973467716 scopus 로고    scopus 로고
    • Identification and Construction of Combinatory Cancer Hallmark-Based Gene Signature Sets to Predict Recurrence and Chemotherapy Benefit in Stage II Colorectal Cancer
    • Gao, S. et al. Identification and Construction of Combinatory Cancer Hallmark-Based Gene Signature Sets to Predict Recurrence and Chemotherapy Benefit in Stage II Colorectal Cancer. JAMA Oncol 2, 37-45, doi: https://doi.org/10.1001/jamaoncol.2015.3413 (2016)
    • (2016) JAMA Oncol , vol.2 , pp. 37-45
    • Gao, S.1
  • 7
    • 84870847298 scopus 로고    scopus 로고
    • Identification of high-quality cancer prognostic markers and metastasis network modules
    • Li, J. et al. Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun 1, 34, doi: https://doi.org/10.1038/ncomms1033 (2010)
    • (2010) Nat Commun , vol.1 , pp. 34
    • Li, J.1
  • 8
    • 79952934063 scopus 로고    scopus 로고
    • Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent
    • Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. J Stat Softw 39, 1-13 (2011)
    • (2011) J Stat Softw , vol.39 , pp. 1-13
    • Simon, N.1    Friedman, J.2    Hastie, T.3    Tibshirani, R.4
  • 9
    • 84985920576 scopus 로고    scopus 로고
    • Random survival forests for competing risks
    • Ishwaran, H. et al. Random survival forests for competing risks. Biostatistics 15, 757-773, doi: https://doi.org/10.1093/biostatistics/kxu010 (2014)
    • (2014) Biostatistics , vol.15 , pp. 757-773
    • Ishwaran, H.1
  • 10
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • Faraggi, D. & Simon, R. A neural network model for survival data. Stat Med 14, 73-82 (1995)
    • (1995) Stat Med , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 11
    • 0034726204 scopus 로고    scopus 로고
    • Comparison of the performance of neural network methods and Cox regression for censored survival data
    • Xiang, A., Lapuerta, P., Ryutov, A., Buckley, J. & Azen, S. Comparison of the performance of neural network methods and Cox regression for censored survival data. Computational Statistics & Data Analysis 34, 243-257, doi: https://doi.org/10.1016/S0167-9473(99)00098-5 (2000)
    • (2000) Computational Statistics & Data Analysis , vol.34 , pp. 243-257
    • Xiang, A.1    Lapuerta, P.2    Ryutov, A.3    Buckley, J.4    Azen, S.5
  • 12
    • 84969134763 scopus 로고    scopus 로고
    • Deep feature selection: Theory and application to identify enhancers and promoters
    • Li, Y., Chen, C. Y. & Wasserman, W. W. Deep Feature Selection: Theory and Application to Identify Enhancers and Promoters. J Comput Biol 23, 322-336, doi: https://doi.org/10.1089/cmb.2015.0189 (2016)
    • (2016) J Comput Biol , vol.23 , pp. 322-336
    • Li, Y.1    Chen, C.Y.2    Wasserman, W.W.3
  • 13
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444, doi: https://doi.org/10.1038/nature14539 (2015)
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 14
    • 84879854889 scopus 로고    scopus 로고
    • Representation Learning: A Review and New Perspectives
    • Bengio, Y., Courville, A. & Vincent, P. Representation Learning: A Review and New Perspectives. Ieee T Pattern Anal 35, 1798-1828, doi: https://doi.org/10.1109/Tpami.2013.50 (2013)
    • (2013) Ieee T Pattern Anal , vol.35 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 15
    • 85009285527 scopus 로고    scopus 로고
    • Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples
    • Turkki, R., Linder, N., Kovanen, P. E., Pellinen, T. & Lundin, J. Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples. J Pathol Inform 7, 38, doi: https://doi.org/10.4103/2153-3539.189703 (2016)
    • (2016) J Pathol Inform , vol.7 , pp. 38
    • Turkki, R.1    Linder, N.2    Kovanen, P.E.3    Pellinen, T.4    Lundin, J.5
  • 16
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol 33, 831-838, doi: https://doi.org/10.1038/nbt.3300 (2015)
    • (2015) Nat Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 17
    • 85009088494 scopus 로고    scopus 로고
    • Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach
    • Nemati, S. et al. Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach. Conf Proc IEEE Eng Med Biol Soc 2016, 2978-2981, doi: https://doi.org/10.1109/EMBC.2016.7591355 (2016)
    • (2016) Conf Proc IEEE Eng Med Biol Soc , vol.2016 , pp. 2978-2981
    • Nemati, S.1
  • 19
    • 84919778861 scopus 로고    scopus 로고
    • BayesOpt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits
    • Martinez-Cantin, R. BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental Design and Bandits. Journal of Machine Learning Research 15, 3735-3739 (2014)
    • (2014) Journal of Machine Learning Research , vol.15 , pp. 3735-3739
    • Martinez-Cantin, R.1
  • 24
    • 0002206019 scopus 로고
    • Use of some sensitivity criteria for choosing networks with good generalization ability
    • Dimopoulos, Y., Bourret, P. & Lek, S. Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Processing Letters 2, 1-4, doi: https://doi.org/10.1007/bf02309007 (1995)
    • (1995) Neural Processing Letters , vol.2 , pp. 1-4
    • Dimopoulos, Y.1    Bourret, P.2    Lek, S.3
  • 25
    • 84966687479 scopus 로고    scopus 로고
    • The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary
    • Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131, 803-820, doi: https://doi.org/10.1007/s00401-016-1545-1 (2016)
    • (2016) Acta Neuropathol , vol.131 , pp. 803-820
    • Louis, D.N.1
  • 26
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102, 15545-15550, doi: https://doi.org/10.1073/pnas.0506580102 (2005)
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 27
    • 84894593599 scopus 로고    scopus 로고
    • Molecular mechanisms of epithelial-mesenchymal transition
    • Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178-196, doi: https://doi.org/10.1038/nrm3758 (2014)
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 178-196
    • Lamouille, S.1    Xu, J.2    Derynck, R.3
  • 28
    • 75149195336 scopus 로고    scopus 로고
    • The transcriptional network for mesenchymal transformation of brain tumours
    • Carro, M. S. et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318-325, doi: https://doi.org/10.1038/nature08712 (2010)
    • (2010) Nature , vol.463 , pp. 318-325
    • Carro, M.S.1
  • 29
    • 73649123907 scopus 로고    scopus 로고
    • Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
    • Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110, doi: https://doi.org/10.1016/j.ccr.2009.12.020 (2010)
    • (2010) Cancer Cell , vol.17 , pp. 98-110
    • Verhaak, R.G.1
  • 30
    • 84255160601 scopus 로고    scopus 로고
    • The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma
    • Bhat, K. P. et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev 25, 2594-2609, doi: https://doi.org/10.1101/gad.176800.111 (2011)
    • (2011) Genes Dev , vol.25 , pp. 2594-2609
    • Bhat, K.P.1
  • 33
    • 84955561447 scopus 로고    scopus 로고
    • Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma
    • Ceccarelli, M. et al. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell 164, 550-563, doi: https://doi.org/10.1016/j.cell.2015.12.028 (2016)
    • (2016) Cell , vol.164 , pp. 550-563
    • Ceccarelli, M.1
  • 34
    • 84905675587 scopus 로고    scopus 로고
    • Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma
    • Ozawa, T. et al. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26, 288-300, doi: https://doi.org/10.1016/j.ccr.2014.06.005 (2014)
    • (2014) Cancer Cell , vol.26 , pp. 288-300
    • Ozawa, T.1
  • 35
    • 1542515338 scopus 로고    scopus 로고
    • A census of human cancer genes
    • Futreal, P. A. et al. A census of human cancer genes. Nat Rev Cancer 4, 177-183, doi: https://doi.org/10.1038/nrc1299 (2004)
    • (2004) Nat Rev Cancer , vol.4 , pp. 177-183
    • Futreal, P.A.1
  • 36
    • 84955328286 scopus 로고    scopus 로고
    • The Molecular Signatures Database (MSigDB) hallmark gene set collection
    • Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1, 417-425, doi: https://doi.org/10.1016/j.cels.2015.12.004 (2015).
    • (2015) Cell Syst , vol.1 , pp. 417-425
    • Liberzon, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.